JPH04200535A - Optical measuring method and instrument - Google Patents

Optical measuring method and instrument

Info

Publication number
JPH04200535A
JPH04200535A JP2337081A JP33708190A JPH04200535A JP H04200535 A JPH04200535 A JP H04200535A JP 2337081 A JP2337081 A JP 2337081A JP 33708190 A JP33708190 A JP 33708190A JP H04200535 A JPH04200535 A JP H04200535A
Authority
JP
Japan
Prior art keywords
light
living body
measuring
light source
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2337081A
Other languages
Japanese (ja)
Inventor
Yuichi Yamashita
優一 山下
Fumio Kawaguchi
文男 川口
Hiroyuki Takeuchi
裕之 竹内
Kazuo Takeda
一男 武田
Yoshitoshi Ito
嘉敏 伊藤
Keiichi Nagai
啓一 永井
Yasuhiro Mitsui
泰裕 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2337081A priority Critical patent/JPH04200535A/en
Publication of JPH04200535A publication Critical patent/JPH04200535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of the materials constituting a living body by applying the principle that the ratios of respective materials can be measured from the velocities of the light, transmitted through the materials in the case of the distribution of the plural materials varying in refractive index on an optical path length, if the optical path length is known. CONSTITUTION:The light of a light source section 1 is used by opening only the shutter 3 and the time when the light of this wavelength transmitted through the living body is measured, by which the quantity proportional to the blood volume in a measuring region is obtd. The similar measurement is then made by opening only the shutter 4 and using a light source section 2 of the wavelength varying in the refractive index of oxygenated red cells and deoxygenated red cells to determine the time when the light of the wavelength from the light source section 2 transmits the living body. The quantity proportional to the oxygenated red cell and deoxygenated red cell quantities is thereby measured. A series of such measurements are carried out from all directions by rotating or linearly moving the living body 10 relative to the incident light. The tomographic image of the blood volume in the living body or the satd. degree of oxygen which is the ratio of the oxygenated red cells to the total red cell quantity is obtd. by an ordinary tomographic image reproduction technique using a computer 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光を用いて物体内部の情報、たとえば生体内部
の情報を非侵襲で計測する方法とその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for noninvasively measuring information inside an object, such as information inside a living body, using light.

〔従来の技術〕[Conventional technology]

生体における病変の検出を、組織または細胞における代
謝機能の異常から計測し、画像化しようとする試みが最
近活発に行われている。このような装置として現在使用
されているものとしてはP E T (Positro
n Emission Tomography)が挙げ
られるが、この場合、放射性元素を生体内に注入する必
要があるため侵襲性が高い。そこで、生体に対して非侵
襲な、可視から近赤外の光を用いて生体内の代謝機能を
計測、画像化しようとする、光CT装置がいくつか提案
されている。たとえば、特開昭63−206655号に
記載の装置は、近赤外の複数波長の光を生体に交互に照
射し、生体内の代謝機能に関与するヘモグロビン(Hb
)の濃度または酸素飽和度もしくはチトクロームaa、
の酸化状態を、これらの物質による光吸収量の変化とし
て検出し、コンピューターによる断層像再生技術として
知られているCT技術を用いて、生体内の代謝機能を表
す断層像を得ようとするものである。
Recently, attempts have been made to detect lesions in living organisms by measuring and imaging abnormalities in metabolic functions in tissues or cells. One of the devices currently in use is PET (Positro
n Emission Tomography), but in this case, it is highly invasive because it is necessary to inject radioactive elements into the living body. Therefore, several optical CT apparatuses have been proposed that attempt to measure and image metabolic functions within a living body using visible to near-infrared light, which is non-invasive to the living body. For example, the device described in Japanese Patent Application Laid-open No. 63-206655 alternately irradiates a living body with near-infrared light of multiple wavelengths, and uses the device to reduce hemoglobin (Hb), which is involved in metabolic functions in the living body.
) concentration or oxygen saturation or cytochrome aa,
The oxidation state of these substances is detected as changes in the amount of light absorbed by these substances, and CT technology, which is known as computerized tomographic image reconstruction technology, is used to obtain tomographic images that represent metabolic functions within the body. It is.

[発明が解決しようとする課題] 生体は基本的に大きさ数μmから数十μmの細胞から構
成されているため、可視から近赤外の光を生体に照射し
た場合、大部分の光は細胞によって散乱されてしまう。
[Problem to be solved by the invention] Since living organisms are basically composed of cells with a size of several μm to several tens of μm, when a living body is irradiated with visible to near-infrared light, most of the light is It is scattered by cells.

従って、生体を透過した光は、生体中の光学的最短距離
を通過したものと、生体中を多重散乱されて透過した光
のどちらも含むことになる。ここで、生体内の光学的最
短距離を通過した光の持つ位置情報は、光を入射した部
位と検出した部位とを結ぶ直線上にあると近似的に考え
ることができるが、多重散乱された光は、生体中をジグ
ザグに巡った光であるため、その位置情報は明らかでな
い。そのため、これらの光が混在する検出光を用いて空
間的に分解能の高い断層像を得ることは困難である。そ
こで、正確な位置情報を得るためには、最短距離を通過
した光と多重散乱光とを分離しなければならない。前記
特開昭63−206655号においては、生体内に照射
した超短パルス光が多重散乱によって時間的に広がった
サンプル光パルスと、生体外で任意の時間だけ遅延され
た参照光パルスとを非線形光学結晶に導入し、その結果
生ずる第2高調波を検出することで、生体内の光学的最
短距離を通過した光を分離している。しかし、この分離
された光から生体内の代謝に関する情報を得るためには
、生体の散乱特性に基づく透過光の滅弱部分とHbまた
はチトクロームaa、の光吸収に基づく透過光の滅弱部
分とをさらに分離する必要があるが、前記公知例におい
ては考慮されていない。
Therefore, the light that has passed through the living body includes both light that has passed through the shortest optical distance within the living body and light that has been multiple scattered and transmitted through the living body. Here, the positional information of light that has passed through the shortest optical distance within a living body can be approximately considered to lie on a straight line connecting the site where the light entered and the site where it was detected, but Since light travels in a zigzag pattern throughout a living body, its positional information is not clear. Therefore, it is difficult to obtain a tomographic image with high spatial resolution using detection light in which these lights are mixed. Therefore, in order to obtain accurate position information, it is necessary to separate the light that has passed the shortest distance from the multiple scattered light. In the above-mentioned Japanese Patent Application Laid-Open No. 63-206655, a sample light pulse in which ultrashort pulse light irradiated into a living body is temporally spread due to multiple scattering, and a reference light pulse delayed by an arbitrary amount of time outside the living body are combined into a nonlinear method. By introducing the light into an optical crystal and detecting the resulting second harmonic, the light that has passed through the shortest optical distance within the body is separated. However, in order to obtain information regarding metabolism in the living body from this separated light, it is necessary to distinguish between the weak part of the transmitted light based on the scattering characteristics of the living body and the weak part of the transmitted light based on the light absorption of Hb or cytochrome aa. It is necessary to further separate the two, but this is not considered in the above-mentioned known example.

[課題を解決するための手段] 前記の課題が生ずる原因は、生体内の代謝機能を生体透
過光の強度を計測することによって測定するという原理
に深く関わっている。すなわち、Hb、チトクロームa
a、等の光吸収量は透過光強度の減衰として計測される
のであるか、この透過光強度の減衰に関与する因子とし
て、これらの物質による光吸収の他に生体の散乱特性が
含まれている。そこで本発明は、生体内の血液量または
Hbの酸素飽和度を、生体組織による光散乱現象と分離
された計測量で得るために、)(bを含む赤血球の光透
過速度の計測を利用した方法と装置を提供する。
[Means for Solving the Problems] The cause of the above-mentioned problems is deeply related to the principle that metabolic functions in a living body are measured by measuring the intensity of light transmitted through the living body. That is, Hb, cytochrome a
Is the amount of light absorption such as a, etc. measured as an attenuation of the transmitted light intensity?In addition to the light absorption by these substances, the scattering characteristics of the living body are included as factors involved in the attenuation of the transmitted light intensity. There is. Therefore, the present invention utilizes the measurement of the light transmission rate of red blood cells containing (b) in order to obtain the blood volume or the oxygen saturation of Hb in a living body as a measurement quantity that is separated from the light scattering phenomenon caused by living tissues. Methods and apparatus are provided.

[作用1 物質中の光の透過速度はその物質の屈折率に依存してい
る。そのため、光路長が既知であれば、屈折率の異なる
複数の物質が光路長上に分布する場合、透過した光の速
度から各々の物質の比率が計測できる。生体の場合もこ
の原理を適用することにより、化体構成物質の濃度を計
測することができる。たとえ・ば生体組織は、血液、肺
組織、脂肪等によって、それぞれ異なった固有の屈折率
を持つことが、エフ・ビイ・ボリン(F、P、Boli
n)およびエル・イー・プレウス(L、E、Preus
s)およびアール・シー・テーラ−(R,C,Tay]
、or)およびアール・シェイ・フェレシス(R,J、
Ference)の「ファイバーオプティッククラディ
ング法を用いた哺乳類組織の屈折率(Refracti
ve 1ndex of some mammalia
ntissues using a  fiber o
ptic cladding method)J、19
89年6月15日、アブライドオプテイクス、第28巻
、第12号、第2297〜2303項(Appliec
l optics、 28.12.2297(1989
))により知られている。彼らの結果によれば、血液、
肺組織。
[Effect 1 The transmission speed of light in a substance depends on the refractive index of that substance. Therefore, if the optical path length is known, if a plurality of substances with different refractive indexes are distributed along the optical path length, the ratio of each substance can be measured from the speed of the transmitted light. By applying this principle to living organisms, the concentration of substances constituting the body can be measured. For example, biological tissues such as blood, lung tissue, and fat have unique refractive indexes that differ from each other.
n) and L.E. Preus
s) and R.C.Tay
, or) and R. Shei Feresis (R,J,
``Refractive index of mammalian tissue using fiber optic cladding method''
ve 1ndex of some mammalia
tissues using a fiber o
ptic cladding method) J, 19
June 15, 1989, Applie Optics, Volume 28, No. 12, Paragraphs 2297-2303 (Appliec
l optics, 28.12.2297 (1989
)). According to their results, blood,
lung tissue.

脂肪の屈折率は、それぞれ1,40,1.38゜1.4
6 となっている。従って、たとえば生体頭部の血液量
は、脳組織の屈折率および血液の屈折率を用いて、光の
頭部通過時間を計測することにより測定することができ
る。
The refractive index of fat is 1, 40, 1.38° and 1.4, respectively.
6. Therefore, for example, the amount of blood in a living body's head can be measured by measuring the time that light passes through the head using the refractive index of brain tissue and the refractive index of blood.

さらに、Hbを含む赤血球の屈折率は、Hbの酸素化・
脱酸素化状態により異なることが、アール・エフ・ピッ
トマン(R,N、  Pittman)およびビイ・ア
ール・デュリング(B、R,Duling)の「微小循
環における酸素利用性の決定(The determi
nationof oxygen  availabi
lity in themicrocirculati
on)」、  1977年、プロフエショナル・インフ
ォメーション・ライブラリー出版。
Furthermore, the refractive index of red blood cells containing Hb is
Deoxygenation differs depending on the deoxygenation state, as described in ``The determination of oxygen availability in the microcirculation'' by Pittman, R.N. and Duling, B.R.
nation of oxygen available
ity in the microcirculati
on),” published by Professional Information Library, 1977.

エフ・エフ・ニブジス(F、F、JlbSiS)編「酸
素と生理学的機能(Oxygen & physiol
ogical function)J 。
Oxygen & Physiol, edited by F.F.
logical function)J.

第133〜147項、およびジェイ・エム・シュタイン
ク(J6M、5teinke)およびエイ・ビー・シェ
フアート(A、 P、 5hepherd)の[全血オ
キシメトリーニおける光散乱の役割(Role of 
light scatteringin whole 
blood oximetry)J 、  1986年
3月。
Paragraphs 133-147, and J6M Steinke and A.P. Hepherd [Role of Light Scattering in Whole Blood Oximetrini]
light scattering in whole
blood oximetry) J, March 1986.

アイトリプルイー・トランスアクションズ・オブ・バイ
オメディカル・エンジニアリング、BME−第33巻、
第3号、第294〜301項(IEEETrans、 
Biomed、 Eng、、 BME−33,3,29
4(1986))に記載されている。シェイ・エム・シ
ュタインク等は、赤血球濃度の変化に対する吸光度の増
加を、ッペルスキ一方程式(Twersky Equa
tion)で解析を行い、赤血球による光散乱に関する
定数の値を求めている。この定数は赤血球の屈折率の関
数で表されているため、その屈折率の値を計算すると、
赤血球中のHbが酸素化されている酸素化赤血球の屈折
率を1.40 とした場合、813 n’mの波長では
赤血球中のHbが脱酸素化されている脱酸素化赤血球の
屈折率は1.39 となる。また、このような屈折率の
違いは、660nmと940nmではほとんど生じてい
ない。一般に物質の屈折率の波長変化は吸収帯近傍で著
しくなっていて、Hbの場合、可視から赤外領域の光の
波長でHbの酸素化、脱酸素化状態でそれぞれ特徴的な
吸収スペクトルを示しているため、この波長領域で赤血
球の酸素化状態による屈折率の差異が生じている。そこ
で、この赤血球の酸素化状態による屈折率の違いで引き
起こされる光透過速度の差を検出すれば、生体内の酸素
化赤血球と脱酸素化赤血球の濃度比を決定することが可
能となる。この方法の利点は、測定量が光透過速度であ
るため、生体に照射した超短パルス光が生体を透過して
高感度時間分解光検出器たとえばストリークカメラで検
出される際、検出レベルがバックグラウンドレベルを超
えたと認められる時割を検出すれば、その時割自体生体
内の酸素代謝機能の情報を有していると同時に生体内の
光学的最短距離を通過したものとなっていることである
。従って、本発明を用いれば生体内の代謝機能の断層像
を空間分解能およびコントラスト良く計測することがで
きる。
iTripleE Transactions of Biomedical Engineering, BME-Volume 33,
No. 3, paragraphs 294-301 (IEEE Trans,
Biomed, Eng., BME-33,3,29
4 (1986)). H.M. Steinke et al. calculated the increase in absorbance with respect to changes in red blood cell concentration using the Twersky Equa
tion) to determine the value of the constant related to light scattering by red blood cells. Since this constant is expressed as a function of the refractive index of red blood cells, calculating the value of the refractive index gives us
If the refractive index of oxygenated red blood cells, in which Hb in red blood cells is oxygenated, is 1.40, then at a wavelength of 813 nm, the refractive index of deoxygenated red blood cells, in which Hb in red blood cells is deoxygenated, is It becomes 1.39. Moreover, such a difference in refractive index hardly occurs between 660 nm and 940 nm. Generally, the wavelength change in the refractive index of a substance becomes remarkable near the absorption band, and in the case of Hb, the oxygenated and deoxygenated states of Hb exhibit characteristic absorption spectra at wavelengths from visible to infrared light. Therefore, in this wavelength range, differences in refractive index occur depending on the oxygenation state of red blood cells. Therefore, by detecting the difference in light transmission rate caused by the difference in refractive index depending on the oxygenation state of red blood cells, it becomes possible to determine the concentration ratio of oxygenated red blood cells and deoxygenated red blood cells in the body. The advantage of this method is that the measured quantity is the light transmission rate, so when the ultrashort pulse light irradiated to the living body passes through the living body and is detected by a highly sensitive time-resolved photodetector such as a streak camera, the detection level will be reduced. If a timetable that is recognized to have exceeded the ground level is detected, that timetable itself contains information about the oxygen metabolism function in the living body, and at the same time, it has passed through the shortest optical distance within the living body. . Therefore, by using the present invention, tomographic images of in-vivo metabolic functions can be measured with good spatial resolution and contrast.

[実施例] 第1図は本発明の実施例の1つであり、装置全体の構成
を示す図である。おのおの異なった波長を持つ光源部l
及び光源部2は、たとえばそれぞれパルス幅数p s 
e c、以下の超短パルス光を発し、その光はシャッタ
ー3.シャッター4をそれぞれ介してレンズ5.レンズ
6により平行光となる。ここで光源部1の波長を、酸素
化赤血球と脱酸素化赤血球の屈折率が等しい940nm
に、光源部2の波長を酸素化赤血球の屈折率が脱酸素化
赤血球のものより大きい813nmにしてもよい。
[Embodiment] FIG. 1 is one of the embodiments of the present invention, and is a diagram showing the configuration of the entire apparatus. Light source section with different wavelengths
and the light source section 2, for example, each have a pulse width number p s
e c, the following ultra-short pulse light is emitted, and the light is sent to the shutter 3. lenses 5 through shutters 4, respectively. The lens 6 turns the light into parallel light. Here, the wavelength of the light source section 1 is set to 940 nm, which has the same refractive index of oxygenated red blood cells and deoxygenated red blood cells.
Furthermore, the wavelength of the light source section 2 may be set to 813 nm, where the refractive index of oxygenated red blood cells is larger than that of deoxygenated red blood cells.

レンズ5により平行にされた光はミラー7、ハーフミラ
−8を介して、またレンズ6により平行にされた光はハ
ーフミラ−8を介してハーフミラ−9にそれぞれ導入さ
れる。このハーフミラ−9により、生体1oを照射する
生体光と、生体外を通過する参照光に分離される。生体
光として分離された光は生体10を透過し、ミラー11
.ハーフミラ−12を介して時間分解光検出部13で検
出される。この時間分解光検出部13としては、たとえ
ばストリークカメラを用いてもよい。また、ハーフミラ
−9により参照光として分離された光は、ミラー14.
ハーフミラ−12を介して時間分解光検出部13で検出
される。ここで、光の生体内透過時間tは、たとえば次
のように求めることができる。ハーフミラ−9で分離さ
れた生体光と参照光のうち、空気中を通過した参照光は
時間分解光検出部13で、第2図に示す時割も。のパル
ス光として検出される。ここで第2図において、横軸は
検出した光の時割、縦軸は光の強度を表す。
The light made parallel by the lens 5 is introduced into the half mirror 9 via the mirror 7 and the half mirror 8, and the light made parallel by the lens 6 is introduced into the half mirror 9 via the half mirror 8. This half mirror 9 separates the living body light that irradiates the living body 1o and the reference light that passes outside the living body. The separated light as living body light passes through the living body 10 and passes through the mirror 11.
.. The light is detected by the time-resolved light detection section 13 via the half mirror 12. As this time-resolved light detection section 13, for example, a streak camera may be used. Further, the light separated as a reference light by the half mirror 9 is transmitted to the mirror 14.
The light is detected by the time-resolved light detection section 13 via the half mirror 12. Here, the in-vivo transmission time t of light can be determined, for example, as follows. Of the biological light and reference light separated by the half mirror 9, the reference light that has passed through the air is sent to the time-resolved light detection section 13 according to the time schedule shown in FIG. is detected as pulsed light. Here, in FIG. 2, the horizontal axis represents the timetable of detected light, and the vertical axis represents the intensity of light.

他方、生体1oを透過した生体光は、生体と空気の屈折
率の違いにより、参照光より幾分遅れて時間分解光検出
部13で検出され、さらに、生体中の光の多重散乱によ
りパルス光の幅が広がったものとなるが、生体内の光学
的最短距離を通過した光は、第2図の時割t1 で検出
されることになる。
On the other hand, the biological light transmitted through the living body 1o is detected by the time-resolved light detection unit 13 with a slight delay from the reference light due to the difference in refractive index between the living body and the air, and is further detected by the time-resolved light detection unit 13 due to multiple scattering of light within the living body. However, the light that has passed through the shortest optical distance within the living body is detected at the time schedule t1 in FIG. 2.

ここで、生体内の光学的最短距離dを、生体への光入射
位置と光出射位置とを結ぶ直線距離りと近似的に表して
もよい。そうすると、光の生体内透過時間tは真空中の
光速環Cを用いて次式で表される。
Here, the optical shortest distance d within the living body may be approximately expressed as a straight line distance connecting the light incident position and the light exit position into the living body. Then, the in-vivo penetration time t of light is expressed by the following equation using the speed of light ring C in vacuum.

1=1.−1゜−cD この式の右辺第3項は、参照光と生体光とで生体通過距
離以外の光路長を同一にするための補正項である。
1=1. -1°-cD The third term on the right side of this equation is a correction term for making the optical path lengths of the reference light and the living body light the same except for the living body passing distance.

さて、二〇℃の値を用いて代謝機能の断層像を得るため
の計測は、たとえば次のように行う。まずシャッター3
のみ開き光源部1の光を用いて、その波長の光における
生体透過時間11.1を計測する。この波長における赤
血球の屈折率n*EDa+ は赤血球の酸素化、脱酸素
化に関わり無く一定であるため、し、1は光源部1の波
長の生体組織の屈折率n T、、、、を用いて次のよう
に表すことができる。
Now, measurements for obtaining a tomographic image of metabolic function using a value of 20°C are performed, for example, as follows. First, shutter 3
Using the light from the open light source section 1, the living body penetration time 11.1 of the light of that wavelength is measured. Since the refractive index n*EDa+ of red blood cells at this wavelength is constant regardless of oxygenation or deoxygenation of red blood cells, can be expressed as follows.

t−+ = P TxaD/ (c/ nt++s6.
) + P *toD/ (c/ n REDa+ )
ここで、P TI&+ P REDはそれぞれ光透過域
における生体組織と血液の濃度比率、Cは真空中の光速
環を表している。ここで、P TXa= I  P a
goとすれば、シ1.を測定することで測定領域におけ
る血液量に比例する量のPIItDDが得られる。次に
、シャッター4のみを開いて、酸素化赤血球と脱酸素化
赤血球の屈折率が異なる波長の光源部2を用いて同様な
計測を行い、光源部2の波長に対する生体透過時間し、
1を求める。
t-+ = P TxaD/ (c/ nt++s6.
) + P *toD/ (c/n REDa+)
Here, P TI & + P RED respectively represent the concentration ratio of living tissue and blood in the light transmission region, and C represents the speed of light ring in vacuum. Here, P TXa= I Pa
If go, then C1. By measuring , an amount of PIItDD proportional to the blood volume in the measurement area can be obtained. Next, with only the shutter 4 open, a similar measurement is performed using the light source section 2 whose refractive index is different for oxygenated red blood cells and deoxygenated red blood cells, and the living body penetration time for the wavelength of the light source section 2 is calculated.
Find 1.

L a+ :P *ioD/(c / nTIaaj+
 P ago−−−y D / (’C/ n *tr
s’−−−y−r )+ P RED−a **++y
 D / (C/ n*to−* tamyar )コ
コで、nTIam++ nRED−s*yat+ nR
ED−de*++yalは、それぞれ光源部2の波長に
対する生体組織。
L a+ :P *ioD/(c/nTIaaj+
Pago---y D/('C/ n *tr
s'---y-r)+P RED-a **++y
D / (C/ n*to-* tamyar) Here, nTIam++ nRED-s*yat+ nR
ED-de*++yal is the living tissue corresponding to the wavelength of the light source section 2, respectively.

酸素化赤血球、脱酸素化赤血球の屈折率を表す。Represents the refractive index of oxygenated red blood cells and deoxygenated red blood cells.

またP□。−allF*PREゎ−mee++7は、そ
れぞれ光透過領域における酸素化赤血球、脱酸素化赤血
球の濃度比率を表し、P□ゎ−19,□” P RED
  P *tゎ−ezyの関係式より、し、fを測定す
ることで酸素化赤血球、脱酸素化赤血球量に比例する量
であるPRID−amF D +  P **o−m 
t*xy Dを測定できる。
Also P□. -allF*PREゎ-mee++7 represents the concentration ratio of oxygenated red blood cells and deoxygenated red blood cells in the light transmission region, respectively, and P□ゎ-19,□'' P RED
From the relational expression P *tゎ-ezy, by measuring f, PRID-amF D + P**o-m, which is an amount proportional to the amount of oxygenated red blood cells and deoxygenated red blood cells, is obtained.
t*xyD can be measured.

この一連の測定を、生体10を入射光に対して回転もし
くは直線移動させることによって、あらゆる方向から行
い、コンピューター15を用いて通常の断層画像再生技
術により、生体内の血液量もしくは、全赤血球量に対す
る酸素化赤血球の割合である酸素飽和度の断層像を得て
、表示部]6で表示する。ここで、シャッター3または
シャッター4の開閉、または被照射体10の移動または
回転はコンピューター15により制御して行う。
This series of measurements is performed from all directions by rotating or linearly moving the living body 10 with respect to the incident light, and the blood volume in the living body or the total red blood cell volume is determined using normal tomographic image reproduction technology using the computer 15. A tomographic image of the oxygen saturation, which is the ratio of oxygenated red blood cells to the oxygenated red blood cells, is obtained and displayed on the display section]6. Here, the opening and closing of the shutter 3 or the shutter 4 and the movement or rotation of the irradiated object 10 are controlled by the computer 15.

また、本発明は、生体組織はそれぞれ固有の屈折率を有
していることを利用して、生体内の特定の組織、たとえ
ば、肺組織または肝臓などの断層像を得るために用いる
こともできる。さらに、本発明は生体のみならず、内部
に屈折率分布を持つ物体の被破壊計測に利用することが
できる。
Furthermore, the present invention can also be used to obtain tomographic images of specific tissues within a living body, such as lung tissue or liver, by taking advantage of the fact that each living tissue has a unique refractive index. . Furthermore, the present invention can be used not only for measuring the damage of living bodies but also for objects having internal refractive index distribution.

[発明の効果] 本発明により、生体内の代謝機能の断層像を位置精度お
よびコントラスト良く計測することか可能となった。
[Effects of the Invention] According to the present invention, it has become possible to measure tomographic images of in-vivo metabolic functions with good positional accuracy and contrast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す光計測装置の構成図、
第2図は光の生体透過速度を求めるための参考図である
。 1.2・・・光源部、3,4・・・シャッター、5,6
・・・レンズ、7,11.14・・ミラー、8,9.1
2・・・ハーフミラ−110・・・生体、13・・・時
間分解光vz図
FIG. 1 is a configuration diagram of an optical measurement device showing an embodiment of the present invention;
FIG. 2 is a reference diagram for determining the rate of light penetration through a living body. 1.2... Light source section, 3, 4... Shutter, 5, 6
... Lens, 7, 11.14 ... Mirror, 8, 9.1
2... Half mirror 110... Living body, 13... Time resolved light vz diagram

Claims (1)

【特許請求の範囲】 1、複数の物質からなる物体に外部からパルス光を照射
し、物体内を透過する速度を計測することにより前記物
体の構成物質の濃度を測定することを特徴とする光計測
方法。 2、代謝機能の程度に応じて光透過速度の異なる物質を
含む生体の特定部位にパルス光を照射し、前記生体から
の透過光の出射の立上り時割を計測し、もって前記の生
体の光透過速度を計測することにより代謝機能を測定す
ることを特徴とする光計測方法。 3、請求項2に記載の光計測方法において、前記生体中
に含まれる赤血球の光透過速度を計測することにより代
謝機能を測定することを特徴とする生体光計測方法。 4、可視から赤外領域の波長のパルス光を放出する光源
部と、光源部からの光を物体に照射する光照射部と、物
体を透過した光の時間に対する強度を検出する光時間強
度検出部と、検出された信号を表示する表示部とからな
ることを特徴とする光計測装置。 5、請求項4に記載の光計測装置において、光源部から
の光を物体に照射する部分と物体外を通過する部分とに
分岐する光分岐部と、物体を透過した光と物体外を通過
した光とを再び合流させる光合流部を含むことを特徴と
する光計測装置。 6、請求項5に記載の光計測装置において、光源部に波
長の異なる複数の光源を用いることを特徴とする光計測
装置。 7、請求項6に記載の光計測装置において、物体を入射
光に対して移動もしくは回転させる移動回転部と、物体
にあらゆる方向から入射した光の透過光の信号処理を行
うコンピューターを含むことを特徴とする光計測装置。
[Claims] 1. Light characterized by measuring the concentration of the constituent substances of the object by irradiating an object made of a plurality of substances with pulsed light from the outside and measuring the speed at which the light passes through the object. Measurement method. 2. Pulse light is irradiated to a specific part of a living body that contains substances with different light transmission rates depending on the degree of metabolic function, and the rise time of the emission of transmitted light from the living body is measured. An optical measurement method characterized by measuring metabolic function by measuring transmission rate. 3. The optical measurement method according to claim 2, wherein the metabolic function is measured by measuring the light transmission rate of red blood cells contained in the living body. 4. A light source unit that emits pulsed light with a wavelength in the visible to infrared region, a light irradiation unit that irradiates an object with light from the light source unit, and a light time intensity detection unit that detects the intensity of light transmitted through an object over time. What is claimed is: 1. An optical measuring device comprising: a display section that displays a detected signal; 5. The optical measuring device according to claim 4, further comprising: a light branching section that branches the light from the light source section into a section that irradiates the object and a section that passes through the outside of the object; An optical measurement device comprising a light merging section that recombines the light that has been used. 6. The optical measurement device according to claim 5, wherein a plurality of light sources having different wavelengths are used in the light source section. 7. The optical measuring device according to claim 6, including a moving and rotating unit that moves or rotates the object relative to the incident light, and a computer that performs signal processing of the transmitted light of the light that is incident on the object from all directions. Characteristic optical measurement device.
JP2337081A 1990-11-30 1990-11-30 Optical measuring method and instrument Pending JPH04200535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337081A JPH04200535A (en) 1990-11-30 1990-11-30 Optical measuring method and instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337081A JPH04200535A (en) 1990-11-30 1990-11-30 Optical measuring method and instrument

Publications (1)

Publication Number Publication Date
JPH04200535A true JPH04200535A (en) 1992-07-21

Family

ID=18305259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337081A Pending JPH04200535A (en) 1990-11-30 1990-11-30 Optical measuring method and instrument

Country Status (1)

Country Link
JP (1) JPH04200535A (en)

Similar Documents

Publication Publication Date Title
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
JP3577335B2 (en) Scattering absorber measurement method and device
He et al. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults
Chance et al. Phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues
JP3433534B2 (en) Method and apparatus for measuring scattering and absorption characteristics in scattering medium
JP3433508B2 (en) Scattering absorber measurement method and scattering absorber measuring device
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US6564076B1 (en) Time-resolved spectroscopic apparatus and method using streak camera
Chance et al. Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain.
US4832035A (en) Tissue metabolism measuring apparatus
US4910404A (en) CT computed tomograph
WO1993013395A2 (en) Path constrained spectrophotometer
JPS6111096B2 (en)
JPH1073481A (en) Method and instrument for measuring absorption information of scattering body
Mazumder et al. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow
Takatani et al. Optical oximetry sensors for whole blood and tissue
EP0528938B1 (en) Non-invasive medical sensor
CN112244822A (en) Tissue oxygen metabolism rate detection device and method based on near-infrared broadband spectrum
USRE36044E (en) Path constrained spectrophotometer and method for determination of spatial distribution of light or other radiation scattering and absorbing substances in a radiation scattering medium
JP3304559B2 (en) Optical measurement method and device
JP3524976B2 (en) Concentration measuring device
JPH04200535A (en) Optical measuring method and instrument
JP2005160783A (en) Method for noninvasive brain activity measurement
JP2690131B2 (en) Method and apparatus for determining the concentration of a tissue dye of known absorption in vivo using the attenuation properties of scattered electromagnetic radiation
JP4077476B2 (en) Method and apparatus for measuring absorption information of scatterers