JPH0420023B2 - - Google Patents

Info

Publication number
JPH0420023B2
JPH0420023B2 JP1547483A JP1547483A JPH0420023B2 JP H0420023 B2 JPH0420023 B2 JP H0420023B2 JP 1547483 A JP1547483 A JP 1547483A JP 1547483 A JP1547483 A JP 1547483A JP H0420023 B2 JPH0420023 B2 JP H0420023B2
Authority
JP
Japan
Prior art keywords
weight
group
hbbe
parts
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1547483A
Other languages
Japanese (ja)
Other versions
JPS59142246A (en
Inventor
Kazuo Kishida
Isao Sasaki
Hiroshi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1547483A priority Critical patent/JPS59142246A/en
Publication of JPS59142246A publication Critical patent/JPS59142246A/en
Publication of JPH0420023B2 publication Critical patent/JPH0420023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は機械的性質、熱的性質、成形加工性等
に優れたガラス繊維で強化された難燃性ポリエス
テル樹脂組成物に関する。 ポリエチレンテレフタレート樹脂のガラス繊維
強化物は機械的性質、熱的性質、耐薬品性、成形
加工性等の樹脂特性に優れているためエンジニア
リングプラスチツクとして広範囲に利用されてい
る。 しかしこのガラス繊維強化ポリエステル樹脂も
他の合成樹脂と同様に可燃性の点に問題があり、
その難燃化の意義は大きいものである。 通常ポリエチレンテレフタレートのガラス繊維
強化物は、成形温度が250〜300℃と比較的高いた
め難燃剤の耐熱性が重要である。このため高温で
もほとんど分解せず、しかも最終的に得られる成
形品を着色したり、あるいは樹脂特性を低下させ
たりしない難燃剤が要望されている。またポリエ
チレンテレフタレートのガラス繊維強化物は熱変
形温度が高く、電気部品等高温環境下で使用され
る製品の材料として広範囲に利用されている。し
たがつて、このようなポリエステル樹脂のガラス
繊維強化物の難燃化に際しては、難燃性、機械的
強度、耐熱性等の初期物性に加えて高温雰囲気下
で長時間使用した場合においても難燃剤の熱逃散
による難燃性の低下がないことが大切で、いわゆ
る成形品の耐熱安定性が要求される。 本発明者らは、後記の一般式Iの難燃剤が耐熱
性、難燃性等に優れることから、これを三酸化ア
ンチモンと組合わせてポリエチレンテレフタレー
トのガラス繊維強化物に配合し難燃性の向上を試
みた。しかし式Iの難燃剤を少量配合した組成物
は、難燃性の向上に加えて、機械的性質も向上す
るため性能の優れた組成物が得られるが多量に配
合して高度の難燃性を得ようとすると、成形加工
時の条件により、例えば射出成形時の温度を高く
した場合、あるいは滞留時間を長くした場合等に
おいて流動性の低下がみられることがあり、成形
性が悪くなることがある。 本発明者らはこれらの欠点を改良すべく検討を
重ねた結果、特定の構造を有する難燃剤の少なく
とも2種を三酸化アンチモンと共に特定の範囲量
でガラス繊維を含有するポリエチレンテレフタレ
ート樹脂に配合することにより、熱的性質及び難
燃性を低下させることなく、機械的性質及び押出
作業性に優れた難燃性ポリエチレンテレフタレー
ト樹脂組成物となしうること、さらにこの組成物
に特定量の無機化合物を配合することにより樹脂
組成物の難燃性をさらに向上させることを見出し
本発明に到達した。 本発明は、ポリエチレンテレフタレート樹脂、
ガラス繊維、一般式 (式中Xは水素原子、塩素原子又は臭素原子、m
は平均値が0〜11の数、R1はグリシジル基、基
The present invention relates to a flame-retardant polyester resin composition reinforced with glass fibers having excellent mechanical properties, thermal properties, moldability, etc. Glass fiber reinforced polyethylene terephthalate resins are widely used as engineering plastics because they have excellent resin properties such as mechanical properties, thermal properties, chemical resistance, and moldability. However, like other synthetic resins, this glass fiber reinforced polyester resin also has the problem of flammability.
The significance of making it flame retardant is great. Glass fiber reinforced products of polyethylene terephthalate usually have a relatively high molding temperature of 250 to 300°C, so the heat resistance of the flame retardant is important. For this reason, there is a need for a flame retardant that hardly decomposes even at high temperatures and that does not color the final molded product or deteriorate the resin properties. Furthermore, glass fiber reinforced polyethylene terephthalate has a high heat distortion temperature and is widely used as a material for products such as electrical parts that are used in high-temperature environments. Therefore, when making such polyester resin glass fiber reinforced materials flame retardant, in addition to initial physical properties such as flame retardance, mechanical strength, and heat resistance, it is necessary to It is important that the flame retardance does not deteriorate due to heat loss of the flame agent, and so-called heat-resistant stability of the molded product is required. Since the flame retardant of the general formula I described later has excellent heat resistance and flame retardancy, the present inventors combined it with antimony trioxide and blended it into a glass fiber reinforced material of polyethylene terephthalate to create a flame retardant material. I tried to improve. However, compositions containing a small amount of the flame retardant of Formula I have improved mechanical properties in addition to improved flame retardancy, resulting in compositions with excellent performance. However, depending on the conditions during the molding process, for example, if the temperature during injection molding is increased or the residence time is lengthened, fluidity may decrease, resulting in poor moldability. There is. As a result of repeated studies in order to improve these drawbacks, the present inventors have found that at least two kinds of flame retardants having a specific structure are blended together with antimony trioxide in a specific amount in a specific range into a polyethylene terephthalate resin containing glass fiber. As a result, it is possible to obtain a flame-retardant polyethylene terephthalate resin composition with excellent mechanical properties and extrusion workability without deteriorating thermal properties and flame retardancy. The present invention was achieved by discovering that the flame retardancy of the resin composition can be further improved by blending the resin composition. The present invention provides polyethylene terephthalate resin,
Glass fiber, general formula (In the formula, X is a hydrogen atom, a chlorine atom, or a bromine atom, m
is a number with an average value of 0 to 11, R 1 is a glycidyl group, a group

【式】、炭化水素基、ハロゲ ン化炭化水素基又は基−COR4を示し、ここにR2
及びR3の一方は水酸基、他方はハロゲン原子を
有していてもよいアルコキシ基、フエノキシ基、
アミノ基又はカルボキシ基、R4は炭化水素基又
はハロゲン化炭化水素基を意味する)で表わされ
るハロゲン含有率が10重量%以上の難燃剤、ヘキ
サブロムビフエニルエーテル(以下HBBEと略
す)及び三酸化アンチモンから構成され、ポリエ
チレンテレフタレート樹脂100重量部に対して難
燃剤〔I〕が1〜20重量部、HBBEが2〜30重
量部で、難燃剤〔I〕とHBBEの重量比
〔I〕/HBBEが0.2<〔I〕/HBBE≦4なる範
囲にあり、かつ難燃剤〔I〕とHBBEが合計3
〜40重量部及び三酸化アンチモンが2〜30重量部
の量で配合され、かつガラス繊維が全樹脂組成物
に対し5〜60重量%配合されてなる難燃性ポリエ
ステル樹脂組成物である。 本発明はさらに前記の組成物の他に、全樹脂組
成物に対し無機化合物が1〜40重量%、ガラス繊
維と無機化合物が合計量で60重量%以下となるよ
うに配合されてなる難燃性ポリエステル樹脂組成
物である。 本発明の樹脂組成物は、一般式Iの難燃剤及び
HBBEを前記の範囲の量で組合せて用いること
により、式Iの難燃剤を用いた樹脂組成物と同等
の耐熱性、難燃性を示し、しかも機械的性質及び
成形加工性に優れたバランスのとれた樹脂組成物
である。 さらに無機化合物を特定量配合することにより
当該組成物の難燃性をさらに向上させ、特に燃焼
時のドリツプ防止効果を改良することができる。 本発明に用いられるポリエチレンテレフタレー
ト樹脂としては、エチレンテレフタレート単位を
主構成単位とする線状ポリエステル又は他の多価
アルコール、芳香族ジカルボン酸、脂肪族ジカル
ボン酸等を少量共縮重合させた線状コポリエステ
ル、さらにはこれらポリエステル又はコポリエス
テルを主成分とする他の熱可塑性物質との混合物
等が用いられる。なお線状ポリエステル又は線状
コポリエステルの極限粘度〔η〕は、テトラクロ
ルエタン/フエノールの等重量混合溶媒中5℃で
の値が0.4〜1.5の範囲にあることが好ましい。 本発明に用いられるガラス繊維の種類は特に限
定されるものでなくロービングタイプ、チヨツプ
ドストランドタイプいずれも用いられるが生産性
の見地からチヨツプドストランドタイプが好まし
い。この場合、混合時の作業性、成形機の摩耗、
成形過程での切断等を考慮すると、長さ0.4〜6
mm程度のものが特に好ましく、最終成形品中のガ
ラス繊維の長さが0.2〜3mm程度あれば充分であ
る。ガラス繊維は各種の処理がなされている市販
品がそのまま用いられる。ガラス繊維の配合量は
ポリエチレンテレフタレート樹脂、ガラス繊維、
難燃剤及び三酸化アンチモンからなる全樹脂組成
物中5〜60重量%である。5重量%未満の配合量
ではガラス繊維の補強効果が少なく、また60重量
%を超える配合量では流動加工性からみた成形加
工性が低下してくるので好ましくない。 また本発明に用いられる難燃剤は一般式Iで示
されるものであり、難燃剤の平均重合度を表わす
式I中のmは11以下であることが1つの重要な因
子であり、これが11より大きい高分子量のものを
配合した場合には、この難燃剤の樹脂組成物中で
の分散が均一になりにくく、樹脂特性を低下させ
る原因になるので好ましくない。また難燃剤のハ
ロゲン含有率が10重量%に満たない場合には、配
合量が少なすぎて充分な難燃性を得ることが難し
く、また逆にあまり多いと樹脂特性が低下し、耐
ドリツピング性が低下する傾向となるので好まし
くない。 式Iの難燃剤としては、例えば下記の化合物が
挙げられる。なお式中の基−Zは基 を意味する。 また、もう一方の難燃剤はヘキサブロムビフエ
ニルエーテルであることが必要で、これと同じ類
の臭素の量が異なるデカブロムビフエニルエーテ
ルは好ましくない。すなわちデカブロムビフエニ
ルエーテルでは成形品を高温下におくと、成形品
の表面にデカブロムビフエニルエーテルが析出し
てきて、白粉をふいた様になる。これに対しヘキ
サブロムビフエニルエーテルでは、難燃剤の高温
下における逃散も少なく、また成形品の表面が変
化することもない。 難燃剤の配合量はポリエチレンテレフタレート
樹脂100重量部に対して、式Iの難燃剤が1〜20
重量部、HBBEが2〜30重量部であり、難燃剤
〔I〕とHBBEの重量比〔I〕/HBBEが0.2<
〔I〕/HBBE≦4の範囲で、かつ難燃剤〔I〕
とHBBEの合計量が3〜40重量部である。なお
難燃剤〔I〕及びHBBEの合計量が前記範囲内
で比較的多い場合には、前記の〔I〕/HBBE
の比を0.5〜3程度にすることが好ましい。 三酸化アンチモンの配合量は、ポリエチレンテ
レフタレート樹脂100重量部に対して2〜30重量
部、好ましくは2〜20重量部の範囲である。三酸
化アンチモンの配合量が30重量部を超えると機械
的強度が低下してくるので好ましくない。なお難
燃剤の量が比較的少ない場合には本発明の範囲内
で三酸化アンチモンの配合量を多くすることが好
ましい。また難燃剤の量が比較的多い場合には本
発明の範囲内で三酸化アンチモンの配合量を少な
くすることが好ましい。 さらに本発明においては無機化合物を配合する
ことにより組成物の難燃性及び耐ドリツプ性を向
上させることができる。無機化合物は特に限定さ
れるものではないが珪酸又は珪酸塩類が好まし
い。具体的にはタルク、カオリン、ウオラスナイ
ト、シリカ、マイカ、珪藻土、石英粉、クレー、
ホワイトカーボン等が挙げられる。これらのうち
タルクは成形加工性を改良する効果があり、また
ホワイトカーボンは耐ドリツプ性向上の効果が著
しく特に好ましい。これら無機化合物は単独で又
は2種以上混合して用いることができる。その配
合量は全樹脂組成物中1〜40重量%である。無機
化合物の配合量が1重量%未満では耐ドリツプ性
の向上効果が少ない。なおガラス繊維と無機化合
物は、合計量が全樹脂組成物中60重量%以下の量
となるように配合されていることが必要である。 本発明の組成物を製造するに際しては、例えば
充分乾燥したチツプ状のポリエチレンテレフタレ
ート樹脂、ガラス繊維、式Iの難燃剤及び
HBBE並びに三酸化アンチモン、さらに所望に
より無機化合物をV型ブレンダー等で均一に混合
したのち、溶融混合するか、又はポリマー、難燃
剤、三酸化アンチモンさらには無機化合物をまず
溶融混合し、次いでガラス繊維を加えてもよい。 本発明の樹脂組成物には必要に応じて光又は熱
に対する安定剤、染顔料、結晶核剤等の添加剤を
加えることができる。 実施例1〜6及び比較例1〜4 テトラクロルエタンとフエノールの等重量混合
溶媒中25℃で測定した固有粘度が0.72の充分乾燥
したポリエチレンテレフタレート(PETと略記
する)に安息香酸ナトリウム、長さ3mmのガラス
繊維のチヨツプドストランド、難燃剤、三酸化ア
ンチモン及び無機化合物をそれぞれ下記表に示す
割合でV型ブレンダーで5分間均一に混合した。 次いでこれら混合物を40mmφベント式押出機を
用いてシリンダー温度260〜280℃で押出し、ペレ
ツト化した。これらペレツトを5オンスの36mmφ
スクリユー式射出成形機を用い、シリンダー温度
280℃、金型温度80℃にて射出成形し、厚さ3.2mm
の曲げ強度測定用試験片及び厚さ1.5mmの燃焼性
測定用試験片を得た。成形サイクルは比較例3で
120秒とする以外はすべて60秒とした。これらの
試験片を用いて機械的性質及び難燃性を評価し
た。 加工性は射出成形時の成形サイクル120秒とし
一般的な成形サイクルよりも長くした時のシヨー
トシヨツトの状態で評価した。すなわち初期の射
出圧をシヨートシヨツト+105Kg/cm2とし、成形
中に溶融粘度が上がり、この圧力でシヨートシヨ
ツトとなつてしまうまでのシヨツト数で評価し
た。 これらの評価結果を下記表に示す。また表中の
曲げ強度はASTM D−638に準じて求めた値を
示す。また難燃性についてはアンダーライター
ズ・ラボラトリーズ・ブリテイン94(UL−94)の
火炎試験に準じて測定し、127mm×12.7mm×1.5mm
の試験片5本に対して10回の着炎テストを行つ
た。 表中の難燃剤(A)は次式の化合物、(B)はHBBE
を意味する。 難燃剤(A): この結果から明らかなように加工性の面から難
燃剤(A)とHBBEを特定割合で配合することが重
要であることが知られる。またさらに無機化合物
を配合することにより難燃性の耐ドリツプ性が改
良されることが知られる。
[Formula] represents a hydrocarbon group, a halogenated hydrocarbon group or a group -COR4 , where R2
and one of R 3 is a hydroxyl group, the other is an alkoxy group that may have a halogen atom, a phenoxy group,
Flame retardants with a halogen content of 10% by weight or more represented by an amino group or a carboxy group, R 4 means a hydrocarbon group or a halogenated hydrocarbon group, hexabrombiphenyl ether (hereinafter abbreviated as HBBE) and It is composed of antimony oxide, and the flame retardant [I] is 1 to 20 parts by weight and HBBE is 2 to 30 parts by weight per 100 parts by weight of polyethylene terephthalate resin, and the weight ratio of the flame retardant [I] and HBBE is [I]/ HBBE is in the range of 0.2<[I]/HBBE≦4, and the total amount of flame retardant [I] and HBBE is 3
This is a flame-retardant polyester resin composition in which 40 parts by weight of antimony trioxide, 2 to 30 parts by weight of antimony trioxide, and 5 to 60 parts by weight of glass fiber based on the total resin composition. In addition to the above-mentioned composition, the present invention further provides a flame retardant composition containing 1 to 40% by weight of an inorganic compound and a total amount of glass fiber and inorganic compound of 60% by weight or less based on the total resin composition. It is a polyester resin composition. The resin composition of the present invention comprises a flame retardant of general formula I and
By using HBBE in combination in the above range, it is possible to obtain a resin composition that exhibits heat resistance and flame retardancy equivalent to that of a resin composition using the flame retardant of formula I, and has an excellent balance of mechanical properties and moldability. This is the resin composition obtained. Furthermore, by incorporating a specific amount of an inorganic compound, the flame retardance of the composition can be further improved, and in particular, the drip prevention effect during combustion can be improved. The polyethylene terephthalate resin used in the present invention is a linear polyester whose main constituent unit is ethylene terephthalate units, or a linear resin obtained by cocondensation polymerization of a small amount of other polyhydric alcohols, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, etc. Polyesters, as well as mixtures of these polyesters or copolyesters with other thermoplastic materials, are used. The intrinsic viscosity [η] of the linear polyester or linear copolyester is preferably in the range of 0.4 to 1.5 at 5° C. in a mixed solvent of equal weights of tetrachloroethane/phenol. The type of glass fiber used in the present invention is not particularly limited, and both roving type and chopped strand type can be used, but chopped strand type is preferred from the viewpoint of productivity. In this case, workability during mixing, wear of the molding machine,
Considering cutting during the molding process, the length is 0.4 to 6.
A glass fiber length of about 0.2 to 3 mm is particularly preferable, and it is sufficient if the length of the glass fiber in the final molded product is about 0.2 to 3 mm. Commercially available glass fibers that have undergone various treatments can be used as they are. The blended amount of glass fiber is polyethylene terephthalate resin, glass fiber,
It accounts for 5 to 60% by weight of the total resin composition consisting of the flame retardant and antimony trioxide. If the amount is less than 5% by weight, the effect of reinforcing the glass fibers will be small, and if the amount is more than 60% by weight, the molding processability from the viewpoint of flowability will deteriorate, which is not preferable. Furthermore, the flame retardant used in the present invention is represented by general formula I, and one important factor is that m in formula I, which represents the average degree of polymerization of the flame retardant, is 11 or less; When a flame retardant with a large molecular weight is blended, it is difficult to uniformly disperse the flame retardant in the resin composition, which is undesirable because it causes deterioration of the resin properties. In addition, if the halogen content of the flame retardant is less than 10% by weight, the amount is too small and it is difficult to obtain sufficient flame retardancy; This is not preferable since it tends to decrease. Flame retardants of formula I include, for example, the following compounds. In addition, the group -Z in the formula is a group means. Further, the other flame retardant must be hexabrom biphenyl ether, and decabrom biphenyl ether of the same type with a different amount of bromine is not preferred. In other words, when a molded article of decabrom biphenyl ether is exposed to high temperatures, decabrom biphenyl ether precipitates on the surface of the molded article, giving the appearance of white powder. In contrast, with hexabrom biphenyl ether, the flame retardant escapes little at high temperatures, and the surface of the molded product does not change. The blending amount of the flame retardant is 1 to 20 parts by weight of the flame retardant of formula I per 100 parts by weight of the polyethylene terephthalate resin.
parts by weight, HBBE is 2 to 30 parts by weight, and the weight ratio of flame retardant [I] to HBBE [I]/HBBE is <0.2
[I]/HBBE≦4, and flame retardant [I]
and HBBE in a total amount of 3 to 40 parts by weight. In addition, when the total amount of flame retardant [I] and HBBE is relatively large within the above range, the above [I]/HBBE
It is preferable to set the ratio to about 0.5 to 3. The amount of antimony trioxide blended is in the range of 2 to 30 parts by weight, preferably 2 to 20 parts by weight, based on 100 parts by weight of the polyethylene terephthalate resin. If the amount of antimony trioxide exceeds 30 parts by weight, the mechanical strength will decrease, which is not preferable. Note that when the amount of flame retardant is relatively small, it is preferable to increase the amount of antimony trioxide blended within the scope of the present invention. Furthermore, when the amount of flame retardant is relatively large, it is preferable to reduce the amount of antimony trioxide blended within the scope of the present invention. Furthermore, in the present invention, the flame retardancy and drip resistance of the composition can be improved by blending an inorganic compound. The inorganic compound is not particularly limited, but silicic acid or silicates are preferred. Specifically, talc, kaolin, walrus night, silica, mica, diatomaceous earth, quartz powder, clay,
Examples include white carbon. Among these, talc has the effect of improving molding processability, and white carbon is particularly preferable since it has a remarkable effect of improving drip resistance. These inorganic compounds can be used alone or in a mixture of two or more. The blending amount thereof is 1 to 40% by weight in the total resin composition. If the amount of the inorganic compound added is less than 1% by weight, the effect of improving drip resistance will be small. Note that the glass fiber and the inorganic compound must be blended in such a way that the total amount is 60% by weight or less in the total resin composition. In preparing the composition of the invention, for example, sufficiently dried polyethylene terephthalate resin chips, glass fibers, a flame retardant of formula I and
HBBE, antimony trioxide, and if desired, an inorganic compound are uniformly mixed in a V-type blender, etc., and then melt-mixed, or the polymer, flame retardant, antimony trioxide, and further inorganic compound are first melt-mixed, and then glass fibers are mixed. may be added. Additives such as stabilizers against light or heat, dyes and pigments, and crystal nucleating agents can be added to the resin composition of the present invention, if necessary. Examples 1 to 6 and Comparative Examples 1 to 4 Thoroughly dried polyethylene terephthalate (abbreviated as PET) with an intrinsic viscosity of 0.72 measured at 25°C in a mixed solvent of equal weights of tetrachloroethane and phenol, sodium benzoate, and the length A chopped strand of 3 mm glass fiber, a flame retardant, antimony trioxide and an inorganic compound were uniformly mixed for 5 minutes in a V-type blender in the proportions shown in the table below. Next, these mixtures were extruded using a 40 mmφ vented extruder at a cylinder temperature of 260 to 280°C to form pellets. These pellets are 5 ounces of 36mmφ
Using a screw-type injection molding machine, cylinder temperature
Injection molded at 280℃, mold temperature 80℃, thickness 3.2mm
A test piece for measuring bending strength and a test piece for measuring flammability with a thickness of 1.5 mm were obtained. The molding cycle is Comparative Example 3.
All times were set to 60 seconds except for 120 seconds. Mechanical properties and flame retardancy were evaluated using these test pieces. Processability was evaluated using the shot shot condition when the molding cycle during injection molding was 120 seconds, which was longer than a typical molding cycle. That is, the initial injection pressure was set to shot shot + 105 Kg/cm 2 , and the melt viscosity increased during molding, and the evaluation was made based on the number of shots until it became a shot shot at this pressure. These evaluation results are shown in the table below. Moreover, the bending strength in the table shows the value determined according to ASTM D-638. In addition, flame retardancy was measured according to the Underwriters Laboratories Bulletin 94 (UL-94) flame test, 127 mm x 12.7 mm x 1.5 mm.
The flame test was conducted 10 times on five test pieces. The flame retardant (A) in the table is a compound of the following formula, and (B) is HBBE.
means. Flame retardant (A): As is clear from this result, it is known that it is important to mix the flame retardant (A) and HBBE in a specific ratio from the viewpoint of processability. It is also known that flame retardancy and drip resistance can be improved by further blending an inorganic compound.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエチレンテレフタレート樹脂、ガラス繊
維、一般式 (式中Xは水素原子、塩素原子又は臭素原子、m
は平均値が0〜11の数、R1はグリシジル基、基
【式】、炭化水素基、ハロゲ ン化炭化水素基又は基−COR4を示し、ここにR2
及びR3の一方は水酸基、他方はハロゲン原子を
有していてもよいアルコキシ基、フエノキシ基、
アミノ基又はカルボキシ基、R4は炭化水素基又
はハロゲン化炭化水素基を意味する)で表わされ
るハロゲン含有率が10重量%以上の難燃剤、ヘキ
サブロムビフエニルエーテル(以下HBBEと略
す)及び三酸化アンチモンから構成され、ポリエ
チレンテレフタレート樹脂100重量部に対して難
燃剤〔I〕が1〜20重量部、HBBEが2〜30重
量部で、難燃剤〔I〕とHBBEの重量比
〔I〕/HBBEが0.2<〔I〕/HBBE≦4なる範
囲にあり、かつ難燃剤〔I〕とHBBEが合計3
〜40重量部及び三酸化アンチモンが2〜30重量部
の量で配合され、かつガラス繊維が全樹脂組成物
に対し5〜60重量%配合されてなる難燃性ポリエ
ステル樹脂組成物。 2 ポリエチレンテレフタレート樹脂、ガラス繊
維、無機化合物、一般式 (式中Xは水素原子、塩素原子又は臭素原子、m
は平均値が0〜11の数、R1はグリシジル基、基
【式】、炭化水素基、ハロゲ ン化炭化水素基又は基−COR4を示し、ここにR2
及びR3の一方は水酸基、他方はハロゲン原子を
有していてもよいアルコキシ基、フエノキシ基、
アミノ基又はカルボキシ基、R4は炭化水素基又
はハロゲン化炭化水素基を意味する)で表わされ
るハロゲン含有率が10重量%以上の難燃剤、ヘキ
サブロムビフエニルエーテル(以下HBBEと略
す)及び三酸化アンチモンから構成され、ポリエ
チレンテレフタレート樹脂100重量部に対して難
燃剤〔I〕が1〜20重量部、HBBEが2〜30重
量部で、難燃剤〔I〕とHBBEの重量比
〔I〕/HBBEが0.2<〔I〕/HBBE≦4なる範
囲にあり、かつ難燃剤〔I〕とHBBEが合計3
〜40重量部及び三酸化アンチモンが2〜30重量部
の量で配合され、かつ全樹脂組成物に対しガラス
繊維が5〜60重量%並びに無機化合物が1〜40重
量%、ガラス繊維と無機化合物が合計量で60重量
%以下となるように配合されてなる難燃性ポリエ
ステル樹脂組成物。
[Claims] 1. Polyethylene terephthalate resin, glass fiber, general formula (In the formula, X is a hydrogen atom, a chlorine atom, or a bromine atom, m
is a number with an average value of 0 to 11, R 1 is a glycidyl group, a group [formula], a hydrocarbon group, a halogenated hydrocarbon group, or a group -COR 4 , where R 2
and one of R 3 is a hydroxyl group, the other is an alkoxy group that may have a halogen atom, a phenoxy group,
Flame retardants with a halogen content of 10% by weight or more represented by an amino group or a carboxy group, R 4 means a hydrocarbon group or a halogenated hydrocarbon group, hexabrombiphenyl ether (hereinafter abbreviated as HBBE) and It is composed of antimony oxide, and the flame retardant [I] is 1 to 20 parts by weight and HBBE is 2 to 30 parts by weight per 100 parts by weight of polyethylene terephthalate resin, and the weight ratio of the flame retardant [I] and HBBE is [I]/ HBBE is in the range of 0.2<[I]/HBBE≦4, and the total amount of flame retardant [I] and HBBE is 3
40 parts by weight, antimony trioxide in an amount of 2 to 30 parts by weight, and glass fiber in an amount of 5 to 60 parts by weight based on the total resin composition. 2 Polyethylene terephthalate resin, glass fiber, inorganic compound, general formula (In the formula, X is a hydrogen atom, a chlorine atom, or a bromine atom, m
is a number with an average value of 0 to 11, R 1 is a glycidyl group, a group [formula], a hydrocarbon group, a halogenated hydrocarbon group, or a group -COR 4 , where R 2
and one of R 3 is a hydroxyl group, the other is an alkoxy group that may have a halogen atom, a phenoxy group,
Flame retardants with a halogen content of 10% by weight or more represented by an amino group or a carboxy group, R 4 means a hydrocarbon group or a halogenated hydrocarbon group, hexabrombiphenyl ether (hereinafter abbreviated as HBBE) and It is composed of antimony oxide, and the flame retardant [I] is 1 to 20 parts by weight and HBBE is 2 to 30 parts by weight per 100 parts by weight of polyethylene terephthalate resin, and the weight ratio of the flame retardant [I] and HBBE is [I]/ HBBE is in the range of 0.2<[I]/HBBE≦4, and the total amount of flame retardant [I] and HBBE is 3
~40 parts by weight and antimony trioxide in an amount of 2 to 30 parts by weight, and based on the total resin composition, 5 to 60% by weight of glass fibers and 1 to 40% by weight of inorganic compounds, glass fibers and inorganic compounds. A flame-retardant polyester resin composition containing a total amount of 60% by weight or less.
JP1547483A 1983-02-03 1983-02-03 Flame-retardant polyester resin composition Granted JPS59142246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1547483A JPS59142246A (en) 1983-02-03 1983-02-03 Flame-retardant polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1547483A JPS59142246A (en) 1983-02-03 1983-02-03 Flame-retardant polyester resin composition

Publications (2)

Publication Number Publication Date
JPS59142246A JPS59142246A (en) 1984-08-15
JPH0420023B2 true JPH0420023B2 (en) 1992-03-31

Family

ID=11889794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1547483A Granted JPS59142246A (en) 1983-02-03 1983-02-03 Flame-retardant polyester resin composition

Country Status (1)

Country Link
JP (1) JPS59142246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL120410A0 (en) * 1996-03-13 1997-07-13 Tosoh Corp Brominated rho-cumylphenols and derivatives thereof their preparation and flame-retardant resin com positions containing them

Also Published As

Publication number Publication date
JPS59142246A (en) 1984-08-15

Similar Documents

Publication Publication Date Title
US4035333A (en) Flame-resistant resin composition
US4562216A (en) Flame retardant polyester resin compositions
JPS63154724A (en) Novel fire retardant agent
US5428086A (en) Poly(1,4-cyclohexylenedimethylene terephthalate) with improved melt stability
US5250595A (en) Flame-retardant resin composition
US4140671A (en) Warp-resistant flame-retarded reinforced thermoplastic compositions
US3965212A (en) Flame-resistant resin composition
EP1349890B1 (en) Flame retardant polyester compositions
US4504608A (en) Flame retardant polyester resin compositions
US4548964A (en) Flame-retardant polyester resin composition
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
US4351751A (en) Glass fiber reinforced polyethylene terephthalate resin composition
JP3404154B2 (en) Flame retardant polyester resin composition
JPH0420023B2 (en)
JPS585936B2 (en) Nannensei glass sensor
JPH01118567A (en) Flame-retarding polyester composition
JPH0473461B2 (en)
CA1286440C (en) Flame-retardant resin composition
JPH0657109A (en) Flame-retardant polyester resin composition
JP2675578B2 (en) Styrenic resin composition with excellent flame retardancy
JPS5910697B2 (en) Reinforced flame-retardant resin composition with improved electrical properties
US4305862A (en) Polymer blends with improved dielectric strength
JPS59142245A (en) Flame-retardant polyester resin composition
JP2602967B2 (en) Flame retardant polyester resin composition
JPH0253853A (en) Flame-retardant resin composition