JPH04198719A - Thermal air flow meter - Google Patents

Thermal air flow meter

Info

Publication number
JPH04198719A
JPH04198719A JP33541890A JP33541890A JPH04198719A JP H04198719 A JPH04198719 A JP H04198719A JP 33541890 A JP33541890 A JP 33541890A JP 33541890 A JP33541890 A JP 33541890A JP H04198719 A JPH04198719 A JP H04198719A
Authority
JP
Japan
Prior art keywords
substrate
heating element
air flow
thermal air
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33541890A
Other languages
Japanese (ja)
Inventor
Yuji Ariyoshi
雄二 有吉
Koji Tanimoto
考司 谷本
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33541890A priority Critical patent/JPH04198719A/en
Publication of JPH04198719A publication Critical patent/JPH04198719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with a lead wire and the wire bonding work by connecting a film type resistor formed on a substrate made of a heating element to a control circuit with terminal pins buried in a substrate supporter, and fixing the pins to the substrate. CONSTITUTION:A terminal pin 3 is formed into an L-shape at one end, and the end face of a shorter side is stuck to the electrode extraction section 5 of a film type resistor 2 with solder. The longer side of the L-shape passes through a substrate supporter 4 at a fixed interval from a substrate 1 and connected to an external control circuit. A lead wire which is weak in mechanical strength is not required to be used, and no bonding work is required. The pin 3 serves to reinforce a heating element, the mechanical strength of the heating element is improved, and the heat conduction loss to the pin 3 can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、例えば自動車用エンジンに吸入される空気
の流量を測定する熱式空気流量計に関し、特にその発熱
素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal air flow meter for measuring the flow rate of air taken into, for example, an automobile engine, and particularly relates to a heating element thereof.

[従来の技術] 第5図は例えば特開昭61−189416号公報に示さ
れた従来の熱式空気流量計の発熱素子の構成を示す概略
構成図である。また、第6図は第5図の素子のダクト内
取付状態を示す断面構成図である。図において、(1)
は基板、(2)は基板(1)上に形成された温度依存性
を持つ膜式抵抗、(4)は基板支持体、(8)ζよ基板
保持部、(9)はリードワイヤ、(lO)は支持体(4
〉表面に接着されたり−ト線である。
[Prior Art] FIG. 5 is a schematic configuration diagram showing the configuration of a heating element of a conventional thermal air flowmeter disclosed in, for example, Japanese Patent Laid-Open No. 189416/1983. Further, FIG. 6 is a cross-sectional configuration diagram showing a state in which the element shown in FIG. 5 is installed in a duct. In the figure, (1)
is a substrate, (2) is a temperature-dependent film resistor formed on the substrate (1), (4) is a substrate support, (8) is a substrate holder, (9) is a lead wire, ( lO) is the support (4
〉It is a wire that is glued to the surface.

このように構成された装置の動作について説明する。温
度依存性を有する膜式抵抗(2)に電流を流すとジュー
ル熱による発熱が起こり、膜式抵抗(2)は発熱体とし
ての役割を果たす。この膜式抵抗(2)の温度と吸入空
気温度の差が一定になるように膜式抵抗(2)に流れる
電流をフィードバック制御する。つまり、定温度差フィ
ードバック制御を行う。流体と膜式抵抗(2)との間の
熱伝達率をh、膜式抵抗(2)の表面積をS、膜式抵抗
(2)と流体との温度差をΔTとすると、膜式抵抗(2
)と空気の間の伝熱量Hは H=h−5・△T ・・・(A) と表される。また模式抵抗(2)の抵抗をRHlそこに
流れる加熱電流を■とすると、模式抵抗(2)が発する
ジュール熱Wは W=RH・■2  ・・・(B) と表される。熱平衡状態においてはW=Hが成立するの
で RH−I2=h−8・ΔT  ・ ・ ・ (C)とな
る。一般に熱伝達率りはA、  Bを定数とすると h=A+B−Q’   −−−(D) なる実験公式で表されるので、温度差△Tを一定に保っ
て加熱電流Iを測定することにより流量Qが得られる。
The operation of the device configured in this way will be explained. When a current is passed through the temperature-dependent film resistor (2), heat is generated due to Joule heat, and the film resistor (2) functions as a heating element. The current flowing through the membrane resistor (2) is feedback-controlled so that the difference between the temperature of the membrane resistor (2) and the intake air temperature is constant. In other words, constant temperature difference feedback control is performed. If the heat transfer coefficient between the fluid and the membrane resistor (2) is h, the surface area of the membrane resistor (2) is S, and the temperature difference between the membrane resistor (2) and the fluid is ΔT, then the membrane resistor ( 2
) and air is expressed as H=h-5・ΔT...(A). Further, assuming that the resistance of the schematic resistor (2) is RHL and the heating current flowing therein is (■), the Joule heat W generated by the schematic resistor (2) is expressed as W=RH·■2 . . . (B). In a state of thermal equilibrium, W=H holds true, so RH-I2=h-8·ΔT . . . (C). Generally, the heat transfer coefficient is expressed by the experimental formula h=A+B-Q' ---(D) where A and B are constants, so the heating current I should be measured while keeping the temperature difference △T constant. The flow rate Q is obtained by

[発明が解決しようとする課題] ・しかしながら、第5図のような構造を持つ発熱素子を
第6図に示すように設置した場合、極めて細いリードワ
イヤが直接流体にさらされるため、その機械的強度が弱
くなる。また、基板支持体上にリード線を形成した上に
ワイヤボンディングという作業が必要となり工程数が多
くなる。
[Problems to be solved by the invention] - However, when a heating element having the structure as shown in Fig. 5 is installed as shown in Fig. 6, the extremely thin lead wire is directly exposed to the fluid, so its mechanical Strength becomes weaker. Further, it is necessary to form lead wires on the substrate support and then perform wire bonding, which increases the number of steps.

この発明は上記のような問題点を解決するためになされ
たもので、発熱素子の機械的強度を上げ、使用環境の拡
大に寄与できる熱式空気流量計を得ることを目的とする
This invention was made to solve the above-mentioned problems, and aims to provide a thermal air flow meter that can increase the mechanical strength of a heating element and contribute to expanding the usage environment.

[課題を解決するための手段] この発明に係る熱式空気流量計は、発熱素子の基板に形
成された模式抵抗と制御回路とを上記基板の一端を保持
する基板支持体に埋め込まれた2本のターミナルピンに
よって電気的に接続したものである。
[Means for Solving the Problems] A thermal air flow meter according to the present invention connects a schematic resistor formed on a substrate of a heat generating element and a control circuit to two embedded in a substrate support holding one end of the substrate. It is electrically connected using a terminal pin.

[作用] この発明の熱式空気流量計では、ターミナルピンによっ
て直接電気的に接続したので、械的強度の弱いリードワ
イヤを使用せずに済み、ボンディング作業も必要なくな
る。また、ターミナルピンが発熱素子の補強の役割も果
たし、発熱素子の機械的強度が向上される。
[Function] In the thermal air flowmeter of the present invention, since direct electrical connection is made through the terminal pin, there is no need to use lead wires with weak mechanical strength, and no bonding work is required. Furthermore, the terminal pins also play a role of reinforcing the heating element, improving the mechanical strength of the heating element.

[実施例コ 第1図(a)、(b)、第2図(a)、(b)、第3図
(a)、(b)、第4図(a)、(b)はそれぞれこの
発明の熱式空気流量計に係る発熱素子の実施例を示し、
各図(a)はその正面図、各図(b)はその側面図であ
る。図において、(1)は絶縁基板、(2)は基板(1
)上に形成された温度依存性を持つ模式抵抗、(3)は
ターミナルピン、(4)は基板支持体、(5)は模式抵
抗(2)の電極取り出し部、(6)は半田などの導電性
材料、(7)はポリイミドなどの断熱性材料である。基
板(1)は、その一端を基板支持体(4)に設けられた
基板厚の溝に挿入された固定端とし、他端を自由端とす
る片持ち梁構造にて固定されている。
[Example Figures 1 (a), (b), 2 (a), (b), 3 (a), (b), and 4 (a), (b) are shown in this figure, respectively. An example of a heating element related to a thermal air flow meter of the invention is shown,
Each figure (a) is a front view thereof, and each figure (b) is a side view thereof. In the figure, (1) is an insulating substrate, (2) is a substrate (1
), (3) is the terminal pin, (4) is the substrate support, (5) is the electrode extraction part of the schematic resistor (2), and (6) is the solder etc. The conductive material (7) is a heat insulating material such as polyimide. The substrate (1) is fixed in a cantilever structure, with one end serving as a fixed end inserted into a substrate-thick groove provided in the substrate support (4), and the other end serving as a free end.

第1図に示す実施例においては、ターミナルピン(3)
は一端がL字形に曲がった形状をしており、その短い方
の辺の端面が模式抵抗(2)の電極取り出し部(5)に
接触するように半田などの導電性材料で接着されている
。ターミナルピン(3)が基板(1)と接着されている
のは電極取り出し部(5)においてのみであり、L字形
の長い方の辺は 基板(1)と一定の間隔を保ったまま
基板支持体の中を通って外部制御回路へとつながってい
る。
In the embodiment shown in Figure 1, the terminal pin (3)
has an L-shaped bend at one end, and is bonded with a conductive material such as solder so that the end surface of the short side contacts the electrode extraction part (5) of the schematic resistor (2). . The terminal pin (3) is bonded to the board (1) only at the electrode extraction part (5), and the long side of the L shape supports the board while maintaining a constant distance from the board (1). It passes through the body and is connected to external control circuits.

このような構成にすることにより、機械的強度の弱いリ
ードワイヤを使用せずに済み、ボンディング作業も必要
なくなる。また、ターミナルピンが発熱素子の補強の役
割も果たすので、発熱素子の機械的強度が向上する。そ
して、ターミナルピンは、電気的接触部以外は基板と非
接触となっているので、ビンへの熱伝導損失も低減され
る。而して熱式空気流量計の使用環境が拡大できる。
By adopting such a configuration, it is not necessary to use lead wires having low mechanical strength, and bonding work is also not necessary. Furthermore, since the terminal pins also play a role of reinforcing the heating element, the mechanical strength of the heating element is improved. Further, since the terminal pin is not in contact with the substrate except for the electrical contact portion, heat conduction loss to the bottle is also reduced. Therefore, the usage environment of the thermal air flow meter can be expanded.

第2図に示す実施例においては、第1図に示す実施例と
同じくターミナルピン(3)は一端がL字形に曲がった
形状をしており、その短辺が電極取り出し部(5)に半
田などの導電性材料で接着されている。さらに、L字形
ターミナルピン(3)の長い方の辺と基板(1)との間
の空間を、例えばポリイミドなどの接着効果のある断熱
性材料で埋め、ターミナルピン(3)と基板(1)の接
着強度を高め、ビンへの熱伝導損失を低減しているでい
る。
In the embodiment shown in FIG. 2, the terminal pin (3) has one end bent into an L-shape, and the short side of the terminal pin (3) is connected to the electrode extraction portion (5) by soldering. It is bonded with a conductive material such as. Furthermore, the space between the long side of the L-shaped terminal pin (3) and the board (1) is filled with a heat insulating material that has an adhesive effect, such as polyimide, and the terminal pin (3) and the board (1) are This increases the adhesive strength of the bottle and reduces heat conduction loss to the bottle.

第3図に示す実施例においては、ターミナルピン(3)
は例えば半円柱形のような側面に少なくとも1つの平面
を持つ形状をしており、その平面の一端は模式抵抗(2
)の電極取り出し部(5)において半田等を介して電気
的に接続され、他端は基板支持体(4)の中を通って外
部制御回路へつながっている。また、電極取り出し部(
5)以外の部分では、基板(1)とターミナルピン(3
)の平面側は例えばポリイミドフィルムなとの接着効果
のある断熱材料を介して接着されている。
In the embodiment shown in Figure 3, the terminal pin (3)
has a shape such as a semi-cylindrical shape with at least one flat surface on the side surface, and one end of the flat surface is a schematic resistor (2
) is electrically connected via solder or the like at the electrode lead-out portion (5), and the other end passes through the substrate support (4) and is connected to an external control circuit. In addition, the electrode extraction part (
For parts other than 5), connect the board (1) and terminal pin (3).
) is bonded to, for example, a polyimide film through a heat insulating material that has an adhesive effect.

この実施例でも同様にリードワイヤを使用せずに済み、
ボンディング作業も必要なくなる。また、ターミナルピ
ンが発熱素子の補強の役割も果たし、発熱素子の機械的
強度が向上される。しかもターミナルピンは断熱性樹脂
などによって基板に固定されているので、ピンへの熱伝
導損失も低減される。而して熱式空気流量計の使用環境
が拡大できる。
This embodiment also eliminates the need for lead wires.
Bonding work is also no longer necessary. Furthermore, the terminal pins also play a role of reinforcing the heating element, improving the mechanical strength of the heating element. Furthermore, since the terminal pins are fixed to the board using a heat insulating resin or the like, heat conduction loss to the pins is also reduced. Therefore, the usage environment of the thermal air flow meter can be expanded.

第4図に示す実施例においては、第3図に示す実施例と
同じくターミナルピン(3)は側面に少なくとも1つの
平面を持つ形状をしており、その−端は膜式抵抗(2)
の電極取り出し部(5)において半田等を介して電気的
に接続され、他端は基板支持体(4)の中を通って外部
制御回路へつながっている。また、電極取り出し部の一
部あるいは全部と、その下の基板支持体(4)までの基
板(1)とターミナルピン(3)の露出部分を例えばポ
リイミドなどの接着効果のある断熱性材料で被覆し、基
板(1)とターミナルピン(3)とを接着している。上
記実施例と同様の効果がある。
In the embodiment shown in FIG. 4, the terminal pin (3) has a shape with at least one flat surface on the side surface, as in the embodiment shown in FIG.
It is electrically connected via solder or the like at the electrode extraction part (5), and the other end passes through the substrate support (4) and is connected to an external control circuit. In addition, part or all of the electrode extraction part and the exposed parts of the substrate (1) up to the substrate support (4) below and the terminal pins (3) are covered with a heat insulating material that has an adhesive effect, such as polyimide. The board (1) and the terminal pin (3) are bonded together. This embodiment has the same effect as the above embodiment.

[発明の効果] 以上のようにこの発明によれば、発熱素子の基板に形成
した膜式抵抗と制御回路との配線接続を基板支持体に埋
め込まれたターミナルピンによって行い、そのターミナ
ルピンを半田、あるいは断熱性材料等によって直接基板
に固定したので、リードワイヤ及びワイヤボンディング
作業が必要なくなり、また、ターミナルピンが発熱素子
を補強する役割を果たし、発熱素子の機械的強度が向上
され、使用環境の拡大に寄与できる熱式空気流量計が得
られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the wiring connection between the film resistor formed on the substrate of the heating element and the control circuit is made by the terminal pin embedded in the substrate support, and the terminal pin is soldered. Or, since it is directly fixed to the board using heat insulating material, etc., lead wires and wire bonding work are not required. Also, the terminal pins play a role of reinforcing the heating element, improving the mechanical strength of the heating element, and improving the usage environment. This has the effect of providing a thermal air flow meter that can contribute to the expansion of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)、第2図(a)、(b)、第3図
(a)、(b)、第4図(a)、(b)はそれぞれこの
発明に係わる熱式はその正面図、各図(b)はその側面
図、第5図は従来の熱式空気流量計の発熱素子の構造を
示す概略構成図、第6図は従来の発熱素子のダクト内設
置時の断面構成図である。 図において(1)は基板、(2)は膜式抵抗、(3)は
ターミナルピン、(4)は基板支持体、(5)は膜式抵
抗(2)の電極取り出し部である。 なお、図中、同一符号は同一または相当部分を示す。
Figure 1 (a), (b), Figure 2 (a), (b), Figure 3 (a), (b), Figure 4 (a), (b) respectively show the heat related to this invention. The formula is a front view, each figure (b) is a side view, Figure 5 is a schematic configuration diagram showing the structure of the heating element of a conventional thermal air flowmeter, and Figure 6 is the installation of a conventional heating element in a duct. FIG. In the figure, (1) is a substrate, (2) is a membrane resistor, (3) is a terminal pin, (4) is a substrate support, and (5) is an electrode extraction part of the membrane resistor (2). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 基板に形成した温度依存性抵抗を持つ膜式抵抗を有し、
上記基板の一端部を基板支持体に保持され、流体流路中
に配設される発熱素子、及び流体流路外に配設され、上
記膜式抵抗に接続し、これに流れる電流を制御する制御
回路を備える熱式空気流量計において、上記膜式抵抗の
電極取り出し部と上記基板支持体に埋め込まれたターミ
ナルピンの一端部とを電気的に接続し上記膜式抵抗と制
御回路を接続するようにした熱式空気流量計。
It has a film resistor with temperature-dependent resistance formed on the substrate,
One end of the substrate is held by a substrate support, a heating element is disposed in the fluid flow path, and a heating element is disposed outside the fluid flow path and connected to the membrane resistor to control the current flowing therein. In a thermal air flow meter equipped with a control circuit, an electrode take-out portion of the membrane resistor and one end of a terminal pin embedded in the substrate support are electrically connected to connect the membrane resistor and the control circuit. Thermal air flow meter.
JP33541890A 1990-11-28 1990-11-28 Thermal air flow meter Pending JPH04198719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33541890A JPH04198719A (en) 1990-11-28 1990-11-28 Thermal air flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33541890A JPH04198719A (en) 1990-11-28 1990-11-28 Thermal air flow meter

Publications (1)

Publication Number Publication Date
JPH04198719A true JPH04198719A (en) 1992-07-20

Family

ID=18288334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33541890A Pending JPH04198719A (en) 1990-11-28 1990-11-28 Thermal air flow meter

Country Status (1)

Country Link
JP (1) JPH04198719A (en)

Similar Documents

Publication Publication Date Title
US4776214A (en) Mass air flow sensor
CN1947007B (en) Thin film gas sensor configuration
JP3784420B2 (en) Measuring device for measuring the mass of a flowing medium
JPH10160513A (en) Passive magnetic position sensor
US5744713A (en) Construction for fastening and contacting resistor elements for a hot film anemometer and sensor arrangement using such construction
US20120001649A1 (en) Leadframe current sensor
JP3095774B2 (en) Pressure sensor for detecting pressure in a combustion chamber of an internal combustion engine
JP3557379B2 (en) Air flow measurement device
JPH0422208B2 (en)
JP3331814B2 (en) Thermal flow detector
WO1987000917A1 (en) Mass airflow sensor
JPS6349881B2 (en)
JPH04198719A (en) Thermal air flow meter
JPH11118566A (en) Flow sensor
US5148707A (en) Heat-sensitive flow sensor
JP2842973B2 (en) Air flow meter
JPH0515968B2 (en)
JPH0663804B2 (en) Mass flow sensor
JPS60159621A (en) Temperature sensor with temperature depending measuring element
JPH04360576A (en) Solid-state image sensing device
JP2002005709A (en) Flow measuring device
JPS62147319A (en) Direct heating type flow sensor
JPH08240487A (en) Thermistor block
JPS60125534A (en) Surface temperature sensor
JP2946254B2 (en) Temperature sensor and method of manufacturing the same