JPH0420031B2 - - Google Patents

Info

Publication number
JPH0420031B2
JPH0420031B2 JP30682689A JP30682689A JPH0420031B2 JP H0420031 B2 JPH0420031 B2 JP H0420031B2 JP 30682689 A JP30682689 A JP 30682689A JP 30682689 A JP30682689 A JP 30682689A JP H0420031 B2 JPH0420031 B2 JP H0420031B2
Authority
JP
Japan
Prior art keywords
titanium
mica
pigment
color
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30682689A
Other languages
Japanese (ja)
Other versions
JPH0379673A (en
Inventor
Hajime Kimura
Fukuji Suzuki
Juji Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Shiseido Co Ltd
Original Assignee
Mitsubishi Materials Corp
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Shiseido Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP30682689A priority Critical patent/JPH0379673A/en
Publication of JPH0379673A publication Critical patent/JPH0379673A/en
Publication of JPH0420031B2 publication Critical patent/JPH0420031B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は有色雲母チタン系顔料の製造方法、特
にチタンで還元して発色させる顔料の製造方法に
関する。 [従来の技術] 微細な薄片状雲母の表面に二酸化チタン層を形
成させた雲母チタン系顔料は、真珠光沢と種々の
干渉色を有する。このため、化粧品の分野のみな
らず各種用途の顔料として幅広く用いられてい
る。 このような雲母チタン系顔料の製法としては、
真空蒸着処理もあるが、チタンの無機酸塩(例え
ば硫酸チタニル)の水溶液を雲母の存在下で加水
分解し、雲母表面に含水二酸化チタンを析出させ
た後加熱する方法が一般的である(特公昭43−
25644号公報参照)。 ところで、生成した雲母チタン系顔料は、雲母
粒子表面上の二酸化チタン被覆層の厚さによつて
様々な干渉色を呈する。 干渉色は二酸化チタンの量が生成物の10〜26重
量%の場合通常銀色であるが、26〜40%では金
色、40〜50%の範囲では二酸化チタン層の増加の
方向で、赤、青、緑色へと変化し、更に50〜60%
では高いオーダーの干渉色が得られる。 ところが、こうした雲母チタン系顔料は真珠光
沢と種々の干渉色を有するものの、外観色は常に
白色に近く、鮮やかな有彩色の外観を呈するもの
は得られていない。 そこで従来、様々な外観色を出す為に、生成し
た雲母チタン系顔料に酸化鉄、紺青、酸化クロ
ム、カーボンブラツク、カーミンなどの着色顔料
を添加して対処していた。 [発明が解決しようとする課題] しかしながら、こうした着色の雲母チタン系顔
料の安全性、安定性、耐光性、耐酸性、耐アルカ
リ性、耐溶媒性、耐熱性などは添加した着色顔料
の性質に負うところが多い。 この為、例えば紺青を添加した青色の雲母チタ
ン系顔料はアルカリ溶液中で褪色し、カーミンを
添加した赤色の雲母チタン系顔料は光によつて褪
色劣化する。 一方、カーボンブラツクを添加した雲母チタン
系顔料の場合には該カーボンブラツクに混入する
可能性のある3,4−ベンズピレンの発ガン性が
問題となり、更に酸化クロムを添加した緑色の雲
母チタン系顔料の場合には六価クロムの経口毒性
など安全性が問われているものも少なくない。 更に、上記着色の雲母チタン系顔料は着色顔料
を添加している為、溶媒中で色分れを起こすなど
の課題も併せ持つている。 本発明は前記従来技術の課題に鑑みなされたも
のであり、その目的は真珠光沢のある鮮やかな色
調を有し、安定性、安全性、耐光性、耐酸性、耐
アルカリ性、耐溶媒性、耐熱性に優れた有色雲母
チタン系顔料の製造方法を提供することにある。 [課題を解決するための手段] 前記目的を達成するために本発明者等が鋭意研
究した結果、雲母粒子表面状の二酸化チタンの少
なくとも一部を低次酸化チタンに還元することに
より、従来の着色顔料を添加した着色雲母チタン
系顔料と同等もしくはそれ以上に鮮やかな色調お
よび真珠光沢を有し、安全性等に優れた雲母チタ
ン系顔料が得られることを見出し本発明を完成に
至つた。 すなわち本発明は二酸化チタンで被覆された雲
母に金属チタンを混合し、低酸素条件下で500〜
1000℃で還元することを特徴とする有色雲母チタ
ン系顔料の製造方法である。 次に本発明の構成について更に詳述する。 本発明で使用される雲母はどのようなものでも
よく、一般には白雲母系雲母(muscovite mica)
を用いるが、場合によつては黒雲母等を用いる事
も可能である。 粒径は特に制限されないが、一般市販の雲母の
粒径は1〜50μmであり、この中でも粒径が小さ
く粒子形状ができるだけ偏平なものの方が、有色
雲母チタン系顔料とした場合により美しい色調と
真珠光沢が発揮されやすい。 そして、雲母チタン系顔料に金属チタンを混合
し、該混合物を500〜1000℃、好ましくは700℃〜
900℃で加熱還元する。 製造される有色雲母チタン系顔料は、雲母を被
覆する二酸化チタンと低次酸化チタンまたは低次
酸化チタンの量を広い範囲で変化させることがで
きる。通常雲母100重量部に対して、二酸化チタ
ンが0〜60部の量まで、低次酸化チタンが0.01〜
6重量部の量まで被覆することができる。 低次酸化チタンの量が雲母100重量部に対して
0.01重量部未満しか被覆されていない場合にはで
きあがつた雲母チタン系顔料が有色にならない。
又60重量部を超える場合には雲母の性質が極端に
悪くなり、粒子の凝集が強くなる。この性質は二
酸化チタンの量が雲母100重量部に対して60重量
部を超える場合にも同様である。 [実施例] 次に本発明を実施例により更に詳述する。な
お、本発明はこれにより限定されるものではな
い。又、各実施例中、部とあるのは重量部を表
す。 まず、具体的な実施例に先立ち、雲母粒子表面
を被覆している二酸化チタンと低次酸化チタンの
量を測定する方法について説明する。 二酸化チタンと低次酸化チタンの量 還元処理を行なう前の試料と還元処理後の試料
を各々メノー製ボールミルを用いて粉砕処理し、
雲母を無定形化した。該試料をx線回折(Cu−
Kα線)の粉末測定法により、二酸化チタンの回
折線と低次酸化チタンの回折線の強度を求めた。
そして、その強度を別に求めた雲母と二酸化チタ
ンの混合比、および低次酸化チタンの混合比既知
の回折強度の検量線と対比させて二酸化チタンと
低次酸化チタン量を求めた。 低次酸化チタンの量 低次酸化チタンは大気中で焼成することによつ
て全て二酸化チタンに変ることから、還元処理を
行なつた試料について重量分析を行ない低次酸化
チタンの量を定量した。 すなわち、20ml入磁性ルツボに試料約5gを正
確に秤り、大気中800℃で4時間加熱処理した。
放冷後重量増加分を正確に測定し、その重量増加
分から低次酸化チタンの量を定量した。 実施例 1 雲母50部をイオン交換水500部に添加して十分
に撹拌し均一に分散させた。得られた分散液に濃
度40重量%の硫酸チタニル水溶液312.5部を加え
て、撹拌しながら加熱し6時間沸騰させた。 放冷後、濾過水洗し900℃で焼成して、二酸化
チタンで被覆された雲母(雲母チタン)100部を
得た。 次に得られた雲母チタン100部に金属チタン1.2
部を混合し、該混合物をオイル拡散ポンプを用い
て10-3torr以下の真空度にて800℃で4時間加熱
還元した。冷却後、粉末101.2部を得た。得られ
た粉末は外観色、干渉色ともに真珠光沢のある鮮
やかな青緑色の粉末であつた。また、この製品で
ある青緑色の雲母チタン系顔料において雲母を被
覆している二酸化チタンと低次酸化チタンの量を
求めると、二酸化チタンが雲母100重量部に対し
て40.5重量部、低次酸化チタンが9.5重量部であ
ることが判つた。 実施例 2〜5 市販(米国マール社製)の干渉色を有する雲母
チタン系真珠光沢顔料4種類を各々50部とり、金
属チタンの混合量を変えて、該混合物を拡散ポン
プを用いて10-3torr以下の真空度にして800℃で
4時間加熱還元した。 放冷後、得られた粉末の色、干渉色を肉眼で観
察し、色調をカラーアナライザー607を用いて粉
末セル法で測色した(色相H.明度V.彩度C)。 その結果を次の第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing colored mica titanium pigments, and particularly to a method for producing pigments that develop color by reduction with titanium. [Prior Art] A titanium mica pigment in which a titanium dioxide layer is formed on the surface of fine flaky mica has pearlescent luster and various interference colors. For this reason, it is widely used not only in the field of cosmetics but also as a pigment for various purposes. The manufacturing method for such mica titanium pigments is as follows:
There is also a vacuum deposition process, but the most common method is to hydrolyze an aqueous solution of an inorganic acid salt of titanium (e.g. titanyl sulfate) in the presence of mica, precipitate hydrated titanium dioxide on the mica surface, and then heat it. Kosho 43-
(See Publication No. 25644). By the way, the produced mica titanium pigment exhibits various interference colors depending on the thickness of the titanium dioxide coating layer on the mica particle surface. The interference color is usually silver when the amount of titanium dioxide is between 10 and 26% by weight of the product, gold between 26 and 40%, red, blue in the range of 40 and 50% in the direction of increasing titanium dioxide layer. , changes to green and further 50-60%
In this case, high order interference colors can be obtained. However, although these mica titanium pigments have pearlescent luster and various interference colors, the appearance color is always close to white, and no one that exhibits a bright chromatic appearance has been obtained. Conventionally, coloring pigments such as iron oxide, navy blue, chromium oxide, carbon black, and carmine were added to the produced mica titanium pigments in order to produce various external colors. [Problem to be solved by the invention] However, the safety, stability, light resistance, acid resistance, alkali resistance, solvent resistance, heat resistance, etc. of these colored mica titanium pigments depend on the properties of the coloring pigment added. However, there are many. For this reason, for example, a blue mica titanium pigment to which navy blue has been added fades in an alkaline solution, and a red mica titanium pigment to which carmine has been added fades and deteriorates when exposed to light. On the other hand, in the case of mica titanium pigments to which carbon black is added, the carcinogenicity of 3,4-benzpyrene, which may be mixed into the carbon black, becomes a problem, and green mica titanium pigments to which chromium oxide is added In this case, the safety of hexavalent chromium is often questioned, such as the oral toxicity of hexavalent chromium. Furthermore, since the above-mentioned colored mica titanium pigment contains a colored pigment, it also has problems such as causing color separation in the solvent. The present invention was made in view of the problems of the prior art, and its purpose is to have a bright color tone with pearlescent luster, stability, safety, light resistance, acid resistance, alkali resistance, solvent resistance, and heat resistance. An object of the present invention is to provide a method for producing a colored mica titanium pigment having excellent properties. [Means for Solving the Problems] As a result of intensive research by the present inventors to achieve the above object, the present inventors have found that by reducing at least a portion of titanium dioxide on the surface of mica particles to lower-order titanium oxide, We have completed the present invention by discovering that it is possible to obtain a mica titanium pigment that has a color tone as bright as or more vivid than that of a colored mica titanium pigment containing a colored pigment, has a pearlescent luster, and is excellent in safety. That is, the present invention mixes metallic titanium with mica coated with titanium dioxide, and under low oxygen conditions
This is a method for producing a colored mica titanium pigment characterized by reduction at 1000°C. Next, the configuration of the present invention will be explained in more detail. The mica used in the present invention may be of any type, and is generally muscovite mica.
However, in some cases, it is also possible to use biotite or the like. Although the particle size is not particularly limited, the particle size of commercially available mica is 1 to 50 μm, and among these, the smaller the particle size and the flatter the particle shape as possible, the more beautiful the color tone will be when used as a colored mica titanium pigment. Easily exhibits pearlescent luster. Then, metallic titanium is mixed with the mica titanium pigment, and the mixture is heated to 500 to 1000°C, preferably 700°C to
Heat reduction at 900℃. In the produced colored mica titanium pigment, the amount of titanium dioxide and lower titanium oxide or lower titanium oxide coating the mica can be varied over a wide range. Normally, titanium dioxide is 0 to 60 parts per 100 parts by weight of mica, and lower titanium oxide is 0.01 to 60 parts by weight.
Amounts up to 6 parts by weight can be coated. The amount of lower titanium oxide per 100 parts by weight of mica
If less than 0.01 part by weight is coated, the resulting mica titanium pigment will not be colored.
If the amount exceeds 60 parts by weight, the properties of the mica will become extremely poor and the particles will become more agglomerated. This property holds true even when the amount of titanium dioxide exceeds 60 parts by weight per 100 parts by weight of mica. [Example] Next, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to this. Moreover, in each example, parts represent parts by weight. First, prior to specific examples, a method for measuring the amount of titanium dioxide and lower titanium oxide covering the surface of mica particles will be described. Amount of titanium dioxide and lower titanium oxide The sample before and after the reduction treatment were each ground using a Meno ball mill.
Made mica amorphous. The sample was subjected to x-ray diffraction (Cu-
The intensity of the diffraction lines of titanium dioxide and lower-order titanium oxide was determined using the powder measurement method of Kα rays.
Then, the amounts of titanium dioxide and lower titanium oxide were determined by comparing the intensity with a separately determined mixing ratio of mica and titanium dioxide and a calibration curve of diffraction intensity for which the mixing ratio of lower titanium oxide was known. Amount of low-order titanium oxide Since all low-order titanium oxides are converted to titanium dioxide by firing in the atmosphere, the amount of low-order titanium oxides was quantified by conducting gravimetric analysis on the sample subjected to the reduction treatment. That is, approximately 5 g of a sample was accurately weighed into a 20 ml magnetic crucible and heat-treated at 800° C. for 4 hours in the atmosphere.
After cooling, the weight increase was accurately measured, and the amount of lower titanium oxide was determined from the weight increase. Example 1 50 parts of mica was added to 500 parts of ion-exchanged water and thoroughly stirred to be uniformly dispersed. 312.5 parts of an aqueous titanyl sulfate solution having a concentration of 40% by weight was added to the obtained dispersion, and the mixture was heated and boiled for 6 hours while stirring. After cooling, it was filtered, washed with water, and fired at 900°C to obtain 100 parts of mica coated with titanium dioxide (mica titanium). Next, 1.2 parts of metallic titanium is added to 100 parts of the obtained mica titanium.
The mixture was heated and reduced at 800° C. for 4 hours under a vacuum of 10 −3 torr or less using an oil diffusion pump. After cooling, 101.2 parts of powder was obtained. The obtained powder was a bright blue-green powder with pearlescent appearance and interference color. In addition, when determining the amount of titanium dioxide and lower titanium oxide that coat mica in the blue-green mica titanium pigment that is this product, it is found that titanium dioxide is 40.5 parts by weight per 100 parts by weight of mica, and lower titanium oxide is 40.5 parts by weight per 100 parts by weight of mica. Titanium was found to be 9.5 parts by weight. Examples 2 to 5 50 parts of each of four types of commercially available (manufactured by Marl Inc., USA) mica titanium-based pearlescent pigments having interference colors were taken, the amount of metallic titanium mixed was varied, and the mixture was mixed with a diffusion pump for 10 - The mixture was heated and reduced at 800°C for 4 hours under a vacuum of 3 torr or less. After cooling, the color and interference color of the obtained powder were observed with the naked eye, and the color tone was measured by the powder cell method using a color analyzer 607 (hue H. lightness V. saturation C). The results are shown in Table 1 below.

【表】 以上の実施例1〜5で得られた製品である有色
雲母チタン系顔料の顔料特性を試験した。比較の
ため米国マール社から市販されている着色雲母チ
タン系真珠光沢顔料(従来の雲母チタン系顔料に
着色顔料を添加したもの)の顔料特性を同様に試
験した。比較した市販の着色雲母チタン系真珠光
沢顔料には、実施例1〜5の製品である有色雲母
チタン系顔料の色調と対応するものを選んでい
る。対応は次の表に示す通りである。
[Table] The pigment properties of the colored mica titanium pigments obtained in Examples 1 to 5 above were tested. For comparison, the pigment properties of a colored mica titanium-based pearlescent pigment (a conventional mica titanium-based pigment with a colored pigment added) commercially available from Marl Corporation of the United States were similarly tested. As the commercially available colored mica titanium based pearlescent pigments for comparison, those corresponding to the color tones of the colored mica titanium based pigments of Examples 1 to 5 were selected. The correspondence is shown in the table below.

【表】 また、市販品の組成は次の第3表に示す通りで
ある。
[Table] The composition of the commercially available product is shown in Table 3 below.

【表】 試験項目は、酸安定性、アルカリ安定性、光安
定性、熱安定性、分散安定性であり、試験方法と
試験結果は次のとおりである。 酸安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の着色雲母チタン系真珠光沢顔料1.5g
をそれぞれ共栓50ml入り試験管に入れ、これに
2N塩酸水溶液30mlを加えて分散後、試験管立て
に立てて静置し、24時間後の色調を肉眼で観察し
た。結果を第4表に示す。
[Table] The test items are acid stability, alkali stability, light stability, thermal stability, and dispersion stability, and the test methods and test results are as follows. Acid stability test 1.5 g of colored mica titanium-based pigments of the present invention and commercially available colored mica titanium-based pearlescent pigments
Place each in a 50ml test tube with a stopper, and add
After adding 30 ml of 2N hydrochloric acid aqueous solution and dispersing, the mixture was allowed to stand still in a test tube stand, and the color tone after 24 hours was observed with the naked eye. The results are shown in Table 4.

【表】 第4表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は酸に対して全て
安定であつたが、市販の着色雲母チタン系真珠光
沢顔料はいずれも不安定で徐々に褪色し、24時間
後には市販品のクロイゾネレツドは白色に変化
し、クロイゾネゴールド、クロイゾネブルー、ク
ロイゾネグリーンは色調が薄く白つぼくなり、真
珠光沢も極端に低下した。このように本発明の製
品である有色の雲母チタン系顔料は酸安定性に優
れていることがわかる。 アルカリ安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の着色雲母チタン系真珠光沢顔料1.5g
をそれぞれ共栓付50ml入り試験管に入れ、これに
2N苛性ソーダ水溶液30mlを加えて分散後、試験
管立てに静置し24時間後の色調を肉眼で観察し
た。結果を第5表に示す。
[Table] As is clear from the results in Table 4, all of the colored mica titanium pigments that are products of the present invention were stable against acids, but all of the commercially available colored mica titanium pearlescent pigments were not. It was stable and gradually faded, and after 24 hours, the commercially available Cloisonne Red turned white, and the colors of Cloisonne Gold, Cloisonne Blue, and Cloisonne Green became pale and whitish, and their pearlescent luster was extremely reduced. Thus, it can be seen that the colored mica titanium pigment, which is a product of the present invention, has excellent acid stability. Alkali stability test 1.5 g of the colored mica titanium-based pigment of the present invention and the commercially available colored mica titanium-based pearlescent pigment
Place each in a 50ml test tube with a stopper, and add
After adding and dispersing 30 ml of 2N caustic soda aqueous solution, the mixture was left to stand in a test tube rack and the color tone was observed with the naked eye after 24 hours. The results are shown in Table 5.

【表】 第5表の結果から明らかなように、本発明の製
品である有色の雲母チタン系顔料はアルカリに対
して全く安定なのに対し、市販の着色雲母チタン
系真珠光沢顔料はいずれも不安定で徐々に褪色
し、24時間後には市販品のクロイゾネツトとクロ
イゾネブルーは白色に変化し、クロイゾネゴール
ド、クロイゾネグリーンは色調がうすく白つぼく
なり、真珠光沢も極端に低下した。このように本
発明の製品である有色の雲母チタン系顔料はアル
カリア安定性に優れていることがわかる。 光安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の着色雲母チタン系真珠光沢顔料をそれ
ぞれタルク(浅田製粉社製)と3:7の割合で混
合し、該混合物2.5gをそれぞれ厚さ3mm、一辺
20mmの正方形のアルミ製中皿に成型し、これにキ
セノンランプを30時間照射した。照射後の色調と
照射前の色調をカラーアナライザー607を用いて
測色して、測色値から照射前後の色差(△E)を
求めた。結果を第6表に示す。
[Table] As is clear from the results in Table 5, the colored mica titanium pigment, which is the product of the present invention, is completely stable against alkalis, whereas all commercially available colored mica titanium pearlescent pigments are unstable. The color gradually faded, and after 24 hours, the commercially available Cloisonet and Cloisonne Blue changed to white, and the colors of Cloisonne Gold and Cloisonne Green became pale and whitish, and their pearlescent luster was extremely reduced. Thus, it can be seen that the colored mica titanium pigment, which is the product of the present invention, has excellent alkali stability. Photostability test The colored mica titanium pigment, which is a product of the present invention, and the commercially available colored mica titanium pearlescent pigment are each mixed with talc (manufactured by Asada Seifun Co., Ltd.) in a ratio of 3:7, and 2.5 g of the mixture is 3mm thick each, one side
It was molded into a 20 mm square aluminum medium plate, and was irradiated with a xenon lamp for 30 hours. The color tone after irradiation and the color tone before irradiation were measured using a color analyzer 607, and the color difference (ΔE) before and after irradiation was determined from the colorimetric values. The results are shown in Table 6.

【表】【table】

【表】 第6表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は照射前後で色差
(△E)が0.5以下とほどんど変らず、肉眼ではほ
どんど色調の差が判別できないのに対して、市販
品のクロイゾネレツドやクロイゾネゴールはそれ
ぞれ色差35.3,18.0と極端に大きく、肉眼でも色
調の変化が明瞭であつた。また、クロイゾネグリ
ーンやクロイゾネブルーもそれぞれ色差6.0,5.2
と大きく、肉眼でもはつきりと色調変化を起して
いることが認められた。 熱安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の着色雲母チタン系真珠光沢顔料を各々
20ml入磁性ルツボに3g秤り取り、大気中で200
℃、300℃、400℃、500℃の各温度条件下、2時
間熱処理した。処理後の粉末をカラーアナライザ
ー607で測色し、処理前の顔料との色差(△E)
を求めた。また色調変化を肉眼観察した。各々の
結果を第7表に示す。
[Table] As is clear from the results in Table 6, the color difference (△E) of the colored mica titanium pigment, which is a product of the present invention, before and after irradiation is 0.5 or less, which is almost unchanged, and there is almost no difference in color tone with the naked eye. On the other hand, commercial products Cloisoneret and Cloisonegol had an extremely large color difference of 35.3 and 18.0, respectively, and the change in color tone was clear even to the naked eye. In addition, Cloisonne Green and Cloisonne Blue have a color difference of 6.0 and 5.2, respectively.
It was observed that there was a noticeable change in color tone even with the naked eye. Thermal Stability Test The colored mica titanium pigment which is the product of the present invention and the commercially available colored mica titanium pearlescent pigment were tested separately.
Weighed 3g into a 20ml magnetic crucible and placed it in the atmosphere for 200 ml.
Heat treatment was performed for 2 hours under each temperature condition of 300°C, 300°C, 400°C, and 500°C. The color of the powder after treatment is measured using a color analyzer 607, and the color difference (△E) from the pigment before treatment is determined.
I asked for In addition, changes in color tone were observed with the naked eye. The respective results are shown in Table 7.

【表】【table】

【表】 第7表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は、400℃までは
色差0.5以下で肉眼ではほどんど色調に変化がな
く安定である。500℃になると黄白色に変化する。
これは雲母粒子表面の低次酸化チタンが酸化され
酸化チタンに変化したためである。即ち本発明の
製品である有色の雲母チタン系顔料は500℃未満
の温度まで安定であることがわかる。 これに対し、市販品のクロイゾネレツドやクロ
イゾネブルーは、200℃で色差がそれぞれ3.2,
3.5となり、肉眼でも色調変化がはつきりみられ
る。300℃になると色調が36.4,26.2とさらに大
きくなり色調も赤から黄赤色に、青から赤茶色に
変化する。即ちクロイゾネレツドとクロイゾネブ
ルーは200℃で色調が変化することから熱安定性
に劣ることがわかる。クロイゾネグリーンは400
℃で色差が7.8となり、彩度が低下し暗緑色に変
化する。即ち400℃未満までは安定であるが、そ
れ以上の温度では不安定である。クロイゾネゴー
ルドに限つては500℃になつても多少彩度が劣る
程度であり、色差も1.0以下で安定性が高い。 分散(色分れ)安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の着色雲母チタン系真珠光沢顔料をそれ
ぞれ1.0g、共栓目盛付50ml試験管に入れ、これ
に0.2重量%のヘキサタリン酸水溶液50mlを加え
て、ポリトロンにて30秒間分散させ、更にこの分
散液を超音波にて分散させた。分散後、試験管立
てにて静置し、静置直後、5分間後、10分間後、
30分間後、1時間後の分散状態を肉眼で観察し
た。結果は第8表に示す通りであつた。
[Table] As is clear from the results in Table 7, the colored mica titanium pigment, which is the product of the present invention, is stable with a color difference of 0.5 or less up to 400°C, with almost no change in color tone to the naked eye. When the temperature reaches 500℃, the color changes to yellowish white.
This is because the lower titanium oxide on the surface of the mica particles was oxidized and changed to titanium oxide. That is, it can be seen that the colored mica titanium pigment, which is the product of the present invention, is stable up to temperatures below 500°C. On the other hand, the commercial products Cloisonne Red and Cloisonne Blue have a color difference of 3.2 and 3.2, respectively, at 200℃.
3.5, and the change in color tone is clearly visible to the naked eye. When the temperature reaches 300℃, the color tone increases to 36.4 and 26.2, and the color changes from red to yellow-red and from blue to red-brown. In other words, Cloisonne red and Cloisonne blue change color tone at 200°C, indicating that they are inferior in thermal stability. Cloisonné green is 400
At ℃, the color difference becomes 7.8, the saturation decreases, and the color changes to dark green. That is, it is stable at temperatures below 400°C, but unstable at temperatures above that. As for Cloisonné Gold, even at 500 degrees Celsius, the saturation is only slightly inferior, and the color difference is less than 1.0, which is highly stable. Dispersion (color separation) stability test Put 1.0 g each of the colored mica titanium-based pigment, which is a product of the present invention, and the commercially available colored mica titanium-based pearlescent pigment into a 50 ml test tube with a stopper scale, and add 0.2 weight % hexatalic acid aqueous solution was added and dispersed for 30 seconds using a polytron, and this dispersion was further dispersed using ultrasonic waves. After dispersion, let stand in a test tube stand, immediately after standing, after 5 minutes, after 10 minutes,
The dispersion state was visually observed after 30 minutes and 1 hour. The results were as shown in Table 8.

【表】 △印;色分れを伴い沈降が進んでいる。
×印;色分れを伴い完全に沈降する。
第8表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は、1時間静置後
も均一に分散しているのに対して、市販品のクロ
イゾネブルーとクロイゾネレツドは、静置後5分
間で沈降が見られ、しかも上澄液が青色や赤色を
していた。これは、単に混合した紺青やカーミン
が分離したためである。クロイゾネグリーンは、
静置後30分で沈降がみられ、しかも上澄液の方が
沈降した粒子の緑色より、濃い緑色をしていた。
これは単に混合した酸化クロムが分離したためで
ある。クロイゾネゴールドは、1時間静置後も均
一に分散していた。 以上の各試験結果から明らかなように、本発明
の製品である有色の雲母チタン系顔料は、酸、ア
ルカリ、光に対してまつたく変化がなく安定であ
り、熱に対しても500℃未満の温度までは安定で、
色調変化を起こさない。また、分散性に優れ、色
分れを起こさず、優れた顔料特性を有するもので
ある。 [発明の効果] 上記説明したように本発明にかかる有色雲母チ
タン系顔料の製造方法によれば、二酸化チタンで
被覆された雲母を金属チタンで還元することとし
たので真珠光沢および鮮やかな色調を有し、しか
も使用性に優れた有色雲母チタン系顔料を得る事
ができる。
[Table] △ mark: Sedimentation is progressing with color separation.
× mark: complete sedimentation with color separation.
As is clear from the results in Table 8, the colored mica titanium pigment, which is a product of the present invention, is uniformly dispersed even after standing for 1 hour, whereas the commercial products Cloisonne Blue and Cloisonne Red are uniformly dispersed. , Sedimentation was observed after 5 minutes of standing, and the supernatant liquid was blue or red in color. This is simply due to the separation of the mixed navy blue and carmine. Cloisonné green is
Sedimentation was observed after 30 minutes of standing, and the supernatant liquid had a darker green color than the green color of the sedimented particles.
This is simply due to the separation of the mixed chromium oxide. Cloisonne gold remained uniformly dispersed even after standing for 1 hour. As is clear from the above test results, the colored mica titanium pigment that is the product of the present invention is stable against acids, alkalis, and light, and is stable under heat at temperatures below 500°C. Stable up to temperatures of
Does not cause color change. Furthermore, it has excellent dispersibility, does not cause color separation, and has excellent pigment properties. [Effects of the Invention] As explained above, according to the method for producing a colored mica titanium pigment according to the present invention, since mica coated with titanium dioxide is reduced with metallic titanium, pearlescent luster and bright color tone can be obtained. It is possible to obtain a colored mica titanium-based pigment which has the following characteristics and is excellent in usability.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化チタンで被覆された雲母に金属チタン
を混合し、真空下で500〜1000℃で還元すること
を特徴とする有色雲母チタン系顔料の製造方法。
1. A method for producing a colored mica titanium pigment, which comprises mixing titanium metal with mica coated with titanium dioxide and reducing the mixture under vacuum at 500 to 1000°C.
JP30682689A 1989-11-27 1989-11-27 Production of colored mica titanium-based pigment Granted JPH0379673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30682689A JPH0379673A (en) 1989-11-27 1989-11-27 Production of colored mica titanium-based pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30682689A JPH0379673A (en) 1989-11-27 1989-11-27 Production of colored mica titanium-based pigment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP265183A Division JPS59126468A (en) 1983-01-11 1983-01-11 Pigment composed of mica and titanium

Publications (2)

Publication Number Publication Date
JPH0379673A JPH0379673A (en) 1991-04-04
JPH0420031B2 true JPH0420031B2 (en) 1992-03-31

Family

ID=17961726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30682689A Granted JPH0379673A (en) 1989-11-27 1989-11-27 Production of colored mica titanium-based pigment

Country Status (1)

Country Link
JP (1) JPH0379673A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE159973T1 (en) * 1992-11-30 1997-11-15 Shiseido Co Ltd METHOD FOR PRODUCING A PIGMENT CONTAINING A LOWER TITANIUM OXIDE
DE19843014A1 (en) * 1998-09-19 2000-03-23 Merck Patent Gmbh Reduction pigment for e.g. automobile paint and glaze for ceramics and glass contains silicone dioxide plates and titanium-based pigment(s)
AU2003301270A1 (en) * 2002-10-16 2004-05-04 Ciba Specialty Chemicals Holding Inc. Reducing pigments
JP2010185073A (en) * 2009-01-13 2010-08-26 Ako Kasei Co Ltd Dichroism pigment which has vivid appearance color and interference color

Also Published As

Publication number Publication date
JPH0379673A (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US5964936A (en) Oxidized colored aluminium pigments, process for their production and their use
RU2685659C1 (en) Mother-of-pearl pigment based on monolithic-formed substrates, method for production and application thereof
JP3557306B2 (en) Gloss pigment
US5522923A (en) Red pigment and manufacturing method thereof
JPH0461032B2 (en)
JPH0461033B2 (en)
JPH0811219B2 (en) Paint finish method
JP2577777B2 (en) Platelet-shaped two-phase pigments based on aluminum-containing iron oxides and process for their production
JPH083471A (en) Luster pigment
JPH08259840A (en) Red-based pigment and its production
US6190445B1 (en) High-chroma orange pearl pigment
JPH0420031B2 (en)
JPH01158077A (en) Colored mica titanium material
JP3683951B2 (en) Yellow scale powder
JPS642147B2 (en)
JPS60184570A (en) Mica coated with titanium compound
JPH0216168A (en) Coated pigment
JPH0511153B2 (en)
JPS59212422A (en) Cosmetic
JPH10110113A (en) Colored stainless flake pigment and coating material having colored metal gloss
JP2001261989A (en) Method for producing black pigment
US5248337A (en) Stable lead chromate pigment composition and process for producing the same
JPS60170670A (en) Mica coated with titanium compound
CN214244272U (en) Golden pearlescent pigment
CN115362132B (en) Strong-coloring manganese ferrite color pigment