JPH04201420A - Manufacture of glass fiber reinforced resin molded article - Google Patents

Manufacture of glass fiber reinforced resin molded article

Info

Publication number
JPH04201420A
JPH04201420A JP2334628A JP33462890A JPH04201420A JP H04201420 A JPH04201420 A JP H04201420A JP 2334628 A JP2334628 A JP 2334628A JP 33462890 A JP33462890 A JP 33462890A JP H04201420 A JPH04201420 A JP H04201420A
Authority
JP
Japan
Prior art keywords
composition
glass fibers
thermoplastic resin
length
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2334628A
Other languages
Japanese (ja)
Other versions
JP2948903B2 (en
Inventor
Teruo Hosokawa
細川 輝夫
Shinji Tsukamoto
真司 塚本
Akira Nakatani
中谷 晃
Hiromitsu Gomyo
五明 広光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2334628A priority Critical patent/JP2948903B2/en
Publication of JPH04201420A publication Critical patent/JPH04201420A/en
Application granted granted Critical
Publication of JP2948903B2 publication Critical patent/JP2948903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To mold a unidirectionally reinforced glass fiber reinforced resin molded article very fluidly by a method wherein composition of unidirectionally orientated long glass fibers and thermoplastic resin and composition of short glass fibers having the predetermined length and thermoplastic resin are stamped at a predetermined weight ratio. CONSTITUTION:Bar-like strand composition A is prepared by bundling long glass fibers having the diameter of 5-20mum and impregnating with thermoplastic resin. When a bumper is molded, for example, the length of the strand is preferably the same as that of the bumper and the strand having 60% of more of the length of the bumper maybe allowably used. The preferable glass fiber content after the impregnation of the thermoplastic resin is 20-60wt.%. Said strand composition A is arranged in the mold of a bumper beam under the condition that the long direction of the fiber is set to the long direction of the bumper beam. After that, composition B of short glass fibers having the length of 2-25mm and thermoplastic resin is kneaded under heat with an extruder and supplied in the mold. At this time, the proper weight ratio of A/B is 10-45. Thus, stamping becomes possible very fluidly without lowering the strength and the like of a molded article.

Description

【発明の詳細な説明】 〔産業上の利用分有〕 本発明は自動車のバンパービーム、トランスミッション
メンバー、ラジェーターサポートメンバー、ステアリン
グメンバー等耐衝撃性、強度、耐熱性が要求される部品
に適したガラス繊維強化樹脂成形品の製造法に関する。
[Detailed Description of the Invention] [Industrial Application] The present invention is a glass suitable for parts that require impact resistance, strength, and heat resistance, such as automobile bumper beams, transmission members, radiator support members, and steering members. This article relates to a method for manufacturing fiber-reinforced resin molded products.

〔従来技術〕[Prior art]

一般に成形品においては特定の方向の強度や耐衝撃性が
要求される場合かある。例えばバンパービームではその
長さ方向である。
Generally, molded products may be required to have strength or impact resistance in a specific direction. For example, in the case of a bumper beam, this is the length direction.

これまでバンパービーム、トランスミッションメンバー
等は高張力鋼で製造されている。これを本発明は軽量化
と経済性の観点からガラス繊維強化樹脂成形品で代替し
ようとするものである。
Up until now, bumper beams, transmission members, etc. have been made of high-strength steel. The present invention attempts to replace this with a glass fiber reinforced resin molded product from the viewpoint of weight reduction and economic efficiency.

ガラス繊維強化樹脂成形品にはガラス短繊維と樹脂を混
和し、成形したものがあるが、これは繊維がランダム方
向に配列しているので、ある方向のみを特に強化するこ
とはできない。
Some glass fiber reinforced resin molded products are made by mixing short glass fibers and resin, but since the fibers are arranged in random directions, it is not possible to specifically strengthen only one direction.

またガラスマットにポリプロピレン等の熱可塑性樹脂を
含浸し、スタンピング成形することも知られている。し
かし、ガラスマットはすべての繊維か一方向には配列し
ていないので、やはり上記と同様の問題か生する。
It is also known that a glass mat is impregnated with a thermoplastic resin such as polypropylene and then stamped. However, since all the fibers of the glass mat are not arranged in one direction, the same problem as above still occurs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来一方向のみを特に強化した成形品の製
造は困難であった。また一方向に配列したガラス長繊維
と樹脂との組成物のみをスタンピング成形することは流
動性か悪いので、種々の形状の成形品は得られない。ま
た単純な形状でも反りが大きくなり、商品価値かない。
As mentioned above, conventionally it has been difficult to manufacture molded products that are particularly reinforced in only one direction. Furthermore, stamping molding only of a composition of long glass fibers arranged in one direction and a resin results in poor fluidity, making it impossible to obtain molded products of various shapes. Moreover, even simple shapes tend to warp so much that they have no commercial value.

本発明は一方向を強化したガラス繊維強化樹脂成形品を
スタンピング成形により流動性よく成形する方法を提供
することを目的とする。
An object of the present invention is to provide a method for molding a glass fiber-reinforced resin molded product reinforced in one direction with good fluidity by stamping molding.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は一方向に配列されたガラス長繊維と樹脂との組
成物(A)と、特定の長さのガラス短繊維と樹脂との組
成物(B)を併用することを特徴とし、これによってガ
ラス長繊維を一方向に保ったまま流動性よくスタンピン
グ成形を可能としたものである。
The present invention is characterized by using together a composition (A) of long glass fibers arranged in one direction and a resin, and a composition (B) of short glass fibers of a specific length and a resin. This allows for stamping molding with good fluidity while keeping the long glass fibers oriented in one direction.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で用いるガラス長繊維は直径5〜20即のものか
適し、好ましくは8〜13−である。この繊維を例えば
2000本程度束ねて、これに熱可塑性樹脂を含浸して
棒状のストランド組成物(A)を得る。
The long glass fibers used in the present invention suitably have a diameter of 5 to 20 mm, preferably 8 to 13 mm. For example, about 2000 of these fibers are bundled and impregnated with a thermoplastic resin to obtain a rod-shaped strand composition (A).

含浸方法は公知のプルトルージョン法か用いられる。ス
トランドの長さは目的とする成形品により定め、例えば
バンパーであればその長さ方向の強度が必要なので、ス
トランドの長さはバンパーの長さと同じであれば望まし
いが、6096以上であれば十分に目的か達せられる。
The impregnation method may be a known pultrusion method. The length of the strand is determined by the target molded product.For example, if it is a bumper, strength in the longitudinal direction is required, so it is desirable that the strand length is the same as the length of the bumper, but 6096 or more is sufficient. The goal is achieved.

含浸後のガラス繊維含有量は20〜60重量%か適し、
30〜50重量%か好ましい。
Suitable glass fiber content after impregnation is 20-60% by weight,
30 to 50% by weight is preferred.

熱可塑性樹脂としてはポリオレフィン、ポリエステル、
ポリカーボネート、ポリブチレンテレフタレート、ノリ
ルあるいはノリルとポリアミドとのブレンド物などが用
いられる。− 上記のポリオレフィンとしては(1)30℃の温度に於
てキシレン可溶分が多くとも5.0重量%である単独重
合体、(2>30°Cの温度に於てキシレン可溶分か多
くとも5重量06てあり、かつプロピレンの共重合割合
か25〜75重量Obであるエチレン−プロピレンラン
ダム共重合体、(3)エチレンの共重合割合が1〜IO
重量%であるプロピレン−エチレンランダム共重合体の
1種又は2種以上の組成物か使用できるか、合成を高め
るためにはエチレン−プロピレンランダム共重合体単独
は避けた方がよい。これらの熱可塑性樹脂のメルトフロ
ーレイトは230℃で0.3〜200g/10分の範囲
、好ましくは1〜100g/10分の範囲のものがよい
Thermoplastic resins include polyolefin, polyester,
Polycarbonate, polybutylene terephthalate, noryl or a blend of noryl and polyamide are used. - The above polyolefins include (1) a homopolymer with a xylene soluble content of at most 5.0% by weight at a temperature of 30°C; (3) an ethylene-propylene random copolymer having a copolymerization ratio of 25 to 75% by weight and a copolymerization ratio of ethylene of 1 to IO;
Compositions of one or more propylene-ethylene random copolymers can be used, or ethylene-propylene random copolymers alone should be avoided to enhance synthesis. The melt flow rate of these thermoplastic resins is preferably in the range of 0.3 to 200 g/10 minutes, preferably in the range of 1 to 100 g/10 minutes at 230°C.

ガラス短繊維と樹脂との組成物のガラス短繊維は長さが
2〜25+a+sである。太さについては上記長繊維と
同じでよい。また樹脂の種類、含有量も同様である。従
ってこの組成物(B)のつくり方としては上記長繊維組
成物を2〜25關に切断すればよい。
The short glass fibers of the composition of short glass fibers and resin have a length of 2 to 25+a+s. The thickness may be the same as the long fibers mentioned above. Further, the type and content of the resin are also the same. Therefore, this composition (B) can be prepared by cutting the long fiber composition into 2 to 25 pieces.

成形は公知のスタンピング成形であり、例えばバンパー
ビームでは上記のストランド組成物(A)をバンパービ
ームの金型内に繊維の長さ方向をバンパービームの長さ
方向にして、配列し、その上に組成物(B)を加える。
The molding is a known stamping method, for example, in the case of a bumper beam, the above strand composition (A) is arranged in a bumper beam mold with the length direction of the fibers aligned in the bumper beam length direction, and then placed on top of the strand composition (A). Add composition (B).

この場合組成物(13)は押出成形機で加熱混練され、
上記金型内に供給される。
In this case, the composition (13) is heated and kneaded in an extruder,
It is supplied into the mold.

この間に短繊維は切断されて短かくなり、特に10mu
を越えるようなものは、元の長さの半分程度になる。
During this time, short fibers are cut and become short, especially 10 mu
If the length exceeds , it will be about half the original length.

製品の種類に応じて(A)と(B)を所定の割合に定め
、スタンピング成形する。この割合は一般的には(A)
/ (B)の重量比で1.0〜45か適当である。
(A) and (B) are determined at a predetermined ratio depending on the type of product, and stamping is performed. This ratio is generally (A)
/ (B) weight ratio of 1.0 to 45 is appropriate.

〔作  用〕[For production]

本発明において組成物CB)は重要な役割を果し、成形
品の強度等を弱めることなく、流動性よくスタンピング
成形を可能とするものである。この組成物(B)はそれ
自体ガラス繊維の強化作用を保ちながら、押出成形機等
により、スタンピング成形の金型に供給でき、かつスタ
ンピング成形時の系全体に流動性を付与するものである
In the present invention, composition CB) plays an important role and enables stamping molding with good fluidity without weakening the strength of the molded product. This composition (B) can be supplied to a mold for stamping molding using an extruder or the like while maintaining the reinforcing effect of glass fibers, and can impart fluidity to the entire system during stamping molding.

ガラス短繊維は長さが2n未満ては繊維による補強効果
か小さい。通常の押出成形機を用いた場合、組成物中の
2關のガラス繊維は0.31程度になるか、実用上の補
強効果は保たれる。一方25關を越えると組成物(B)
の押出成形機による供給が困難であり、またスタンピン
グ成形時の組成物の流動性か悪くなる。
When the short glass fibers have a length of less than 2n, the reinforcing effect of the fibers is small. When a normal extrusion molding machine is used, the number of glass fibers in the two columns in the composition is about 0.31, or the practical reinforcing effect is maintained. On the other hand, if the number exceeds 25, composition (B)
It is difficult to feed the composition using an extruder, and the fluidity of the composition during stamping molding becomes poor.

[成形及び評価方法] 試作したバンパービームは長さ1500m+s、幅25
0關である。その重量は約4kg(比重1.17)であ
る。
[Forming and evaluation method] The prototype bumper beam has a length of 1500 m+s and a width of 25 mm.
0 matters. Its weight is approximately 4 kg (specific gravity 1.17).

これを成形する手順としてますスタンピングマシーンの
金型上に組成物(A)3kgを長さ方向に配置し、赤外
線加熱炉を通して215℃に加熱し、ついでその上に組
成物(B)をスタンピングマシーンの押出機をコンピュ
ーターで制御しながら溶融押出して配置する。金型を降
下させ圧縮流動させる。
The procedure for molding this is to place 3 kg of composition (A) lengthwise on a mold of a stamping machine, heat it to 215°C through an infrared heating furnace, and then apply composition (B) on top of it using a stamping machine. An extruder is used for melt extrusion under computer control. The mold is lowered to compress and flow.

そのときの圧力は単位面積当りloOkg/c−であっ
てその全荷重は200トンであった。衝突試験は自動車
の車体が1000kgを想定し、1300kgペンシュ
ラム(衝突治具)を用いて衝突時の速度が5マイル/h
rて行った。また同トlの成形品を用いてこの衝突試験
で衝突の衝撃に耐えられる材料は静荷重の座屈荷重でl
Oトンを上回ることが経験的に分かっている。従って静
荷重での座屈試験で衝突試験を予測することかできる。
The pressure at that time was loOkg/c- per unit area, and the total load was 200 tons. The collision test assumed that the vehicle body weighed 1000 kg, and the speed at the time of collision was 5 mph/h using a 1300 kg pensulum (collision jig).
I went to r. In addition, in this crash test using a molded product of the same torque, the material that can withstand the impact of a collision is the buckling load of the static load.
It has been empirically known that the amount exceeds O tons. Therefore, a crash test can be predicted by a buckling test under static load.

[実施例1〜6コ バンパービームを成形する金型で1000mmのガラス
長繊維ストランドの樹脂組成物(A)および13mmの
同組成物(B)を用意して、先に述べたような手順で成
形を行った。そのときの両者の重量比は実施例1は(−
A)/ (B) =’3/ Iであってガラス含量は(
^)、 (B)とも40重ff196である。この成形
品の5マイル/hr衝突試験は正面、側面衝突とも衝撃
による破壊は認められなかった。また静荷重試験でその
座屈強度は11.8 トンであり、衝撃強度と静荷重強
度との対応かあることが分かった。更に繊維の一方向配
列による強度が成形流動によって低下する度合を見るべ
くバンパービームの中央部と両側部から引張り試験片を
切り出しその強度を測定した。これによると材料の低下
度合は16%であり成形流動による一方向の強度低下か
少ないことか認められた。実施例2〜6においては組成
物(A)と組成物(B)との重量比を表−1に示すよう
に変更して成形し、その衝突性能並びに上記各部位での
機械的強度を測定した。その結果引張り強度の変化は少
なく一方向配列か流動にともなう成形で低下する度合が
少ないことが分かった。
[Examples 1 to 6 A resin composition (A) of 1000 mm long glass fiber strands and a 13 mm long glass fiber strand (B) were prepared in a mold for forming a cobumper beam, and the same composition (B) of 13 mm was prepared in a mold for forming a cobumper beam. I did the molding. At that time, the weight ratio of both in Example 1 was (-
A)/(B) ='3/I and the glass content is (
Both ^) and (B) are 40x FF196. In a 5 mile/hr collision test of this molded product, no damage was observed due to impact in both frontal and side collisions. In addition, the static load test showed that the buckling strength was 11.8 tons, indicating that there is a correspondence between impact strength and static load strength. Furthermore, in order to examine the degree to which the strength due to the unidirectional fiber arrangement was reduced by the forming flow, tensile test pieces were cut from the center and both sides of the bumper beam and their strengths were measured. According to this, the degree of material deterioration was 16%, indicating that the strength deterioration in one direction was probably due to molding flow. In Examples 2 to 6, the weight ratio of composition (A) and composition (B) was changed as shown in Table 1 and molded, and the impact performance and mechanical strength at each of the above parts were measured. did. As a result, it was found that the change in tensile strength was small and the degree of decrease in tensile strength was small due to unidirectional alignment or molding due to flow.

なお、ここで用いた樹脂はMFRか80g/10分く2
30°C)のポリプロピレン単独重合体82重量%とエ
チレン−プロピレンランダム共重合体18重量96から
なる組成物である。この共重合体のプロピレンの共重合
割合は40重量%である。そして組成物のV F Rは
40g/10分く230℃)である。
The resin used here has a MFR of 80 g/10 minutes
It is a composition consisting of 82% by weight of a polypropylene homopolymer (30°C) and 18% by weight of an ethylene-propylene random copolymer (96% by weight). The copolymerization ratio of propylene in this copolymer is 40% by weight. The VFR of the composition was 40 g/10 min/230°C).

[比較例1コ 実施例1に於て材料の構成を(A)/ (B) −o、
gになるように配合し成形を行った。そのときの衝突試
験では3,8マイル/hrの速度を越えると衝撃破壊か
生じる。またそのときの静荷重での座屈試験では810
0kg fてあり経験的な規格値の水準に達しない。ま
た製品の各部位を切り出して引張り試験を行うと各部位
での引張り強度のばらつきは少ないかそのものの強度か
低く衝撃に耐えられないことか分かった。
[Comparative Example 1 In Example 1, the material composition was (A)/(B) -o,
It was blended and molded to give a weight of 1. In crash tests at that time, impact failure occurred when speeds exceeded 3.8 miles/hr. In addition, in the buckling test under static load at that time, 810
0kg f, which does not meet the empirical standard value. Furthermore, when each part of the product was cut out and subjected to a tensile test, it was found that either there was little variation in the tensile strength of each part, or that the strength of the product itself was too low to withstand impact.

[比較例2] 実施例1に於て長繊維ロングペレット(a)単独で成形
を行うと成形品はツイストして製品として目的を達しえ
ない。但し成形品を治具に取り付けて衝突試験を行うと
7.6マイル/hr迄の衝突時の衝撃に耐えられる。ま
た静的荷重による座屈試験を行うと13トンと高い強度
を示すか製品としての反りの大きい点で商品価値を失っ
て意味かない。
[Comparative Example 2] If the long fiber long pellet (a) was molded alone in Example 1, the molded product would be twisted and the intended product could not be achieved. However, if the molded product is attached to a jig and a crash test is performed, it can withstand the impact of a crash at speeds of up to 7.6 miles/hr. In addition, when a buckling test using a static load is carried out, it shows a high strength of 13 tons, or it is meaningless as the product loses its commercial value due to the large amount of warpage.

[比較例3コ ガラスマット(芯部が一方向配向)からつくられたスタ
ンパブルシートのガラス含量が40重量%の材料で、引
張り強度がガラス繊維の配向方向で1300kg/cd
、直角方向で430kg f / cJのものを用いて
赤外線加熱でシート温度を215℃になるように加熱し
た。加熱したシートをプレスに装着した金型内に投入し
、圧縮成形を行った。成形圧力は500トンで単位面積
当りの成形圧力133kg/cdであった。製品を用い
て衝突試験を行ったところ正面からの衝突では5マイル
/hrの速度に充分耐えられるが側面からの衝突では2
.5マイル/hrの速度しか耐えられないことが分かっ
た。また静荷重試験で座屈強度を測定すると13.9 
トンであった。
[Comparative Example 3 A stampable sheet made from co-glass mat (core oriented in one direction) has a glass content of 40% by weight, and has a tensile strength of 1300 kg/cd in the direction of glass fiber orientation.
The sheet temperature was heated to 215° C. by infrared heating using a sheet with a power of 430 kg f/cJ in the right angle direction. The heated sheet was put into a mold attached to a press and compression molded. The molding pressure was 500 tons and the molding pressure per unit area was 133 kg/cd. In a crash test using the product, it was found that it could withstand a frontal collision at a speed of 5 miles per hour, but a side collision withstand a speed of 2 miles per hour.
.. It was found that it could only withstand speeds of 5 miles/hr. In addition, when the buckling strength was measured in a static load test, it was 13.9.
It was a ton.

製品から引張り試験片を切り出してその強度を測定する
と中央部に比べ先端部での強度低下率は66.7%で、
成形流動によって一方向の配向が薄れ製品の強度が大幅
に低下していることが分かった。
When a tensile test piece was cut out from the product and its strength was measured, the strength reduction rate at the tip was 66.7% compared to the center.
It was found that the orientation in one direction was weakened due to molding flow, and the strength of the product was significantly reduced.

製品の形状によって流動経路が大きい部位については一
方向に強化された特性が著しく低下し易い。
Depending on the shape of the product, properties that have been strengthened in one direction tend to deteriorate significantly in areas where the flow path is large.

また成形圧力もおおよそ長繊維複合材料に比べて2倍近
く必要であり成形性も悪い。また製品のリブの部位につ
いて引張り強度を測定すると230kg / cdとウ
ェルドによる強度の低下が著しい。その断面を観察する
とガラスマットのためリブにガラス繊維が流入しないた
め樹脂のみか充填されウェルドを形成することが分かっ
た。
Furthermore, the molding pressure is approximately twice as high as that of long fiber composite materials, and the moldability is poor. Furthermore, when the tensile strength of the rib portion of the product was measured, it was 230 kg/cd, which was a significant decrease in strength due to welding. Observing the cross section, it was found that because the glass mat prevented the glass fibers from flowing into the ribs, only the resin was filled and a weld was formed.

〔発明の効果〕 1)衝撃強度が著しく大きい。〔Effect of the invention〕 1) Impact strength is extremely high.

2)ガラス繊維が配向している方向の引張り強度がガラ
スマットを使用した場合に比べ2倍以上である。
2) The tensile strength in the direction in which the glass fibers are oriented is more than twice that of a glass mat.

3)成形品の各部位では特性変動が少ない。これは成形
流動による繊維の配向乱れが少ないことを示す。
3) There is little variation in characteristics in each part of the molded product. This indicates that there is little disturbance in fiber orientation due to molding flow.

4)ガラス短繊維の樹脂組成物が所定量配合されている
ので流動性(成形性)がよく、またその成形品は反りを
生じない。
4) Since a predetermined amount of the short glass fiber resin composition is blended, fluidity (moldability) is good, and the molded product does not warp.

Claims (3)

【特許請求の範囲】[Claims] (1)成形品の強度を必要とする一方向に配列されたガ
ラス長繊維と熱可塑性樹脂の組成物(A)と、長さ2〜
25mmのランダムな方向を持つガラス短繊維と熱可塑
性樹脂組成物(B)とを(A)/(B)を重量比で1.
0〜4.5にしてスタンピング成形することを特徴とす
るガラス繊維強化樹脂成形品の製造法。
(1) A composition (A) of long glass fibers and thermoplastic resin arranged in one direction that requires strength of the molded product, and
The randomly oriented short glass fibers of 25 mm and the thermoplastic resin composition (B) were mixed at a weight ratio of (A)/(B) of 1.
1. A method for producing a glass fiber reinforced resin molded product, which comprises stamping molding at a temperature of 0 to 4.5.
(2)ガラス長繊維の長さが強度を必要とする方向の成
形品の長さの60%以上であることを特徴とする特許請
求の範囲第1項記載のガラス繊維強化樹脂成形品の製造
法。
(2) Manufacturing a glass fiber reinforced resin molded article according to claim 1, wherein the length of the long glass fibers is 60% or more of the length of the molded article in the direction where strength is required. Law.
(3)(A)中のガラス長繊維の量が20〜60重量%
である特許請求の範囲第1項又は第2項記載のガラス繊
維強化樹脂成形品の製造法。
(3) The amount of long glass fibers in (A) is 20 to 60% by weight
A method for manufacturing a glass fiber reinforced resin molded article according to claim 1 or 2.
JP2334628A 1990-11-30 1990-11-30 Manufacturing method of glass fiber reinforced resin molded product Expired - Fee Related JP2948903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334628A JP2948903B2 (en) 1990-11-30 1990-11-30 Manufacturing method of glass fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334628A JP2948903B2 (en) 1990-11-30 1990-11-30 Manufacturing method of glass fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JPH04201420A true JPH04201420A (en) 1992-07-22
JP2948903B2 JP2948903B2 (en) 1999-09-13

Family

ID=18279508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334628A Expired - Fee Related JP2948903B2 (en) 1990-11-30 1990-11-30 Manufacturing method of glass fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP2948903B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318472A (en) * 1992-05-22 1993-12-03 Sekisui Chem Co Ltd Fiber-reinforced thermoplastic resin sheet
JPH0647737A (en) * 1992-07-29 1994-02-22 Yamakawa Ind Co Ltd Reinforced sheet that can be stamped
EP0676441A1 (en) * 1994-03-10 1995-10-11 Hoechst Aktiengesellschaft Process for recycling a fibre-reinforced thermoplastic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10583617B2 (en) 2016-11-28 2020-03-10 General Electric Company Automatic systems and methods for stacking composite plies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318472A (en) * 1992-05-22 1993-12-03 Sekisui Chem Co Ltd Fiber-reinforced thermoplastic resin sheet
JPH0647737A (en) * 1992-07-29 1994-02-22 Yamakawa Ind Co Ltd Reinforced sheet that can be stamped
EP0676441A1 (en) * 1994-03-10 1995-10-11 Hoechst Aktiengesellschaft Process for recycling a fibre-reinforced thermoplastic material

Also Published As

Publication number Publication date
JP2948903B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
US5514745A (en) Mixture for melt process moldings having long fiber reinforced polypropylene and polypropylene resin and high mechanical strength molding formed therefrom
US5312573A (en) Process for extruding mixtures of thermoplastic and thermoset materials
JPS62240514A (en) Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam formed therefrom
DE112016004611T5 (en) Overmolded carbon fiber structures with adjusted void content and uses thereof
JPH0292756A (en) Bumper beam
US5523328A (en) Process and apparatus for extruding mixtures of thermoplastic and thermoset materials and products made therefrom
DE69722427T2 (en) METHOD FOR PRODUCING A THERMOPLASTIC MOLDED PART
JPH04201420A (en) Manufacture of glass fiber reinforced resin molded article
JP2970943B2 (en) Manufacturing method of fiber reinforced resin molded product
JPH0482717A (en) Bamper beam and preparation thereof
JPH08224793A (en) Manufacture of fiber reinforced resin molding
JP2887986B2 (en) Method for producing recycled stampable sheet laminate for automotive parts
JPH06344837A (en) Bumper beam made of stampable sheet
JPS5816820A (en) Reinforced shape and its manufacture
KR100482443B1 (en) Method for manufacuring thermoplastic resin composition
JPH0258544A (en) Material for stamping-molding
JPH0292786A (en) Step for automobile
JPH04100828A (en) Molding material
US20010012554A1 (en) Energy-absorbing component and method of producing the same
JPS6324012B2 (en)
JPH06155495A (en) Bumper beam made of fiber-reinforced thermoplastic resin stampable sheet
JPH07112434A (en) Manufacture of fiber reinforced structure
JPH02197435A (en) Seat shell
JPH1035542A (en) Step for automobile
JPH06155498A (en) Molding method of fiber-reinforced thermoplastic resin stampable sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees