JPH042009A - Manufacture of conductive thin film - Google Patents

Manufacture of conductive thin film

Info

Publication number
JPH042009A
JPH042009A JP2100475A JP10047590A JPH042009A JP H042009 A JPH042009 A JP H042009A JP 2100475 A JP2100475 A JP 2100475A JP 10047590 A JP10047590 A JP 10047590A JP H042009 A JPH042009 A JP H042009A
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
crucible
transfer complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2100475A
Other languages
Japanese (ja)
Inventor
Kazue Kawabata
和重 川端
Makoto Mizutani
眞 水谷
Keiji Tanaka
田中 啓治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2100475A priority Critical patent/JPH042009A/en
Publication of JPH042009A publication Critical patent/JPH042009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To easily and effectively manufacture a thin film homogeneous, having a wide area, being oriented and single phased and superior in its conductivity, by allowing halogen element vapor to exist when a conductive thin film is formed on substrate. CONSTITUTION:Crucibles 2, 2', a substrate 3, a film thickness gauge 4 a halogen gas introduction tube 5, are installed within a chamber 1. And a shutter 6 is placed between the crucible 2 and the substrate 3. Necessary charge-transfer complex is placed in the crucible 2 and pressure within the chamber is reduced to required degree of vacuum via an exhaust valve 7, and then the crucible 2 is heated close to sublimation point of charge-transfer complex, after which gaseous halogen element is introduced in the chamber from the introduction tube 5. Adjustment of the while being thickness of a vapor deposition film is made by opening and closing a shutter 6, monitored by the quartz oscillator film thickness gauge 4. Thus gained charge-transfer complex film has a wide area, oriented that high electric conductivity direction becomes parallel to the substrate surface, and consists of a single phase.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は導電性薄膜の製造方法の改良に関するものであ
る。さらに詳しくいえば、本発明は、均質で大面積を有
し、かつ配向しj;単一相の導電性に優れた電荷移動錯
体から成る薄膜を容易に効率よく製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a method for manufacturing a conductive thin film. More specifically, the present invention relates to a method for easily and efficiently manufacturing a thin film comprising a homogeneous, large-area, oriented, single-phase charge transfer complex having excellent conductivity.

[従来の技術] 近年、電子供与体と電子受容体間の電荷移動力によって
2種の分子が結合した電荷移動錯体は、導電性や超伝導
性、あるいは電子ビームなどに対する感応性なとの特性
を有し、電子材料やレジスト材料なととしての応用が可
能であることから注目され、積極的な研究がなされてい
る。
[Prior Art] In recent years, charge transfer complexes, in which two types of molecules are bonded by the charge transfer force between an electron donor and an electron acceptor, have been shown to have properties such as electrical conductivity, superconductivity, and sensitivity to electron beams. It has attracted attention because it can be applied as electronic materials and resist materials, and active research is being carried out.

導電性電荷移動錯体の製造方法としては、これまで種々
の方法、例えば(1)クロロベンゼンなとの溶媒中に、
電子供与体と電子受容体とを溶解し、その中に白金電極
を入れて1μA程度の電流を流して結晶を成長させる電
解結晶成長法、(2)容器内に仕切り板を設け、溶媒に
電子供与体を溶解させた溶液を一方の室に、溶媒に電子
受容体を溶解した溶液を他方の室に入れたのち、該仕切
り板を取り除いて、両者の拡散により結晶を得る拡散法
、(3)溶媒に電子供与体と電子受容体を少量溶かし、
該溶媒を徐々に蒸発させて結晶を生成させる徐冷法など
の結晶成長法、あるいは(4)電子供与体に気相、液相
又は固相でハロゲン元素を反応させる方法などが知られ
ている。
Various methods have been used to produce conductive charge transfer complexes, for example (1) in a solvent such as chlorobenzene,
An electrolytic crystal growth method in which an electron donor and an electron acceptor are dissolved, a platinum electrode is placed in the solution, and a current of about 1 μA is applied to grow the crystal. (2) A partition plate is provided in the container, and the electron A diffusion method in which a solution in which a donor is dissolved is placed in one chamber and a solution in which an electron acceptor is dissolved in a solvent is placed in the other chamber, the partition plate is removed, and a crystal is obtained by diffusion of both (3). ) Dissolve a small amount of electron donor and electron acceptor in a solvent,
A crystal growth method such as a slow cooling method in which the solvent is gradually evaporated to form crystals, or (4) a method in which an electron donor is reacted with a halogen element in a gas phase, liquid phase, or solid phase are known.

しかしながら、前おの(1)〜(3)の結晶成長法によ
って得られた導電性電荷移動錯体は、いずれも微結晶若
しくは針状の小さな結晶であり、しかももろいため、電
子デバイスなどに用いる場合、そのままでは使用しに〈
<、薄膜化して使用することが望まれる。また、(4)
の電子供与体に気相、液相又は固相でハロゲン元素を反
応させることにより得られた導電性電荷移動錯体は、通
常粉末状である上、種々の組成の混合物であって電気伝
導度が低く、そのままでは電子デバイスなどに使用する
ことができず、精製を伴つt;薄膜化が必要である。
However, the conductive charge transfer complexes obtained by the crystal growth methods described in (1) to (3) above are all microcrystals or small needle-like crystals, and are fragile, so they cannot be used in electronic devices, etc. , do not use it as is.
<It is desirable to use it as a thin film. Also, (4)
Conductive charge transfer complexes obtained by reacting an electron donor with a halogen element in a gas phase, liquid phase, or solid phase are usually in powder form and are mixtures of various compositions with different electrical conductivities. It cannot be used as it is in electronic devices, and requires purification to form a thin film.

このような薄膜化の方法については、例えばテトラチア
フルバレンなどの電子供与体とノーロゲン元素とから成
る電荷移動錯体を真空蒸着法により薄膜化することが試
みられている(米国特許第4,338,392号明細書
、特開昭56−27139号公報)。しかしながら、こ
の方法によって製膜された薄膜は、配向性が悪くて電気
伝導度が例えば10〜20シ一メンス/cm程度と低い
という欠点を有している。これは、導電性電荷移動錯体
は異方的な電気伝導性(例えばσa:σb:σc−1:
100:1000)を示すので、その微結晶が膜中にい
ろいろな方向で存在すると膜としての電気伝導度が低下
するためである。したがって、膜の電気伝導度を高める
ためには、高い電気伝導度を示す結晶軸が膜面に平行に
なるように配向させることが望まれる。
As for a method for forming such a thin film, attempts have been made to form a thin film using a vacuum evaporation method using a charge transfer complex consisting of an electron donor such as tetrathiafulvalene and a norogen element (US Pat. No. 4,338, (Specification No. 392, Japanese Unexamined Patent Publication No. 56-27139). However, the thin film formed by this method has the drawback of poor orientation and low electrical conductivity of, for example, about 10 to 20 siemens/cm. This means that conductive charge transfer complexes have anisotropic electrical conductivity (e.g. σa:σb:σc-1:
100:1000), so if the microcrystals exist in various directions in the film, the electrical conductivity of the film decreases. Therefore, in order to increase the electrical conductivity of the film, it is desirable that the crystal axis exhibiting high electrical conductivity be oriented parallel to the film surface.

他方、真空蒸着法によって、電子供与体と電子受容体と
を交互に蒸着し、界面付近に配向した電荷移動錯体の薄
膜を形成させる方法が提案されている(特開昭61−2
02420号公報)。しかしながら、この方法において
は、界面付近にしか配向した錯体の膜が形成されないた
め、不均質であり、膜全体としての電気伝導度が、例え
ば数シーメンス/cm程度であるように、高くならない
という欠点がある。
On the other hand, a method has been proposed in which an electron donor and an electron acceptor are alternately deposited by vacuum evaporation to form a thin film of an oriented charge transfer complex near the interface (Japanese Unexamined Patent Publication No. 61-2
02420). However, in this method, a film of oriented complexes is formed only near the interface, so it is inhomogeneous, and the electrical conductivity of the film as a whole is not high, for example, on the order of several Siemens/cm. There is.

そこで、本発明者らは、高い電気伝導度を有する配向し
た単一相から成る電荷移動錯体薄膜を製造する方法につ
いて研究を重ね、先に、該錯体を基板とポート間距離1
0cm以内に保持して真空蒸着を行うことにより、高い
配向性を有する導電性に優れた電荷移動錯体薄膜が得ら
れることを見い出した。
Therefore, the present inventors have conducted repeated research on a method for manufacturing a charge transfer complex thin film consisting of an oriented single phase with high electrical conductivity, and first, the distance between the substrate and the port is 1.
It has been found that by performing vacuum deposition while maintaining the distance within 0 cm, a charge transfer complex thin film with high orientation and excellent conductivity can be obtained.

しかしながら、この方法においては、基板とポート間の
距離が短すぎるため、該基板がポートの熱などの影響を
受け、蒸着条件を制御しにくい上、膜面積を大きくする
のに大がかりな装置を必要とし、必ずしも満足しうるも
のではなかった。
However, in this method, since the distance between the substrate and the port is too short, the substrate is affected by the heat of the port, making it difficult to control the deposition conditions, and requiring large-scale equipment to increase the film area. However, it was not always satisfactory.

[発明が解決しようとする課題〕 本発明は、このような事情のもとで、均質で大面積を有
し、かつ配向した単一相の導電性に優れた電荷移動錯体
から成る薄膜を、極めて容易に効率良く製造するための
方法を提供することを目的としてなされたものである。
[Problems to be Solved by the Invention] Under these circumstances, the present invention provides a thin film consisting of a homogeneous, large-area, and oriented single-phase charge transfer complex having excellent conductivity. This was done for the purpose of providing a method for extremely easy and efficient manufacturing.

[課題を解決するための手段] 本発明者らは、前記目的を達成するために鋭意研究を重
ねた結果、ハロゲン元素をアニオンとする電荷移動錯体
をハロゲン元素蒸気中において真空蒸着させて、基板上
に薄膜を形成させることにより、その目的を達成しうろ
ことを見い出し、この知見に基づいて本発明を完成する
に至った。
[Means for Solving the Problems] As a result of extensive research to achieve the above object, the present inventors vacuum-deposited a charge transfer complex having a halogen element as an anion in a halogen element vapor to form a substrate. It was discovered that the objective could be achieved by forming a thin film thereon, and the present invention was completed based on this knowledge.

すなわち、本発明は、基板上に、ハロゲン元素をアニオ
ンとする電荷移動錯体を真空蒸着させて導電性薄膜を形
成させるに当たり、該真空蒸着をハロゲン元素蒸気中に
おいて行うことを特徴とする導電性薄膜の製造方法を提
供するものである。
That is, the present invention provides a conductive thin film characterized in that when forming a conductive thin film by vacuum depositing a charge transfer complex having a halogen element as an anion on a substrate, the vacuum deposition is performed in a halogen element vapor. The present invention provides a method for manufacturing.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法において用いられるハロゲン元素をアニオン
とする電荷移動錯体は、電子供与体とハロゲン元素から
成る゛電子受容体とを反応させることによって得られる
。該電子供与体としては、例えば一般式 %式%() (式中のM l、M !、M 3及びM6はそれぞれイ
オウ原子又はセレンやテルルなどのカルコゲン元素であ
り、それらは同一であってもよいし、たがいに異なって
いてもよく、R1,R2、R3及びR4は、それぞれ水
素原子、チオアルキル基、エチレンジチオ基、メチレン
ジチオ基、アルキル基などであり、それらは同一であっ
てもよいし、たがいに異なっていてもよく、また、R1
とR2及びR3とR6はたがいに結合していてもよい、
) で表されるフルバレン骨格を有する化合物を用いること
ができる。このようなものとしては、例えばテトラチア
フルバレン(T T F )、ジメチルテトラチアフル
バレン(DMTTF)、テトラメチルテトラチアフルバ
レン(TMTTF)、ヘキサメチレンテトラチアフルバ
レン(HMTTF) 、ビスエチレンジチオテトラチア
フルバレン(BEDT−TTF)などのテトラチアフル
バレン類、ジセレナジチアフルバレン(DSDTF) 
、ジメチルジセレナジチアフルバレン(DMDSDTF
)、テトラメチルジセレナジチアフルバレン(TMDS
DTF) 、ヘキサメチレンジセレナジチアフルバレン
(HMDSDTF)などのジセレナジチアフルバレン類
、テトラセレナフルバレン(TSF)、ジメチルテトラ
セレナフル/くレン(DMTSF)、テトラメチルテト
ラセレナフルバレン(TMTSF)、ヘキサメチレンテ
トラセレナフルバレン(HMTSF)などのテトラセレ
ナフルバレン類などが挙げられる。
The charge transfer complex having a halogen element as an anion used in the method of the present invention can be obtained by reacting an electron donor with an electron acceptor made of a halogen element. As the electron donor, for example, the general formula %% () (in the formula, M 1 , M !, M 3 and M 6 are each a sulfur atom or a chalcogen element such as selenium or tellurium, and they are the same) R1, R2, R3 and R4 are each a hydrogen atom, a thioalkyl group, an ethylenedithio group, a methylenedithio group, an alkyl group, etc., and they may be the same. However, they may be different from each other, and R1
and R2 and R3 and R6 may be bonded to each other,
) A compound having a fullvalene skeleton represented by the following can be used. Examples of such substances include tetrathiafulvalene (TTF), dimethyltetrathiafulvalene (DMTTF), tetramethyltetrathiafulvalene (TMTTF), hexamethylenetetrathiafulvalene (HMTTF), and bisethylene dithiotetrathiafulvalene ( tetrathiafulvalenes such as BEDT-TTF), diselenadithiafulvalene (DSDTF)
, dimethyldiselenadithiafulvalene (DMDSDTF)
), tetramethyldiselenadithiafulvalene (TMDS
DTF), diselena dithiafulvalenes such as hexamethylene diselenadithiafulvalene (HMDSDTF), tetraselenadithiafulvalene (TSF), dimethyltetraselenaflu/querene (DMTSF), tetramethyltetraselenadithiafulvalene (TMTSF) , and tetraselenafulvalenes such as hexamethylenetetraselenafulvalene (HMTSF).

また、これらのフルバレン骨格を有する化合物以外の電
子供与体としては、例えばテトラチアナフタレン、テト
ラチアテトラセン、テトラセレナテトラセン(TST)
、ペリレン、ジチオビラン、テトラメチルフェニレンジ
アミンなどが挙げられる。
In addition, examples of electron donors other than these compounds having a fulvalene skeleton include tetrathianaphthalene, tetrathiatetracene, and tetraselenatetracene (TST).
, perylene, dithiobilane, tetramethylphenylenediamine, and the like.

一方、ハロゲン元素から成る電子受容体としては、例え
ば!、、Br、、CU、及びこれらの混合物などが挙げ
られる。
On the other hand, as an electron acceptor made of a halogen element, for example! , Br, CU, and mixtures thereof.

前記の電子供与体と電子受容体との反応方法については
特に制限はなく、従来公知の方法、例えば電解結晶成長
法、拡散法、徐冷法などの結晶成長法、あるいは電子供
与体に気相、液相又は固相でハロゲン元素を反応させる
方法などを用いることができる。
There is no particular restriction on the method of reaction between the electron donor and electron acceptor, and conventionally known methods such as crystal growth methods such as electrolytic crystal growth method, diffusion method, and slow cooling method, or the reaction between the electron donor and the electron acceptor in a gas phase or a liquid phase are used. A method of reacting a halogen element in a phase or solid phase can be used.

このようにして得られた導電性電荷移動錯体の具体例と
しては、(T T F ) I O−7!、(TTF)
Brooo、 (TTF)CI!、 (TTF)  1
.、(TMTTF)、I、  (TMTTF)、Br。
A specific example of the conductive charge transfer complex thus obtained is (T T F ) IO-7! , (TTF)
Brooo, (TTF)CI! , (TTF) 1
.. , (TMTTF), I, (TMTTF), Br.

(TMTTF)aCl 1 (BEDT−TTF)21
、BEDT−TTF)zB r、(BEDT−TTF)
2CL  (BEDT   TTF)z I s、(B
EDT−TTF)zBr3、(B E D T −T 
T F )3C! sなどが挙げられる。
(TMTTF) aCl 1 (BEDT-TTF) 21
, BEDT-TTF)zBr, (BEDT-TTF)
2CL (BEDT TTF)z I s, (B
EDT-TTF)zBr3, (B E D T -T
T F ) 3C! Examples include s.

本発明に、おいて用いられる基板については特に制限は
なく、従来薄膜の形成に慣用されているもの、例えばガ
ラス、塩化ナトリウム、塩化カリウム、酸化マグネシウ
ム、ヨウ化カリウム、石英、買置、セラミックス、プラ
スチックス、あるいは金、銀、アルミニウム、銅などの
金属などから成る基板の中から任意のものを選択して用
いることができる。
There are no particular limitations on the substrate used in the present invention, and substrates that have been conventionally used for forming thin films, such as glass, sodium chloride, potassium chloride, magnesium oxide, potassium iodide, quartz, bulk materials, ceramics, Any substrate can be selected from among plastics and metals such as gold, silver, aluminum, and copper.

本発明においては、これらの基板上に、前記の導電性電
荷移動錯体を真空蒸着させて、その薄膜を形成させるが
、その際、ハロゲン元素蒸気を存在させることが必要で
ある。この/10ゲン元素蒸気が存在しないと本発明の
効果が十分に発揮されない。また真空度は10’Pa(
パスカル)以下、好ましくは10−”Pa以下が有利で
ある。この真空度が102Paを超えると電荷移動錯体
の酸化や分解が起こるおそれがあり好ましくない。該電
荷移動錯体の加熱は、その温度が通常昇華点近傍に達す
るように行われるが、該錯体の種類によって加熱温度は
適宜選ばれる。基板の温度は通常、−270〜300℃
の範囲、好ましくは、0〜200 ’C!の範囲で選ば
れる。
In the present invention, the above-mentioned conductive charge transfer complex is vacuum-deposited on these substrates to form a thin film thereof, and at that time, it is necessary to have a halogen element vapor present. If this /10 gen element vapor is not present, the effects of the present invention will not be fully exhibited. The degree of vacuum is 10'Pa (
Pascal) or less, preferably 10-''Pa or less. If the degree of vacuum exceeds 102 Pa, the charge transfer complex may be oxidized or decomposed, which is not preferable. Heating is usually carried out to reach near the sublimation point, but the heating temperature is selected appropriately depending on the type of the complex.The temperature of the substrate is usually -270 to 300°C.
range, preferably 0-200'C! selected within the range.

次に、本発明の導電性薄膜の好適な製造方法の1例を添
付図面に従って説明する。第1図は電荷移動錯体から成
る薄膜を製造するための真空蒸着装置の1例の概略図で
あって、チェンバー1内にるつぼ2.2′、基板3、膜
厚計4、ハロゲンガス導入管5が設置され、さらにるつ
ぼ2と基板3との間にシャッター6が設けられている。
Next, one example of a preferred method for manufacturing the conductive thin film of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an example of a vacuum evaporation apparatus for producing a thin film composed of a charge transfer complex, in which a chamber 1 includes a crucible 2.2', a substrate 3, a film thickness gauge 4, and a halogen gas introduction tube. A shutter 6 is further provided between the crucible 2 and the substrate 3.

るつぼ2と基板3との距離については特に制限はないが
、40crn以下が好ましい。まず、るつぼ2の中へ所
要の電荷移動錯体を入れ、排気弁7を介してチェンバー
内を真空度10’Pa以下、好ましくは1O−3Pa以
下に減圧したのち、るつぼ2を該電荷移動錯体の昇華点
近傍まで加熱し、該錯体が昇華し始めると同時にガス状
ハロゲン元素をガス導入管5からチェンバー内に導入す
る。なお、ノ10ゲン元素としてヨウ素を用いる場合に
は、ヨウ素をるつぼ2′に入れて二元蒸着の形式でチェ
ンバー内にヨウ素ガスを存在させてもよい。また、チェ
ンバー1内の減圧はあらかじめアルゴンなどの不活性ガ
スで置換したのち、行ってもよい。蒸着膜の膜厚の調整
は、水晶振動子膜厚計4でモニターしながら、シャッタ
ー6の開閉によって行われる。この方法によると膜厚を
数十μm程度まで厚くすることができる。また、膜の大
きさは基板とるつぼ間距離によって制御することができ
るし、基板をローラーなどで横方向に動かすことで、さ
らに大きな面積を有する膜を形成させることができる。
The distance between the crucible 2 and the substrate 3 is not particularly limited, but is preferably 40 crn or less. First, a required charge transfer complex is put into the crucible 2, and the pressure inside the chamber is reduced to a vacuum level of 10'Pa or less, preferably 1O-3Pa or less via the exhaust valve 7, and then the crucible 2 is filled with the charge transfer complex. It is heated to near the sublimation point, and at the same time as the complex begins to sublimate, a gaseous halogen element is introduced into the chamber from the gas introduction pipe 5. In addition, when iodine is used as the element, iodine may be placed in the crucible 2' and iodine gas may be present in the chamber in the form of binary vapor deposition. Further, the pressure inside the chamber 1 may be reduced after replacing the chamber with an inert gas such as argon in advance. The thickness of the deposited film is adjusted by opening and closing the shutter 6 while monitoring with a crystal resonator film thickness gauge 4. According to this method, the film thickness can be increased to about several tens of micrometers. Further, the size of the film can be controlled by the distance between the substrate and the crucible, and by moving the substrate laterally with a roller or the like, a film having an even larger area can be formed.

このようにして得られた電荷移動錯体薄膜は大面積を有
する上、基板面に対して高電気伝導度方向が平行になる
ように配向し、かつ単一相から成っており、その電気伝
導度は、通常20シ一メンス/cm以上と極めて高いも
のである。
The charge transfer complex thin film thus obtained has a large area, is oriented so that the direction of high electrical conductivity is parallel to the substrate surface, and is composed of a single phase. is usually extremely high, 20 siemens/cm or more.

[実施例] 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
[Example] Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

なお、薄膜の電気抵抗は、膜から巾2 mm、長さ5m
mの部分を切り出し、直流4端子法により測定しt;。
In addition, the electrical resistance of the thin film is 2 mm in width and 5 m in length from the membrane.
Cut out part m and measure it using the DC 4-terminal method.

実施例I BEDT−TTF25I++9をビーカーに入れ、これ
にヨウ素25mgを固体のまま加えて密封し、室温で1
日間放置して反応させ、BEDT−TTFヨウ素錯体を
作製した。
Example I BEDT-TTF25I++9 was placed in a beaker, 25 mg of iodine was added thereto as a solid, the mixture was sealed, and the beaker was heated at room temperature for 1 hour.
The mixture was left to react for several days to produce a BEDT-TTF iodine complex.

第1図に示す装置を用い、前記BEDT−TTFヨウ素
錯体50mgをるつぼ2に、ヨウ素(純正化学社製)5
0mgをるつぼ2′に入れ、各るつぼから上方20cm
離れた位置にlOcmXlocmのガラス基板を保持し
た。チェンバー内の真空度が1O−3Piになるまで真
空排気したのち、基板温度を70℃に保持し、るつぼ2
を200℃、るつぼ2′を100℃まで加熱して両原料
を同時に昇華させ、ガラス基板上に製膜した。この膜の
大きさは均質な部分が7cmX7cmであり、また膜厚
を膜厚計(ナノスコープ)によって測定したところ、2
00 nmであった。
Using the apparatus shown in FIG. 1, 50 mg of the BEDT-TTF iodine complex was placed in crucible 2, and 5
Place 0mg in crucible 2' and place 20cm above each crucible.
A glass substrate of lOcmXlocm was held at a separate position. After evacuating the chamber to a vacuum level of 1O-3Pi, the substrate temperature was maintained at 70°C, and the crucible 2
was heated to 200° C. and the crucible 2' was heated to 100° C. to simultaneously sublimate both raw materials and form a film on a glass substrate. The size of this film is 7 cm x 7 cm in the homogeneous area, and the film thickness was measured with a film thickness meter (nanoscope) and was found to be 2.
00 nm.

この膜についてX線回折を行った。第2図にそのX線回
折チャートを示す。その結果、線膜は、その結晶構造か
に、BenderらrMol。
X-ray diffraction was performed on this film. FIG. 2 shows the X-ray diffraction chart. As a result, the crystalline structure of the wire film was determined by Bender et al.

Crys t、Liq、cryst、107 (’84
)45」によって報告されたσfi(BEDT−T T
 F’)21 sの(ooB反射に一致すること&こよ
り、結晶のab面を基板に平行に配向した単一相の膜で
あることが分かった。
Cryst, Liq, crystal, 107 ('84
)45” reported by σfi(BEDT-T T
From the fact that it matched the (ooB reflection of F')21s, it was found that it was a single-phase film in which the a-b plane of the crystal was oriented parallel to the substrate.

この膜の室温における膜面内の電気伝導度は20S/C
mであった。
The in-plane electrical conductivity of this film at room temperature is 20S/C
It was m.

実施例2 電解結晶成長法により作製した(TMTTF)2110
m9をるつぼ2に、ヨウ素20講9をるつぼ2″に入れ
、実施例1と同様にして基板上に導電性薄膜を形成させ
た。
Example 2 (TMTTF) 2110 produced by electrolytic crystal growth method
A conductive thin film was formed on the substrate in the same manner as in Example 1 by placing m9 in crucible 2 and iodine 9 in crucible 2''.

この膜は、X線回折結果により単一相で高配向の均質な
膜であることが分かった。また、大きさは10 cm 
X 10 Cms厚さは500 n m s電気伝導度
は室温で505/cmであった。
The results of X-ray diffraction showed that this film was a single-phase, highly oriented, homogeneous film. Also, the size is 10 cm
The thickness was 500 nm and the electrical conductivity was 505/cm at room temperature.

比較例1 実施例2において、真空蒸着時にヨウ素を用いなかった
こと以外は、実施例2と同様にして寅施したところ、蒸
着膜は原料錯体が分解してTMTTFのみから成る膜と
なった。そのため、この膜の電気伝導度は10−’S/
cm以下となった。
Comparative Example 1 When vacuum deposition was performed in the same manner as in Example 2, except that iodine was not used during vacuum deposition, the raw material complex decomposed in the deposited film, resulting in a film consisting only of TMTTF. Therefore, the electrical conductivity of this film is 10-'S/
cm or less.

[発明の効果] 本発明によると、ハロゲン元素をアニオンとする電荷移
動錯体を真空蒸着させて、基板上に導電性薄膜を形成さ
せる際に、ハロゲン元素蒸気を存在させることにより、
均質で大面積を有し、かつ配向した単一相の導電性に優
れた薄膜を容易に効率よく製造することができる。該導
電性薄膜は電子分野におけるデバイスなどに好適に用い
られる。
[Effects of the Invention] According to the present invention, when a charge transfer complex having a halogen element as an anion is vacuum-deposited to form a conductive thin film on a substrate, by allowing a halogen element vapor to be present,
A homogeneous, large-area, oriented, single-phase, highly conductive thin film can be easily and efficiently produced. The conductive thin film is suitably used for devices in the electronic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための真空蒸者装置の1
例の概略図であって、図中の符号1はチェンバー 2.
2″はるつぼ、3は基板、4は膜圧針、5はハロゲンガ
ス導入管、6はシャッター 7は排気弁である。 第2図は本発明方法により得られた(BEDT−TTF
)2I3から成る導電性薄膜の1例のX線回折チャート
である。 代 理 人 弁理士久保田藤部 1 / a r b
Figure 1 shows one of the vacuum evaporator apparatuses for carrying out the method of the present invention.
2. It is a schematic diagram of an example, and the code|symbol 1 in a figure is a chamber.
2'' crucible, 3 a substrate, 4 a membrane pressure needle, 5 a halogen gas introduction tube, 6 a shutter, and 7 an exhaust valve.
) is an X-ray diffraction chart of an example of a conductive thin film made of 2I3. Agent: Patent Attorney Fujibe Kubota 1/a r b

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、ハロゲン元素をアニオンとする電荷移動
錯体を真空蒸着させて導電性薄膜を形成させるに当たり
、該真空蒸着をハロゲン元素蒸気中において行うことを
特徴とする導電性薄膜の製造方法。
1. A method for producing a conductive thin film, which comprises vacuum-depositing a charge transfer complex having a halogen element as an anion onto a substrate to form a conductive thin film, the vacuum deposition being carried out in a halogen element vapor.
JP2100475A 1990-04-18 1990-04-18 Manufacture of conductive thin film Pending JPH042009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2100475A JPH042009A (en) 1990-04-18 1990-04-18 Manufacture of conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2100475A JPH042009A (en) 1990-04-18 1990-04-18 Manufacture of conductive thin film

Publications (1)

Publication Number Publication Date
JPH042009A true JPH042009A (en) 1992-01-07

Family

ID=14274941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2100475A Pending JPH042009A (en) 1990-04-18 1990-04-18 Manufacture of conductive thin film

Country Status (1)

Country Link
JP (1) JPH042009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249202B1 (en) 1998-12-28 2001-06-19 Sumida Corporation Inductance element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200675A (en) * 1983-04-28 1984-11-14 株式会社バンダイ Game apparatus
JPS59184887U (en) * 1983-05-27 1984-12-08 セイコーインスツルメンツ株式会社 Portable electronic shogi game device
JPS6437986A (en) * 1987-08-05 1989-02-08 Takara Co Ltd Pocket type game computer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200675A (en) * 1983-04-28 1984-11-14 株式会社バンダイ Game apparatus
JPS59184887U (en) * 1983-05-27 1984-12-08 セイコーインスツルメンツ株式会社 Portable electronic shogi game device
JPS6437986A (en) * 1987-08-05 1989-02-08 Takara Co Ltd Pocket type game computer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249202B1 (en) 1998-12-28 2001-06-19 Sumida Corporation Inductance element

Similar Documents

Publication Publication Date Title
WO2019031991A1 (en) Method for producing a film of light-absorbing material with a perovskite-like structure
US5284779A (en) Method of forming organic charge-transfer thin films
JP2003158307A (en) Method for producing superconducting material
JPS61202420A (en) Conductive thin film
US4046950A (en) Chalcogenated tetracene organic metals
Fraxedas et al. Thin films of molecular metals TTF-TCNQ
Hamilton The synthesis of single crystals of the sulphides of zinc, cadmium and mercury and of mercuric selenide by vapour phase methods
Dhere et al. Growth of vapour phase deposits of Ag2Se and Ag2Te on single crystals
JPH042009A (en) Manufacture of conductive thin film
KR20200133508A (en) Transition metal dichalcogenides thin film, method and apparatus for manufacturing the same
JPH0237613A (en) Charge transfer complex thin film and manufacture thereof
KR100578105B1 (en) Method for Fabricating polycrystalline silicon thin films using aluminum halogen compound and metal compound atmosphere
Patel et al. Growth and crystallization of AgSbSe2 films
JPS647445B2 (en)
JPH02114574A (en) Conductive thin film and manufacture thereof
Sai et al. Thin Film Fabrication Techniques
JP2777599B2 (en) Manufacturing method of single crystal thin film
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
KR100738659B1 (en) Method for fabricating polycrystalline silicon thin films using nickel halogen compound atmosphere
JPH0555450B2 (en)
JPH05124894A (en) Production of carbon crystal thin film
JPS633031A (en) Electrically conductive metal phthalocyanine film and method for forming same
Matsuoka et al. Ionic Liquid-Assisted Vacuum Deposition of Organic Ionic Plastic Crystal Thin Films
JPH02173222A (en) Apparatus for producing high purity multi-elements alloy
JPS5938196B2 (en) Growth method of barium lead bismuthate single crystal