JPH0419930A - Operation system of vacuum circuit breaker - Google Patents

Operation system of vacuum circuit breaker

Info

Publication number
JPH0419930A
JPH0419930A JP12130790A JP12130790A JPH0419930A JP H0419930 A JPH0419930 A JP H0419930A JP 12130790 A JP12130790 A JP 12130790A JP 12130790 A JP12130790 A JP 12130790A JP H0419930 A JPH0419930 A JP H0419930A
Authority
JP
Japan
Prior art keywords
phase
circuit breaker
vacuum
vacuum circuit
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12130790A
Other languages
Japanese (ja)
Inventor
Junichi Ikeda
順一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12130790A priority Critical patent/JPH0419930A/en
Publication of JPH0419930A publication Critical patent/JPH0419930A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H9/563Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle for multipolar switches, e.g. different timing for different phases, selecting phase with first zero-crossing

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To make a vacuum circuit breaker small and light by carrying out contacting and parting operation of a plurality of vacuum circuit breakers driven through an axial circuit on one main shaft in the time order of each circuit breaker. CONSTITUTION:A vacuum circuit breaker is composed of a plurality of vacuum valves in, for example (a) phase, (b) phase, and (c) phase, and having a fixed contact 2 and a movable contact 3. The movable contact 3 comes into on and off states owing to reciprocal movement of an insulating rod 10A having a wipe spring 9. The insulating rod 10A moves reciprocally by a crank movement owing to the rotation of one main shaft 12 through a lever 11 installed in the main shaft 12. The length La, Lb, and Lc of each insulating rod are made longer in this order. The narrow angles alphaa, alphab, alphac between each lever and each insulating rod are made narrower in this order. Consequently, touching and parting the contacts 2, 3 are carried out successively in each vacuum valve and thus a load force for touching and parting becomes low and the circuit breaker is made small.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、真空遮断器の操作機構に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an operating mechanism for a vacuum circuit breaker.

(従来の技術) 従来の真空遮断器の操作機構を示す第5図において、図
示しない絶縁フレームの上部に横に一列に固定された三
本の真空バルブ1の上端の図示しない接続導体に接続さ
れた固定側通電軸4の下端には、固定電極2がそれぞれ
固定されている。
(Prior Art) In FIG. 5, which shows the operating mechanism of a conventional vacuum circuit breaker, three vacuum valves 1 are fixed horizontally in a row on the top of an insulating frame (not shown), and are connected to connecting conductors (not shown) at the upper ends. Fixed electrodes 2 are fixed to the lower ends of the fixed-side current-carrying shafts 4, respectively.

この固定電極2の下面には、真空バルブ1の下端のベロ
ーズ1aを気密に貫通した可動側通電軸5の上端に固定
された可動電極3の上端が、今、接触している。また、
可動側通電軸5の下端には、可撓導体7aが接続された
クランプ7の上端が連結され、可撓導体7aには、図示
しない負荷側端子に接続された図示しない導体が接続さ
れている。また、クランプ7の下端にはワイプばね9を
介して絶縁操作棒lOの上端が連結され、この絶縁棒1
0の下端にはレバー11の前端が図示しないピンを介し
て連結され、レバー11の後端は両端が上述の絶縁フレ
ームの両側面の図示しない軸受で矢印Aで示すように揺
動自在に支持された主軸12に固定されている。更に、
この主軸12には、この主軸12を矢印Aの反時計方向
に駆動して同図のように真空バルブ1を投入する図示し
ない引外し電磁石の可動部が連結され、引外し電磁石が
作動すると主軸12を矢印Aの時計方向に駆動する図示
しない開極ばねが係合されている。
The upper end of the movable electrode 3, which is fixed to the upper end of the movable current-carrying shaft 5 that has passed through the bellows 1a at the lower end of the vacuum valve 1 in an airtight manner, is now in contact with the lower surface of the fixed electrode 2. Also,
The upper end of a clamp 7 to which a flexible conductor 7a is connected is connected to the lower end of the movable current-carrying shaft 5, and a conductor (not shown) connected to a load-side terminal (not shown) is connected to the flexible conductor 7a. . The lower end of the clamp 7 is connected to the upper end of an insulated operating rod 10 via a wipe spring 9.
The front end of a lever 11 is connected to the lower end of the lever 11 via a pin (not shown), and the rear end of the lever 11 is supported swingably as shown by arrow A by bearings (not shown) on both sides of the above-mentioned insulating frame. It is fixed to the main shaft 12. Furthermore,
A movable part of a tripping electromagnet (not shown) is connected to this main shaft 12, which drives the main shaft 12 in the counterclockwise direction of arrow A to close the vacuum valve 1 as shown in the figure.When the tripping electromagnet is activated, the main shaft An opening spring (not shown) that drives the switch 12 clockwise in the direction of arrow A is engaged.

このように構成された真空遮断器の操作機構カス設けら
れた真空遮断器におり1ては、各a相、b相。
The operating mechanism of the vacuum circuit breaker constructed as described above is provided in the vacuum circuit breaker.

C相を構成する真空バルブ1からし/<−10こ到るす
べての部品は、すべて共通な部品が使われ、その取付位
置(例えば真空バルブ1の上下方向)や関係位置(例え
ば絶縁棒10とし/<−11とでなす角)も各相同−に
組立てられる。
All of the vacuum valve 1 to <-10 parts that make up the C phase are all common parts, and their mounting positions (for example, the vertical direction of the vacuum valve 1) and related positions (for example, the insulating rod 10 The angle formed by /<-11) is also assembled into each homologous -.

したがって、このように構成された真空遮断器の操作機
構においては、図示しなし)投入電磁石の消磁による真
空バルブ1の開極時には、し/<−11は三相とも同一
角度だけ揺動して、ワイプ1fね9も同一寸法だけ復帰
し、可動電極3も同時1こ開離し、主軸に連結された図
示しなし)引外し電磁石のストッパで決まる所定の角度
の揺度で、可動電極3も所定の位置まで開極される。
Therefore, in the operating mechanism of the vacuum circuit breaker configured in this way, when the vacuum valve 1 is opened by demagnetizing the closing electromagnet (not shown), all three phases swing by the same angle. , the wipe 1f spring 9 also returns to the same dimension, and the movable electrode 3 also opens one part at the same time, and the movable electrode 3 also swings at a predetermined angle determined by the stopper of the tripping electromagnet (not shown) connected to the main shaft. The pole is opened to a predetermined position.

同様に、図示しない投入電磁石の励磁で真空、<ルブ1
が投入されるときには、主軸12とし/< −11によ
る矢印Aの反時計方向への揺動で絶縁棒10カス上動す
ることで、固定電極2に接触する可動電極3も3相同時
に接触し、その後続いて圧縮されるワイプばね9のワイ
プ量も3相とも同一となる。
Similarly, by excitation of a charging electromagnet (not shown), a vacuum is created < 1 lb.
When the main shaft 12 is turned on, the insulating rod 10 is moved upward by swinging in the counterclockwise direction of the arrow A according to /< -11, so that the movable electrode 3 that contacts the fixed electrode 2 also contacts the three phases at the same time. , the wipe amount of the wipe spring 9 that is subsequently compressed is also the same for all three phases.

第6図は、このように構成された真空遮断器の操作機構
の負荷力と可動接点ストロークとの関係を示す図である
FIG. 6 is a diagram showing the relationship between the load force of the operating mechanism of the vacuum circuit breaker configured as described above and the stroke of the movable contact.

同図において、折線で示す負荷力は、固定電極2に可動
電極3が接触瞬時のストロ−98点までは1点線で示す
遮断ばねのばね定数で決まる勾配で直線状に増加し、接
触と同時にワイプばね9の取付圧縮強さだけ上昇し、更
にワイプ開始とともに、ワイプばねのばね定数による圧
縮力だけ加算されて増える。
In the same figure, the load force shown by the broken line increases linearly at a slope determined by the spring constant of the cutoff spring shown by the one-dot line until the point 98 of the instant when the movable electrode 3 makes contact with the fixed electrode 2; The mounting compressive strength of the wipe spring 9 increases, and when wiping starts, the compressive force due to the spring constant of the wipe spring is added and increases.

したがって、従来の真空遮断器の操作機構においては、
同図の折線状の負荷力に対応した同図の曲線状の投入操
作力の投入ばねが用いられる。
Therefore, in the conventional vacuum circuit breaker operating mechanism,
A closing spring with a closing operation force in the curved line shown in the figure corresponding to the load force shown in the broken line in the same figure is used.

第2図(a)は、このように構成された真空遮断器の操
作機構の1相分の絶縁ロッド10のストロークと1相分
の負荷力との関係を示すグラフで、開極時には、遮断ば
ねの1/3の力とワイプばね9による負荷折線の接点開
離時までの斜線で囲まれた面積に相当するエネルギーが
主軸12、レバー11や絶縁棒10などで構成する操作
機構を駆動するエネルギーに消費される。そして、もし
、接点材料が銅・クロム合金などのように柔かいときに
は、同図で示すワイプ0のときの遮断はね力で溶着した
接点が引き離される。
FIG. 2(a) is a graph showing the relationship between the stroke of the insulating rod 10 for one phase and the load force for one phase of the operating mechanism of the vacuum circuit breaker configured as described above. Energy corresponding to the area surrounded by diagonal lines between 1/3 of the force of the spring and the contact opening of the load broken line by the wipe spring 9 drives the operating mechanism composed of the main shaft 12, the lever 11, the insulating rod 10, etc. consumed by energy. If the contact material is soft, such as a copper-chromium alloy, the welded contacts will be pulled apart by the breaking force when the wipe is 0, as shown in the figure.

反対に、もし接点材料が硬いときには、接点の引き離し
には、操作機構の慣性による衡撃力の影響の方が大きく
、開極速度や操作機構の慣性にもよるが、一般に開路力
の2〜3倍となる。
On the other hand, if the contact material is hard, the impact force due to the inertia of the operating mechanism has a greater effect on the separation of the contacts, and depending on the opening speed and the inertia of the operating mechanism, it is generally 2 to 2 times the opening force. It will be tripled.

そこで、今、接点開離時の開路力と衝撃力との比を、上
述の比の下限のl:2とし、開路ばね力とワイプばねと
の比を1とすると、3相分の開極時の負荷力と接点引き
離し力との関係は、第3図(a)のようになる。
Therefore, if the ratio between the opening force and the impact force at the time of contact opening is set to l:2, which is the lower limit of the above ratio, and the ratio between the opening spring force and the wipe spring is set to 1, then the opening for three phases will be The relationship between the load force and the contact separation force is as shown in FIG. 3(a).

ここで、右側のパルス状曲線中に示す衝撃力の高さは、
左側の斜線で囲まれた面積に相当する負荷力によるエネ
ルギーに相当し、接点の引き離しは、この衝撃力と開路
力の和の最大値で決まる。
Here, the height of the impact force shown in the pulse-like curve on the right is
This corresponds to the energy due to the load force corresponding to the area surrounded by diagonal lines on the left, and the separation of the contact point is determined by the maximum value of the sum of this impact force and the opening force.

したがって、もし、この和が各相均等に配分されるとす
れば、−相分の開極時の負荷力と接点引き離し力との関
係は、同図(b)のように、左側の負荷力によるエネル
ギー、右側の衝撃力と開路力とも同図(a)の1/3と
なる。
Therefore, if this sum is equally distributed to each phase, the relationship between the load force at the time of opening of the negative phase and the contact separation force is as shown in Figure (b), where the load force on the left side is The energy, impact force on the right side, and opening force are both 1/3 of that in Figure (a).

(発明が解決しようとする課題) ところが、このように構成された真空遮断器の操作機構
においては、周知のように、瞬時の投入や遮断動作で投
入・開極ばねや電磁石が大きくなり、励磁電流も増える
だけでなく、開極完了時のストッパでの停止による衝撃
力も増え、それに耐えるために操作機構の構成部品を強
固にしなければならない。すると、慣性が増えて悪循環
となる。
(Problem to be Solved by the Invention) However, as is well known, in the operation mechanism of a vacuum circuit breaker configured in this way, the closing/opening springs and electromagnets become larger due to instantaneous closing and closing operations, and the excitation Not only does the current increase, but the impact force due to stopping at the stopper when the contact is completed increases, and the components of the operating mechanism must be made stronger to withstand this. This increases inertia, creating a vicious cycle.

そこで、本発明の目的は、真空遮断器を小形・軽量化す
ることのできる真空遮断器の操作機構を得ることである
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to obtain an operation mechanism for a vacuum circuit breaker that can reduce the size and weight of the vacuum circuit breaker.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段および作用)本発明は、複
数の真空バルブにワイプばねを介してそれぞれ連結され
た絶縁棒にレバーの一端がそれぞれ連結され、このレバ
ーの他端にこのレバーを揺動する主軸が固定された真空
遮断器の操作機構において、レバーと絶縁棒で形成され
る挟角とワイプばねのワイプ量をそれぞれ異なる値とす
ることで、真空バルブの接離負荷力を減らして真空遮断
器を小形・軽量化した真空遮断器の操作機構である。
(Means and Effects for Solving the Problems) In the present invention, one end of a lever is connected to an insulating rod that is connected to a plurality of vacuum valves via wipe springs, and the lever is oscillated by the other end of the lever. In the operating mechanism of a vacuum circuit breaker with a fixed moving main shaft, the included angle formed by the lever and insulating rod and the wipe amount of the wipe spring are set to different values to reduce the load force on the vacuum valve. This is a vacuum breaker operating mechanism that is smaller and lighter.

(実施例) 以下、本発明の真空遮断器の操作機構の一実施例を図面
を参照して説明する。但し、第5図〜第6図と重複する
部分は省く。
(Example) Hereinafter, one example of the operation mechanism of the vacuum circuit breaker of the present invention will be described with reference to the drawings. However, parts that overlap with FIGS. 5 and 6 are omitted.

第1図は、本発明の真空遮断器の操作機構を示す部分斜
視図で、第5図に対応する図である。
FIG. 1 is a partial perspective view showing the operating mechanism of the vacuum circuit breaker of the present invention, and corresponds to FIG. 5.

同図において、主軸12と各絶縁棒10A、10B、I
OCとの間の各レバー11は、後述するように取付角度
α8.αb、α0がα8〉αb〉α。と互いに異なり。
In the same figure, the main shaft 12 and each insulating rod 10A, 10B, I
Each lever 11 between the OC and the OC has a mounting angle α8. αb, α0 is α8〉αb〉α. and different from each other.

同じく絶縁棒10A、IOB、IOCも長さがIOA>
 10B) IOCと異なり、その結果、C相の接点の
接離瞬時を示す同図においては、C相はワイプ零のとき
にb相はわづかに(約0 、3 rm )開き、C相は
更に(約0 、6 nm )開離している。
Similarly, the length of the insulating rod 10A, IOB, and IOC is IOA>
10B) Unlike the IOC, as a result, in the same figure showing the contact and separation instants of the C-phase contacts, when the C-phase wipe is zero, the b-phase opens slightly (approximately 0,3 rm), and the C-phase It is further opened (approximately 0.6 nm).

すなわち、同図において、C相、b相、C相の各レバー
11の長さは60anで同一であるが、取付角度が開極
完了時でC相がα8=24.9°、b相がαb=21.
4’ 、又、C相がα。= 15’で主軸12の回転角
は26.66になるように組立てられている。
That is, in the same figure, the length of each lever 11 for C phase, b phase, and C phase is 60 an and the same, but when the mounting angle is completed, C phase is α8 = 24.9 degrees, and b phase is α8 = 24.9 degrees. αb=21.
4', and C phase is α. = 15' and the rotation angle of the main shaft 12 is 26.66.

一方、絶縁棒10A、 IOB、 IOCは、C相の絶
縁棒10Aが最長でLnm、次いでb相の絶縁ロットl
OBがL−3,4mm、C相は最短でL−9,7mmで
、各絶縁棒10A、 IOB、 IOCの上端は同一高
さとなっている。
On the other hand, for the insulating rods 10A, IOB, and IOC, the C-phase insulating rod 10A has the longest length of Lnm, followed by the B-phase insulation rod Lnm.
The OB is L-3.4 mm, the shortest C phase is L-9.7 mm, and the upper ends of each insulating rod 10A, IOB, and IOC are at the same height.

このように構成された真空遮断器の操作機構においては
、開極時には、主軸12が第1図矢印の時計方向に26
.6″揺動すると、接点間隙は24圃開くが、このうち
、C相は2.9°の揺動でワイプ3.Onn+分可動型
可動電極し、b相は3.2°の揺動でワイプ3.3圃分
下降し、又、C相は3.5″′の揺動でワイプ3.6m
m分下降してワイプ量の最小のC相からb相。
In the operation mechanism of the vacuum circuit breaker configured in this way, when opening the main shaft 12, the main shaft 12 moves 26 clockwise as indicated by the arrow in FIG.
.. When oscillating 6", the contact gap opens by 24 degrees. Among these, the C phase is wiped by 2.9° oscillation, and the B phase is wiped by 3.Onn + minute movable electrode, and the B phase is 3.2° oscillating. The wipe descends 3.3 fields, and the C phase swings 3.5'' and wipes 3.6 m.
After descending by m minutes, from the C phase with the minimum wipe amount to the B phase.

C相の順に接点が開離する。The contacts open in the order of C phase.

又、逆に投入時には、ワイプ量の最大のC相からb相、
C相の順に接点が接触する。
On the other hand, when turning on, from the C phase with the maximum wipe amount to the b phase,
The contacts make contact in the order of C phase.

次に、このように構成された真空遮断器の操作機構の作
用を説明する。
Next, the operation of the operating mechanism of the vacuum circuit breaker constructed in this way will be explained.

上述のように、各相の接点が微小時間の順に開離すると
、開路力は第211ffi (b)で示すように、全開
路力が順に各相の接点間に働く。
As described above, when the contacts of each phase open and close in order of a minute time, the full opening force acts between the contacts of each phase in order, as shown by 211ffi (b).

したがって、もし、接点材料が硬度の低い(例えば銅・
クロム合金)もので、溶着接点に働く力が開路力だけの
ときには、C相の接点の開離位置における開路力が同図
(a)で示す三相同時開極時の一相分の開路力を上廻る
ように設定することで、金相の引き離しか可能となる。
Therefore, if the contact material has low hardness (e.g. copper,
(chromium alloy), and when the only force acting on the welded contact is the opening force, the opening force at the opening position of the C-phase contact is equal to the opening force for one phase when the three phases are simultaneously opened, as shown in Figure (a). By setting it so that it exceeds, it is only possible to separate the gold phase.

すなわち、各相の開離時刻をわづかにずらすことで、第
2図(b)に示すように全開路力と全ベローズ真空力を
各相の開離力に働らかすことができるので、開路力を従
来の約1/2に減らすことができる。
That is, by slightly shifting the opening time of each phase, the total opening force and the total bellows vacuum force can be applied to the opening force of each phase, as shown in Fig. 2(b). The opening force can be reduced to approximately 1/2 of the conventional force.

次に、もし、接点材料が硬くて衝撃力が大きいときには
、以下詳説するように開路力を約2/3に減らすことが
できる。
Second, if the contact material is hard and the impact force is large, the opening force can be reduced by about two-thirds, as detailed below.

すなわち、第3図(a)に対応する同図(C)のように
、もし、開路ばね力を従来の2/3とし、ばね定数も同
じく2/3とすると、まず、C相の接点には、同図右側
のパルス状曲線図で示す同図(a)の5/6相当の衝撃
力と同じく2/3相当の開路ばね力の加算力でC相は開
離される。
In other words, as shown in Figure 3 (C), which corresponds to Figure 3 (A), if the opening spring force is set to 2/3 of the conventional one, and the spring constant is also set to 2/3, first, the C phase contact The C phase is opened by the additional force of the opening spring force equivalent to 2/3 as well as the impact force equivalent to 5/6 shown in the pulse-like curve diagram on the right side of the figure (a).

又、b相では、同図(d)に示すように、同図(c)の
衝撃力から接点開離に必要なエネルギー(すなわち、同
図(a)の斜線部の1/3に相当するエネルギー)を減
じた値が開路ばね力に加算されて開離される。
In addition, in the b phase, as shown in Figure (d), the energy required to open the contact from the impact force in Figure (c) (i.e., equivalent to 1/3 of the shaded area in Figure (a)) The value obtained by subtracting the energy) is added to the opening spring force to open the circuit.

更に、C相では、同図(e)に示すように、同図(d)
の衝撃力から上述のエネルギーを減した値が開路ばね力
に加算され、同図(b)で示す衝撃力と開路力の和と等
しい力で開離される。
Furthermore, in the C phase, as shown in the same figure (e), the same figure (d)
The value obtained by subtracting the above-mentioned energy from the impact force is added to the circuit-opening spring force, and the circuit is opened with a force equal to the sum of the impact force and the circuit-opening force shown in FIG.

したがって、この場合には、従来の三相同時開極を示す
同図(a)のときに比へて、約2/3の開路力で開離さ
せることができる。
Therefore, in this case, it is possible to open the circuit with about 2/3 of the opening force as compared to the case shown in FIG.

次に、第4図は、本発明の真空遮断器の操作機構の他の
実施例を示す。
Next, FIG. 4 shows another embodiment of the vacuum circuit breaker operating mechanism of the present invention.

同図において、真空バルブ1は、軸方向の取付高さがそ
れぞれ異なっていて、C相が最も高く、次いでb相、C
相の順となっていて、その差は0.3mとなっている。
In the same figure, the vacuum valves 1 have different mounting heights in the axial direction, with the C phase being the highest, followed by the b phase, and the C phase.
They are arranged in order of phase, and the difference is 0.3m.

その他、ワイプばね9、絶縁ロッド10や操作レバー1
1は従来と同一となっている。
In addition, wipe spring 9, insulating rod 10 and operation lever 1
1 is the same as before.

この場合には、接点全開時の間隙が各相わづかに異なる
が、真空バルブ1の取付位置を変えるだけでよいので、
製作が容易となる利点がある。
In this case, the gap when the contacts are fully open will be slightly different for each phase, but all you need to do is change the mounting position of the vacuum valve 1.
It has the advantage of being easy to manufacture.

なお、上記実施例においては、a、b、C相の接点のワ
イプ量の差が約0.3mmの例で説明したが、ワイプ量
、投入・開極速度や遮断器の適用条件によっては、レバ
ー11の絶縁棒10A、 IOB、 IOCとのなす挟
角を増やし例えば3+nm程度まで増やしてもよく、又
、例えば、投入速度1m71秒のときには、2凧以内と
することで、投入の時間差を2/1000秒以内に抑え
てもよい。
In the above embodiment, the difference in the amount of wipe between the a, b, and C phase contacts is approximately 0.3 mm. However, depending on the amount of wipe, the closing/opening speed, and the application conditions of the circuit breaker, The included angle between the lever 11 and the insulating rods 10A, IOB, and IOC may be increased, for example, to about 3+nm. Also, for example, when the throwing speed is 1m71 seconds, the difference in throwing time can be reduced by 2 kites or less by setting it within 2 kites. /1000 seconds or less.

更に上記実施例において、ワイプばね9の取付長は、b
相はC相より0.3aa短く、C相は更に0.3m短く
することで、投入完了時の接触圧力を同一にしてもよい
Furthermore, in the above embodiment, the installation length of the wipe spring 9 is b
The phase is 0.3 aa shorter than the C phase, and the C phase may be further shortened by 0.3 m to make the contact pressure at the completion of charging the same.

又、絶縁操作捧とワイプばね9との間に第3リンクを設
けたり、又、ピン結合関節を設けて可動通電軸5の動き
を円滑にしてもよい。
Further, a third link may be provided between the insulating operating shaft and the wipe spring 9, or a pin joint may be provided to smooth the movement of the movable energizing shaft 5.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、複数の真空バルブにワイプばね
を介してそれぞれ連結された絶縁棒にレバーの一端がそ
れぞれ連結され、このレバーの他端にこのレバーを揺動
する主軸が固定された真空遮断器の操作機構において、
レバーと絶縁棒で形成される挟角とワイプばねのワイプ
量をそれぞれ異なる値とすることで、真空バルブの接点
の接離負荷力を減らしたので、真空遮断器を小形・軽量
化することのできる真空遮断器の操作機構を得ることが
できる。
As described above, according to the present invention, one end of the lever is connected to each insulating rod connected to a plurality of vacuum valves via wipe springs, and a main shaft for swinging the lever is fixed to the other end of the lever. In the operating mechanism of a vacuum circuit breaker,
By setting the included angle formed by the lever and insulating rod and the wipe amount of the wipe spring to different values, we have reduced the load force on the contacts of the vacuum valve, making it possible to make the vacuum circuit breaker smaller and lighter. It is possible to obtain a vacuum circuit breaker operating mechanism that can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空遮断器の操作機構の一実施例を示
す部分斜視図、第2図と第3図は本発明の真空遮断器の
操作機構の作用を説明する図で、第2図(a)は従来の
真空遮断器の三相同時操作のときの接点間隙と一相分の
負荷力の関係を示すグラフ、同図(b)は本発明の真空
遮断器の操作機構の接点間隙と三相分の負荷力の関係を
示すグラフ、第3図(a)、 (b)は従来の真空遮断
器の操作機構の接点引離力を示すグラフ、同図(c) 
、 (d) 、 (e)は本発明の真空遮断器の操作機
構の接点引離力を示すグラフ、第4図は本発明の真空遮
断器の操作機構の他の実施例を示す図、第5図は従来の
真空遮断器の操作機構を示す部分斜視図、第6図は従来
の真空遮断器の操作機構の作用を示すグラフである。 1 真空バルブ    9・・ワイプばね10  絶縁
棒      1】・レバー12・主軸
FIG. 1 is a partial perspective view showing one embodiment of the vacuum circuit breaker operating mechanism of the present invention, and FIGS. 2 and 3 are diagrams illustrating the operation of the vacuum circuit breaker operating mechanism of the present invention. Figure (a) is a graph showing the relationship between the contact gap and the load force for one phase during three-phase simultaneous operation of a conventional vacuum circuit breaker, and Figure (b) is a graph showing the contact points of the operating mechanism of the vacuum circuit breaker of the present invention. Graphs showing the relationship between the gap and the load force for three phases, Figures 3(a) and 3(b) are graphs showing the contact separation force of the operating mechanism of a conventional vacuum circuit breaker, and Figure 3(c)
, (d) and (e) are graphs showing the contact separation force of the operating mechanism of the vacuum circuit breaker of the present invention, FIG. 4 is a diagram showing another embodiment of the operating mechanism of the vacuum circuit breaker of the present invention, and FIG. FIG. 5 is a partial perspective view showing the operating mechanism of a conventional vacuum circuit breaker, and FIG. 6 is a graph showing the operation of the operating mechanism of a conventional vacuum circuit breaker. 1 Vacuum valve 9 Wipe spring 10 Insulation rod 1] Lever 12 Main shaft

Claims (1)

【特許請求の範囲】 複数の真空バルブにワイプばねを介してそれぞれ連結さ
れた絶縁棒にレバーの一端がそれぞれ連結され、このレ
バーの他端にこのレバーを揺動する主軸が固定された真
空遮断器の操作機構において、 前記レバーと前記絶縁棒で形成される挟角と前記ワイプ
ばねのワイプ量をそれぞれ異なる値としたことを特徴と
する真空遮断器の操作機構。
[Claims] A vacuum cutoff in which one end of a lever is connected to an insulating rod that is connected to a plurality of vacuum valves via wipe springs, and a main shaft for swinging the lever is fixed to the other end of the lever. An operating mechanism for a vacuum circuit breaker, characterized in that an included angle formed by the lever and the insulating rod and a wipe amount of the wipe spring are set to different values.
JP12130790A 1990-05-14 1990-05-14 Operation system of vacuum circuit breaker Pending JPH0419930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12130790A JPH0419930A (en) 1990-05-14 1990-05-14 Operation system of vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12130790A JPH0419930A (en) 1990-05-14 1990-05-14 Operation system of vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH0419930A true JPH0419930A (en) 1992-01-23

Family

ID=14808011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12130790A Pending JPH0419930A (en) 1990-05-14 1990-05-14 Operation system of vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0419930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135201A (en) * 2008-12-05 2010-06-17 Chugoku Electric Power Co Inc:The Three-phase common enclosed circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135201A (en) * 2008-12-05 2010-06-17 Chugoku Electric Power Co Inc:The Three-phase common enclosed circuit breaker

Similar Documents

Publication Publication Date Title
US3921109A (en) Circuit-interrupter
JPS58181218A (en) Composite vacuum breaker
JP2001520798A (en) electromagnetic switch
EP4000085B1 (en) Relay
JPH0419930A (en) Operation system of vacuum circuit breaker
US4247745A (en) Vacuum-type contactor assembly
US2923788A (en) Circuit breakers
US4321436A (en) Electrical circuit interruptors
US3500266A (en) High-speed circuit breakers
JPH05190063A (en) Vacuum circuit-breaker
US3735073A (en) Circuit interrupter with overcenter spring charging means
US3065317A (en) Alternating current circuit interrupter
US2905794A (en) Electric switch
US3069519A (en) Electrically operated switch
RU2144234C1 (en) Electromagnetic operating mechanism for low-voltage interrupter
US3430018A (en) Circuit breaker contact structure with releasably latched &#34;stationary&#34; contact for making circuit
US3602676A (en) Knife blade switch with toggle operating means and means for fastening the knife blade to a tie bar
US3704435A (en) Tripping system for circuit breaker
JPH01236530A (en) Electromagnetic switch
US3423556A (en) Electrical switch structure including dual arm movable contact
JPS648422B2 (en)
JPH0334234A (en) Circuit breaker
JP3835043B2 (en) Thermal overload relay
JP3002797U (en) Circuit breaker
JPS5868811A (en) Contactor mechanism for power switch