JPH04198901A - Optical fiber probe - Google Patents

Optical fiber probe

Info

Publication number
JPH04198901A
JPH04198901A JP2332430A JP33243090A JPH04198901A JP H04198901 A JPH04198901 A JP H04198901A JP 2332430 A JP2332430 A JP 2332430A JP 33243090 A JP33243090 A JP 33243090A JP H04198901 A JPH04198901 A JP H04198901A
Authority
JP
Japan
Prior art keywords
optical fiber
infrared optical
gas path
tube
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2332430A
Other languages
Japanese (ja)
Inventor
Kiyoko Oshima
希代子 大嶋
Fumikazu Tateishi
立石 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2332430A priority Critical patent/JPH04198901A/en
Publication of JPH04198901A publication Critical patent/JPH04198901A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3813Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres for transmission of high energy beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/325Optical coupling means having lens focusing means positioned between opposed fibre ends comprising a transparent member, e.g. window, protective plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Laser Surgery Devices (AREA)

Abstract

PURPOSE:To prevent the absorption and generation of heat in an infrared optical fiber caused by scattering light in the case of laser radiation and to improve power resistance by providing the assisting gas path in an optical fiber probe and cooling the assisting gas path. CONSTITUTION:A polycrystal infrared optical fiber 3 housed and held in a protective tube 2 is housed in a resin jacket tube 4, and a connector 5 where a condensing lens or a infrared light transmission member 9 is fixed an a holder 6 are mounted near both ends of the tube 4, and two gas injection ports 10 and 11 are provided on the connector 5. Then, one gas path, that is, the assisting gas path is provided between the protective tube 2 and the resin jacket tube 4. Thus, the power resistance of the optical fiber probe is improved by the cooling effect of the assisting gas which flows in the assisting gas path. Furthermore, since the infrared optical fiber 3 is arranged in drying gas atmosphere, the infiltration of water is prevented and stable transmission efficiency is maintained over a long term.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 生体患部組織の切開・蒸散などに用いられる
レーザーメス装置または金属加工などを行なうレーザー
加工装置に使用される光フアイバープローブに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical fiber probe used in a laser scalpel device used to incise and ablate tissue in an affected area of a living body or a laser processing device used in metal processing.

従来の技術 炭酸ガスレーザーを光源とするレーザーメス装置または
レーザー加工装置においては 従来 炭酸ガスレーザー
光を通す適当な光ファイバーがなく、複数個の鏡から構
成されたミラー関節型導光路によりレーザー光照射が行
なわれてい丸 しかし操作性が悪く複雑な動きや微細な
動きに対応できにくいた数 フレキシブルな光ファイバ
ーの開発が試みられてい九 その結果 例えばKR8−
5などのハロゲン化物を材料とした赤外光ファイバーが
実用化されるようになってきた また柔軟性に富む赤外光ファイバーとしてCt特開平0
1−209407号公報に示されているような塩化銀と
臭化銀からなる多結晶赤外光ファイバーが実用化される
ようになってきていもこれらζよ ハロゲン化物からな
る単結晶 または塩化区 臭化銀からなる高純度の単結
晶材料をこの材料の融点よりやや低い温度に加熱し や
や軟化させた状態で細いノズルを有するダイスで加圧し
て押出し 多結晶の赤外光ファイバーとじたもので、レ
ーザー光の伝送 柔軟性に優れてぃ本発明が解決しよう
とする課題 レーザーメス装置またはレーザー加工装置の光フアイバ
ープローブ(よ 長期にわたって赤外光ファイバーの特
性が低下しないことが必要である。
Conventional technology Laser scalpel devices or laser processing devices that use a carbon dioxide laser as a light source do not have a suitable optical fiber for passing the carbon dioxide laser light, and laser light irradiation is performed using a mirror-articulated light guide path made up of multiple mirrors. However, attempts have been made to develop flexible optical fibers.9 As a result, for example, KR8-
Infrared optical fibers made of halides such as Ct 5 have come into practical use.
Although polycrystalline infrared optical fibers made of silver chloride and silver bromide as shown in Publication No. 1-209407 have come into practical use, these single crystals made of halides or chloride bromide A high-purity single-crystal material made of silver is heated to a temperature slightly lower than the melting point of this material, and in a slightly softened state, it is extruded under pressure using a die with a thin nozzle.It is spliced with polycrystalline infrared optical fibers and is exposed to laser light. The problem to be solved by the present invention is that the characteristics of the infrared optical fiber do not deteriorate over a long period of time.

しかし 塩化区 臭化銀からなる赤外光ファイバーや、
KR5−5からなる赤外光ファイバー(表耐湿性が悪く
、大気中の水分を吸収して、これが伝送効率の低下や劣
化の原因となっている。
However, infrared optical fibers made of silver bromide,
Infrared optical fiber made of KR5-5 (surface moisture resistance is poor and absorbs moisture in the atmosphere, which causes a decrease in transmission efficiency and deterioration.

第5図(友 大気雰囲気で保管している塩化舷臭化銀か
らなる赤外光ファイバーへ 伝送効率の経時変化を示す
ものであり、図より明らかなように長期間経過した赤外
光ファイバー(よ 初期と比較して著しく低下している
Figure 5 (Friend) shows the change over time in the transmission efficiency of an infrared optical fiber made of silver chloride and silver bromide stored in an atmospheric atmosphere. It has decreased significantly compared to

第6図はこの赤外光ファイバーの分光透過特性を示すも
のであり、長期間経過[7た赤外光ファイバー11  
水分の含有を示す波長6.2μmでの吸収損失の増加が
見られ 水分か伝送効率低下の要因であることを示して
いる。
Figure 6 shows the spectral transmission characteristics of this infrared optical fiber.
An increase in absorption loss was observed at a wavelength of 6.2 μm, which indicates the presence of moisture, indicating that moisture is the cause of the decrease in transmission efficiency.

また レーザーメス装置は30wまての低いパワーで使
用される力(レーサー加工装置は30w以上の高いパワ
ーか要求されも しか改 元ファイバープローブでは 
赤外光ファイバーからの散乱光を赤外光ファイバーの保
持部材か吸収し この熱により赤外光ファイバーが発熱
L 更には溶融するといったことか起こりやすく、この
赤外光ファイバーの温度上昇か耐パワー性低下の原因と
なっていも 本発明は上記課題を解決するもので、高出力での使用に
も耐え 長期にわたって伝送効率の低下しない光フアイ
バープローブを提供することを目的としていも 課題を解決するだめの手段 本発明は上記目的を達成するために 保護チューブに収
納・保持した多結晶赤外光ファイバーを樹脂外被チュー
ブに収納し その両端付近に集光レンズまたは赤外光透
過部材を固定したコネクタおよびホルダーを装着し 前
記コネクタに2つのガス注入口を設け、前記保護チュー
ブと前記樹脂外被チューブ間(二 1つのガス経路すな
わちアンストガス経路を設けた構成としたものである。
In addition, the laser scalpel device requires a low power of up to 30W (the laser processing device requires a high power of 30W or more, but the modified fiber probe requires a high power of 30W or more).
Scattered light from the infrared optical fiber is absorbed by the infrared optical fiber's holding member, and this heat causes the infrared optical fiber to generate heat and even melt, which is the cause of an increase in the temperature of the infrared optical fiber or a decrease in power resistance. However, the present invention solves the above-mentioned problems, and although the purpose of the present invention is to provide an optical fiber probe that can withstand use at high output and does not reduce transmission efficiency over a long period of time, it is a means to solve the problems. In order to achieve the above purpose, the polycrystalline infrared optical fiber housed and held in a protective tube is housed in a resin jacket tube, and connectors and holders to which condensing lenses or infrared light transmitting members are fixed are attached near both ends of the polycrystalline infrared optical fiber. The connector is provided with two gas inlets, and one gas path, that is, an unstuck gas path is provided between the protective tube and the resin jacket tube.

作用 本発明は上記した構成により、アシストガス経路を流れ
るアシストガスの冷却効果で光フアイバープローブの耐
パワー性か向上し さらに赤外光ファイバーを乾燥ガス
雰囲気中に配置しているので、水分の侵入を防ぎミ 長
期にわたって安定した伝送効率を維持させることができ
るものである。
Effect of the present invention With the above-described configuration, the power resistance of the optical fiber probe is improved by the cooling effect of the assist gas flowing through the assist gas path.Furthermore, since the infrared optical fiber is placed in a dry gas atmosphere, the intrusion of moisture is prevented. Prevention Mi: It is possible to maintain stable transmission efficiency over a long period of time.

実施例 以下、本発明の一実施例について第1図〜第4図を参照
しながら説明すも 第1図において、スリットを有する例えはコレットチャ
ックのような保持部1を一体的に固定した ステンレス
等の金属またはフッ素樹脂等の保護チューブ2に 例え
ばKR3−5や塩化銀・臭化銀の多結晶からなる赤外光
ファイバー3力\ 両端面付近のみ突出した状態で収納
され 保持部lに挟持されも この保護チューブ2(よ
 樹脂等の外被チューブ4に覆われでおり、一端にコネ
クタ5、他端にホルダー6をそれぞれ固定する。コネク
タ5(友 入力側聞ロアと、アシストガス用開口8を有
し 入力端間(17+Q  Z n S eからなる集
光レンズまたは赤外光透過部材9か固定され アシスト
ガス用開口8に外被チューブ4が固定され仏 またコネ
クタ5(友 入力側聞ロアに接続する乾燥ガス注入口I
Oと、アシストガス用開口8に接続するアシストガス注
入口11を有する。乾燥ガス注入口10からは 例えは
窒素ガス アルゴンガス 乾燥空気等の乾燥ガス12を
加圧注入すも またアシストガス注入口11から(よ 
通常の空気をアシストガス13として加圧注入する。こ
のアシストガス13i1  アシストガス注入口11か
ぺ アシストガス用開口8、外被チューブ4と保護チュ
ーブ2の揮 ホルダー6とハンドピース14の間等を経
路として流れる。ホルダー6(友畠力側開口15を有L
ZnSeからなる集光レンズまたは赤外光透過部材16
か固定されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4. In FIG. 1, a stainless steel plate having a holding part 1, such as a collet chuck with a slit, is integrally fixed. For example, an infrared optical fiber made of KR3-5 or polycrystalline silver chloride/silver bromide is housed in a protective tube 2 made of metal or fluororesin, with only the vicinity of both end faces protruding, and is held between the holding parts l. This protective tube 2 is covered with a jacket tube 4 made of resin or the like, and a connector 5 is fixed to one end and a holder 6 is fixed to the other end. A condensing lens or an infrared light transmitting member 9 consisting of input ends (17+QZnSE) is fixed, and a jacket tube 4 is fixed to the assist gas opening 8. Dry gas inlet I connected to
O, and an assist gas inlet 11 connected to the assist gas opening 8. A dry gas 12 such as nitrogen gas, argon gas, or dry air is injected under pressure from the dry gas inlet 10, but also from the assist gas inlet 11 (as shown in FIG.
Ordinary air is injected under pressure as assist gas 13. The assist gas 13i1 flows through the assist gas inlet 11, the assist gas opening 8, the exhaust tube 4 and the protective tube 2, and between the holder 6 and the hand piece 14, etc. Holder 6 (L with an opening 15 on the Tomobatake force side)
Condenser lens or infrared light transmitting member 16 made of ZnSe
or fixed.

このホルダー6(よ 外被チューブ4に固定されたハン
ドピースI4に嵌装される。
This holder 6 is fitted into the hand piece I4 fixed to the jacket tube 4.

第2図において、 17はレーサー発振器18を有する
レーサー照射装置であり、乾燥ガス12を内蔵したボン
ベ(図示せず)とガス圧を調節するレギュレータ(図示
せず)を内部に収納する。またアシストガス13供給用
のポンプまたはボンベを内部に収納すム このレーザー照射装置17のレーザー発振器18に光フ
アイバープローブ19を接続すると乾燥ガス12が加圧
流入され 乾燥ガス12は乾燥ガス注入口IOから入力
側聞ロアに流れ 保護チューブ2内を通り赤外光ファイ
バー3との間隙に充満すも 乾燥ガス12を流入するこ
とにより内部の空気(よ 赤外光透過部材16とホルダ
ー6との接合部のわずかな隙間から外部に逃げも これ
によりコネクタ5の入力側聞ロア、保護チューブ2匹 
ホルダー6の出力側開口15など、赤外光ファイバー3
を取りまく空間が乾燥ガス12で置換される。
In FIG. 2, 17 is a racer irradiation device having a racer oscillator 18, and houses therein a cylinder (not shown) containing dry gas 12 and a regulator (not shown) for adjusting the gas pressure. Also, when the optical fiber probe 19 is connected to the laser oscillator 18 of the laser irradiation device 17, which houses a pump or cylinder for supplying the assist gas 13 inside, the dry gas 12 is injected under pressure. The air flows from the input side to the lower part of the input side, passes through the protective tube 2, and fills the gap between the infrared optical fiber 3 and the infrared light transmitting member 16 and the holder 6. This allows the two protective tubes to escape from the input side lower part of connector 5.
The infrared optical fiber 3 such as the output side opening 15 of the holder 6
The surrounding space is replaced with dry gas 12.

乾燥ガス12を流した状態の赤外光ファイバー3の伝送
効率の経時変化を第3図に示す。図より明らかなように
 従来の大気雰囲気中の赤外光ファイバー(第5図)と
比較して伝送効率の低下が少なシモ  この赤外光ファ
イバー3の分光透過特性を第4図に示すバ 乾燥ガス雰
囲気が大気中の水分侵入を防いでおり、長期間経過して
も水分の含有を示す波長6.2μmでの吸収損失の増加
が見られなしも またアシストガス13i:L  レーザー照射と連動し
て加圧流入され 前述した経路であるアシストガス注入
口11からアシストガス用開口8に流れ外被チューブ4
内を通り、ホルダー6とハンドピース14の間隙を通っ
て排出されも このときアシストガス13(よ 保護チューブ2とホル
ダー6の外周を流れてこれらを冷却し レーザー照射時
の散乱光による赤外光ファイバー3への吸収発熱をおさ
え 温度上昇を防止すも発明の効果 以上の実施例から明らかなように本発明によれば 光フ
アイバープローブ中に形成される経路を流れるアシスト
ガスの冷却作用により、レーザー照射時へ 散乱光によ
る赤外光ファイバーの吸収発熱が防止でき、温度上昇に
よる溶融かなくなり、耐パワー性が向上する。さらに乾
燥ガスで赤外光ファイバーへの水分の侵入を防ぎ、長期
にわたって伝送効率の低下を防止でき、安定した特性か
得られも
FIG. 3 shows the change over time in the transmission efficiency of the infrared optical fiber 3 with the dry gas 12 flowing therethrough. As is clear from the figure, there is less decrease in transmission efficiency compared to the conventional infrared optical fiber in an air atmosphere (Figure 5).The spectral transmission characteristics of this infrared optical fiber 3 are shown in Figure 4.Dry gas atmosphere Assist gas 13i:L prevents moisture from entering the atmosphere, and no increase in absorption loss at a wavelength of 6.2 μm, which indicates moisture content, was observed even after a long period of time. The gas is pressure-inflowed from the assist gas inlet 11, which is the path described above, to the assist gas opening 8 and flows into the jacket tube 4.
At this time, the assist gas 13 (the assist gas 13) flows around the protective tube 2 and the holder 6 to cool them, and the infrared optical fiber is generated by the scattered light during laser irradiation. According to the present invention, laser irradiation is suppressed by the cooling effect of the assist gas flowing through the path formed in the optical fiber probe. It prevents the infrared optical fiber from absorbing heat due to scattered light, prevents it from melting due to temperature rise, and improves power resistance.Furthermore, the dry gas prevents moisture from entering the infrared optical fiber, reducing transmission efficiency over a long period of time. can be prevented and stable characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光フアイバープローブの断面医 
第2図は本発明によるレーザー照射装置の外観斜視医 
第3図は本発明による赤外光ファイバーの伝送効率の経
時変化を示す阻 第4図は同光ファイバーの分光特性を
示す医 第5図は従来例における赤外光ファイバーの伝
送効率の経時変化を示す艮 第6図は同光ファイバーの
分光特性を示す図である。 2・・・保護チュース 3・・・多結晶赤外光ファイバー、 4・・・樹脂外被チューブ、 5・・・コネク久6・・
・ホルダー、 9・・・集光レンズまたは赤外光透過部材、10・・・
乾燥ガス注入口(ガス注入口)、11・・・アシストガ
ス注入口(ガス注入口)12・・・乾燥ガス 13・・・アシストガス 17・・・レーザー照射装置 19・・・光フアイバーブロース 代理人の氏名 弁理士 小鍜治 明 ほか2名Ill;
2図 第3図 鯰過吟開 第4図 5皮 ゑ (〃−ラ
FIG. 1 shows a cross-sectional diagram of an optical fiber probe according to the present invention.
Figure 2 shows the appearance of the laser irradiation device according to the present invention.
Fig. 3 shows a diagram showing the change over time in the transmission efficiency of an infrared optical fiber according to the present invention. Fig. 4 shows a diagram showing the spectral characteristics of the same optical fiber. FIG. 6 is a diagram showing the spectral characteristics of the same optical fiber. 2...Protection tube 3...Polycrystalline infrared optical fiber, 4...Resin jacket tube, 5...Connection tube 6...
・Holder, 9... Condensing lens or infrared light transmitting member, 10...
Dry gas inlet (gas inlet), 11...assist gas inlet (gas inlet) 12...dry gas 13...assist gas 17...laser irradiation device 19...optical fiber broth agent Name of person: Patent attorney Akira Okaji and 2 other people Ill;
Figure 2 Figure 3 Catfish overgrowth Figure 4 Figure 5 Peel ゑ

Claims (1)

【特許請求の範囲】[Claims] レーザー光を作業部位まで導く多結晶赤外光ファイバー
と、この多結晶赤外光ファイバーを収納・保持する保護
チューブと、この保護チューブを収納する樹脂外被チュ
ーブと、前記多結晶赤外光ファイバーの両端付近に装着
したコネクタおよびホルダーと、このコネクタおよびホ
ルダーに固定した集光レンズまたは赤外光透過部材とか
らなり、前記コネクタに2つのガス注入口を設け、前記
保護チューブと前記樹脂外被チューブ間に、1つのガス
経路を設けてなる光ファイバープローブ。
A polycrystalline infrared optical fiber that guides the laser beam to the work site, a protective tube that houses and holds this polycrystalline infrared optical fiber, a resin jacket tube that houses this protective tube, and the vicinity of both ends of the polycrystalline infrared optical fiber. It consists of a connector and a holder attached to the connector, and a condensing lens or an infrared light transmitting member fixed to the connector and the holder. , an optical fiber probe with one gas path.
JP2332430A 1990-11-28 1990-11-28 Optical fiber probe Pending JPH04198901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332430A JPH04198901A (en) 1990-11-28 1990-11-28 Optical fiber probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332430A JPH04198901A (en) 1990-11-28 1990-11-28 Optical fiber probe

Publications (1)

Publication Number Publication Date
JPH04198901A true JPH04198901A (en) 1992-07-20

Family

ID=18254885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332430A Pending JPH04198901A (en) 1990-11-28 1990-11-28 Optical fiber probe

Country Status (1)

Country Link
JP (1) JPH04198901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182983A (en) * 1995-12-30 1997-07-15 Kawasaki Heavy Ind Ltd Irradiating device for laser beam welding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182983A (en) * 1995-12-30 1997-07-15 Kawasaki Heavy Ind Ltd Irradiating device for laser beam welding

Similar Documents

Publication Publication Date Title
US5568503A (en) Solid-state laser device with optical fiber cable connection
US4678268A (en) Method and apparatus for constructing microlens ends for optical fibers
US5066291A (en) Solid-state laser frequency conversion system
US4408602A (en) Laser knife device
US4830462A (en) Optical-fiber type power transmission device
US5843073A (en) Infrared laser catheter system
US4950266A (en) Infrared laser catheter system
US5496307A (en) Laser light irradiation apparatus for medical treatment
CZ291894B6 (en) Optical fiber cable
JPH04198901A (en) Optical fiber probe
JP3577653B2 (en) Dental gas laser device
WO2011004918A1 (en) Nd:yag laser apparatus
CN109567933B (en) Double-optical fiber laser treatment device
EP0622051B1 (en) Laser light irradiation apparatus
JPS5942504A (en) Optical fiber cable
KR20010088451A (en) Optical system for depilation laser irradiation hole
JPS60142844A (en) Handpiece apparatus for laser knife
JPH0256506A (en) Optical fiber cable
JPS62299908A (en) Optical fiber cable
JP2885355B2 (en) Laser scalpel device and contact laser probe
JPH0416802A (en) Optical fiber probe
JPS61231428A (en) Apparatus for monitoring state of optical fiber
JPS6345833B2 (en)
JPS5942195A (en) Hand piece of laser working machine
JPS59121007A (en) Optical fiber device for infrared laser treating device