JPH04199136A - Production of wavelength converter element - Google Patents

Production of wavelength converter element

Info

Publication number
JPH04199136A
JPH04199136A JP33402090A JP33402090A JPH04199136A JP H04199136 A JPH04199136 A JP H04199136A JP 33402090 A JP33402090 A JP 33402090A JP 33402090 A JP33402090 A JP 33402090A JP H04199136 A JPH04199136 A JP H04199136A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
polarization
grooves
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33402090A
Other languages
Japanese (ja)
Inventor
Yoichi Sasai
佐々井 洋一
Kunihiko Takeshige
竹重 邦彦
Kazuhisa Yamamoto
和久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33402090A priority Critical patent/JPH04199136A/en
Publication of JPH04199136A publication Critical patent/JPH04199136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a polarization reversing region all over the element by forming striped grooves on a substrate of specified material and depositing an insulating film on the substrate so that the thermal stress is relaxed even for heat treatment. CONSTITUTION:On the main surface of a substrate 1 having a nonlinear optical effect, preferably LiNbO3, grooves 20 of desired size are formed with a same interval using a dicing saw. Then an insulating film such as SiO2 film is deposited by sputtering, on which a resist is applied, patterned and etched to form striped insulating films. Then the substrate is subjected to heat treatment under desired conditions to form a polarization reversing region 30 on the substrate just under the insulating film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学結晶基板を用いて基本波を波長変換
する第2高調波発生素子(SHG)の製造方法に関する
ものであ4 従来の技術 最近 半導体レーザ開発の進展とともに非線形光学効果
を用いて半導体レーザ光を基本波としてその波長の半分
の第2高調波を発生させるSHG素子の研究開発が盛ん
になってき九 その有望なるSHG構造として、非線形
光学結晶基板の表面に選択的な周期構造を有する分極反
転領域を設けたSHG素子がある。例えばアイ・イー・
イー・イー・フォトニクス・テクノロジー・レターズ(
I E E E photonics technol
ogy Letters)  1989年10月号P3
16〜318のJ、ウイビョーン氏等によると第4図の
ような構成となっていム1はLiNbO5基板 2は光
導波路 3は周期構造を有する分極反転領域であム こ
の論文では3mWの赤外の半導体レーザ光を導入して6
0nWのブルー光を発生させていも 分極反転領域の形
成方法は基板1の表面に厚み150nmの5102スト
ライプ状のパターンを形成した後、乾燥アルゴンガス雰
囲気中でキュリー点近傍の1000℃まで昇温し0.7
℃/秒で室温まで降温していも このような熱処理工程
中に基板1表面においてLieOが外拡散して表面の組
成が選択的に変化し周期的な分極反転領域が形成されも
発明が解決しようとする課題 ところで、上記のような熱処理の工程中において、Li
NbO5基板中に内在する欠陥等に起因した歪み場が増
幅されて熱応力が発生し 基板表面の分極反転形成過程
に影響を及ぼす、例えば基板サイズによって分極反転深
さ等の形状が変化する問題が生じていも (LiNbO
s結晶の評価について(戴 例えば応用物理第59巻第
8号(1990年)P996〜1013の野沢氏等の報
告があも )従来例の実験条件で分極反転熱処理を行っ
た限 基板サイズ1〜3インチにおいては分極反転領域
は見られず1cm角程度の大きさで形成可能という結果
が得られていも 本発明は上記従来の問題点を鑑みてなされたもので、大
きな面積の非線形光学結晶基板を用いて選択的な周期構
造を有する分極反転領域を形成可能な作製方法を提供す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a second harmonic generation element (SHG) that converts the wavelength of a fundamental wave using a nonlinear optical crystal substrate. With the progress of laser development, research and development of SHG elements that use nonlinear optical effects to generate a second harmonic of half the wavelength of semiconductor laser light as a fundamental wave has become active.9 As a promising SHG structure, nonlinear optical There is an SHG element in which a polarization inversion region having a selective periodic structure is provided on the surface of a crystal substrate. For example, I.E.
E.E. Photonics Technology Letters (
IE E E photonics technology
ogy Letters) October 1989 issue P3
According to J. 16-318, Mr. Uybjörn et al., the structure is as shown in Fig. 4, where 1 is a LiNbO5 substrate, 2 is an optical waveguide, and 3 is a polarization inversion region with a periodic structure. Introducing semiconductor laser light 6
Even if 0nW of blue light is generated, the polarization inversion region is formed by forming a 5102 stripe pattern with a thickness of 150nm on the surface of the substrate 1, and then heating it to 1000℃ near the Curie point in a dry argon gas atmosphere. 0.7
Even if the temperature is lowered to room temperature at a rate of ℃/second, LieO diffuses out on the surface of the substrate 1 during such a heat treatment process, the composition of the surface changes selectively, and periodic polarization inversion regions are formed.The invention will solve the problem. However, during the heat treatment process as described above, Li
The strain field caused by defects etc. inherent in the NbO5 substrate is amplified and thermal stress is generated, which affects the polarization inversion formation process on the substrate surface.For example, there is a problem in which the shape such as the polarization inversion depth changes depending on the substrate size. Even if it occurs (LiNbO
Regarding the evaluation of s-crystals (see, for example, the report by Mr. Nozawa et al. in Applied Physics Vol. 59, No. 8 (1990), pages 996-1013), as long as the polarization inversion heat treatment was performed under the conventional experimental conditions. The present invention was made in view of the above-mentioned conventional problems, and the present invention was made in view of the above-mentioned conventional problems, and the polarization inversion region was not observed in the 3-inch film, and it was possible to form it in a size of about 1 cm square. The present invention provides a manufacturing method capable of forming a polarization inversion region having a selective periodic structure using the method.

課題を解決するための手段 本発明(よ 非線形光学効果を有する基板の主表面上に
グイシングツ−により溝を形成する工程と、前記基板表
面に絶縁膜を堆積する工程と、前記絶縁膜を選択的にエ
ツチングしてストライプ状にする工程と、前記基板に熱
処理をして前記絶縁膜直下の前記基板中に分極反転領域
を形成する工程とを有する分極反転型波長変換素子の製
造方法であム 作用 以上のように基板ウェハーの主表面上にストライプ状の
溝を形成してやれば 基板表面に走行する歪み場による
熱応力が前記溝によって途切れて、ウェハー全域に渡っ
て熱応力が加わらなLs  したがって、分極反転熱処
理工程中に生じる熱応力は緩和され安定な分極反転領域
が形成可能となるので基板サイズの大きなウェハーでも
容易に分極反転領域かえられる。。
Means for Solving the Problems The present invention includes a step of forming a groove on the main surface of a substrate having a nonlinear optical effect by a guising tool, a step of depositing an insulating film on the surface of the substrate, and a step of selectively depositing the insulating film. A method for manufacturing a polarization-inverted wavelength conversion element, which includes a step of etching the substrate into a stripe shape, and a step of heat-treating the substrate to form a polarization-inverted region in the substrate directly under the insulating film. If striped grooves are formed on the main surface of the substrate wafer as described above, the thermal stress caused by the strain field running on the substrate surface will be interrupted by the grooves, and no thermal stress will be applied to the entire wafer. Thermal stress generated during the inversion heat treatment step is relaxed and a stable polarization inversion region can be formed, so even in a wafer with a large substrate size, the polarization inversion region can be easily changed.

実施例 以下、本実施例を示す。第1図は本発明のストライプ状
に溝を形成した+0面のLiNbO32インチ基板ウェ
ハー10を示す。厚みは500μ瓜 溝20の寸法は輻
300μ瓜 深さ100μmのものであム 溝間隔は1
cmである。第2図は溝を形成し分極反転領域を形成し
たLiNb0?ウエハーの断面図を示す。溝方向はそれ
ぞれa。
Example This example will be shown below. FIG. 1 shows a +0-sided LiNbO 32-inch substrate wafer 10 with grooves formed in stripes according to the present invention. The thickness is 500 μm, the dimensions of the groove 20 are 300 μm in diameter, and the depth is 100 μm. The groove spacing is 1
cm. Figure 2 shows LiNb0? in which grooves are formed and polarization inversion regions are formed. A cross-sectional view of the wafer is shown. The groove direction is a.

b軸方向に形成していも その作製工程について第3図
を用いて説明すも まず、第3図(a)で+C軸を主表
面とするLiNb0*ウ工ハー10表面をa、  b軸
方向に1cmの等間隔でダイシングソーで溝20を形成
する。改番ミ  ウェハー全面にSiOsMをスパッタ
ー法で200 nm堆積すも フォトリソグラフィー法
でレジストをストライプ状にバターニングし その後H
F液でSiO!膜を選択的にエツチングして第3図(b
)のようなストライプ状の5i0240膜を形成する。
Although the manufacturing process will be explained using FIG. 3, first, in FIG. 3(a), the surface of the LiNb0* wafer 10 whose main surface is the +C axis is formed in the a and b axis directions. Grooves 20 are formed at equal intervals of 1 cm using a dicing saw. 200 nm of SiOsM was deposited on the entire surface of the wafer by sputtering, and then the resist was patterned into stripes using photolithography.
SiO with F liquid! The film is selectively etched to produce a
) A striped 5i0240 film is formed.

パターン間隔は6μへ ストライプ幅は3μmであム 
次?;1060℃100分間熱処理を行うと、5ide
直下の基板中に第β図(C)のようにウェハーの全域に
渡り分極反転領域30が形成された ここで基板にLi
NbO5を用いて説明した力(その他の非線形材料基板
としてLiTaO3、KTP (KT i 0PO=)
、KNbOs、NYAB (NdYAIBO)などの結
晶においても可能であることはいうまでもな(t また
 本実施例において溝の形成をグイシングツ−で行った
力(その理由は上記記載の非線形材料はHF液などの溶
液でエツチング可能である力丈 溝寸法が大きく深いた
め通常用いられるマスクは直ちに劣化するという問題が
あり、適当なマスクが存在しないからである。また 分
極反転マスクとしてSiO2膜を用いて説明した力< 
 Nb、Ta、Ptなどの金属マスクや5isN=など
の絶縁膜を用いても効果があることはいうまでもなl、
% 発明の効果 以上のよう顛L I N b Oaウェハー上にストラ
イプ状の溝をダイシングソーにより形成すれば前記溝間
の領域にパターン化したSiO2膜マスクを堆積して高
温熱処理をしても基板表面には熱応力歪みは緩和され 
ウェハー全域にわたって分極反転領域が容易に形成可能
となる。
Pattern spacing is 6μm Stripe width is 3μm
Next? ; When heat treated at 1060℃ for 100 minutes, 5ide
A polarization inversion region 30 is formed in the substrate immediately below it over the entire area of the wafer as shown in Fig. β (C).
The force explained using NbO5 (other nonlinear material substrates are LiTaO3, KTP (KT i 0PO=)
It goes without saying that this is possible in crystals such as , KNbOs, NYAB (NdYAIBO), etc. This is because there is a problem that the normally used mask quickly deteriorates because the groove size is large and deep, and there is no suitable mask.Also, we will explain using a SiO2 film as a polarization reversal mask. The power <
It goes without saying that using a metal mask such as Nb, Ta, or Pt or an insulating film such as 5isN= is also effective.
% Effects of the invention As described above, if striped grooves are formed on a L I N b Oa wafer using a dicing saw, the substrate will remain intact even if a patterned SiO2 film mask is deposited in the area between the grooves and subjected to high temperature heat treatment. Thermal stress strain is relaxed on the surface.
A polarization inversion region can be easily formed over the entire wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の分極反転型波長変換素子作
製に用いるダイシングソーで溝を形成した非線形基板ウ
ェハー表面医 第2図は溝を設は分極反転領域を形成し
たウェハー断面l 第3図は分極反転形成プロセス工程
の説明医 第4図は分極反転型波長変換素子の斜視図を
示す。 1・・・LiNbO5基楓 2・・・光導波路 3・・
・分極反転領域 20・・・鳳 30・・・分極反転領
域 40・・・5102乳 代理人の氏名 弁理士 小鍜治 明 ほか2名第 l 
17 113図 II  4 1T′: / 1iNl:l)、s塁故
Figure 1 shows the surface of a nonlinear substrate wafer with grooves formed with a dicing saw used for manufacturing a polarization-inverted wavelength conversion element according to an embodiment of the present invention. Figure 2 shows a cross-section of a wafer with grooves and polarization-inverted regions formed. FIG. 3 shows an explanation of the polarization inversion forming process. FIG. 4 shows a perspective view of a polarization inversion type wavelength conversion element. 1... LiNbO5-based maple 2... Optical waveguide 3...
・Polarization inversion area 20...Otori 30...Polarization inversion area 40...5102 Name of agent Patent attorney Akira Okaji and 2 others No.1
17 113Figure II 4 1T': / 1iNl:l), s base cause

Claims (2)

【特許請求の範囲】[Claims] (1)非線形光学効果を有する基板の主表面上に溝を形
成する工程と、前記基板表面に絶縁膜を堆積する工程と
、前記絶縁膜を選択的にエッチングしてストライプ状に
する工程と、前記基板に熱処理をして前記絶縁膜直下の
前記基板中に分極反転領域を形成する工程とを有する分
極反転型波長変換素子の製造方法。
(1) forming a groove on the main surface of a substrate having a nonlinear optical effect; depositing an insulating film on the surface of the substrate; selectively etching the insulating film into a stripe shape; A method for manufacturing a polarization-inverted wavelength conversion element, comprising the step of heat-treating the substrate to form a polarization-inverted region in the substrate directly under the insulating film.
(2)LiNbO_3結晶ウェハーを基板に用いたこと
を特徴とする請求項1記載の分極反転型波長変換素子の
製造方法。
(2) The method for manufacturing a polarization-inverted wavelength conversion element according to claim 1, characterized in that a LiNbO_3 crystal wafer is used as the substrate.
JP33402090A 1990-11-29 1990-11-29 Production of wavelength converter element Pending JPH04199136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33402090A JPH04199136A (en) 1990-11-29 1990-11-29 Production of wavelength converter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33402090A JPH04199136A (en) 1990-11-29 1990-11-29 Production of wavelength converter element

Publications (1)

Publication Number Publication Date
JPH04199136A true JPH04199136A (en) 1992-07-20

Family

ID=18272606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33402090A Pending JPH04199136A (en) 1990-11-29 1990-11-29 Production of wavelength converter element

Country Status (1)

Country Link
JP (1) JPH04199136A (en)

Similar Documents

Publication Publication Date Title
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
EP0573712B1 (en) Method of manufacturing wavelength conversion device
JPH07261213A (en) Formation of polarization inversion layer and optical wavelength conversion element
JPH10246900A (en) Production of microstructure of ferroelectric single crystal substrate
JPH04199136A (en) Production of wavelength converter element
JP4081398B2 (en) Optical wavelength conversion element
JPH04265954A (en) Frequncy doubling apparatus for optical wave
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP2660217B2 (en) Manufacturing method of wavelength conversion element
JP2502818B2 (en) Optical wavelength conversion element
JPH0561083A (en) Nonlinear ferroelectric optical element and its production
JPH0348831A (en) Domain control method for nonlinear ferroelectric optical material
JPH06174908A (en) Production of waveguide type diffraction grating
JP3683517B2 (en) Method for forming domain inversion structure of ferroelectric material
JP3429502B2 (en) Method for manufacturing domain-inverted region
JPS63158506A (en) Production of optical element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH08160480A (en) Formation of polarization inversion layer and preparation ofwavelength transducer element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JPH04264534A (en) Production of wavelength converting element
JPH0611749A (en) Production of wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH06123904A (en) Method for using second harmonic wave generating element
JPH05100271A (en) Optical second higher harmonics generating element