JPH04198712A - Position detecting method for magnetic propulsion running body - Google Patents
Position detecting method for magnetic propulsion running bodyInfo
- Publication number
- JPH04198712A JPH04198712A JP32828190A JP32828190A JPH04198712A JP H04198712 A JPH04198712 A JP H04198712A JP 32828190 A JP32828190 A JP 32828190A JP 32828190 A JP32828190 A JP 32828190A JP H04198712 A JPH04198712 A JP H04198712A
- Authority
- JP
- Japan
- Prior art keywords
- light
- magnetic field
- transmission line
- magnetic
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000005540 biological transmission Effects 0.000 claims abstract description 23
- 230000001427 coherent effect Effects 0.000 claims abstract description 9
- 230000010287 polarization Effects 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims abstract description 6
- 230000003287 optical effect Effects 0.000 claims description 22
- 239000013307 optical fiber Substances 0.000 description 9
- 239000011295 pitch Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Landscapes
- Navigation (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野】
本発明はリニアモーターカーのように、高磁界を発生さ
せる磁気推進走行体の位置検出方法に関するものである
。
【従来の技術】
従来、高磁界を発生させる磁気推進走行体の位置検出に
は交差誘導線が使用されていた。
【発明が解決しようとする課題】
交差誘導線は長くなると抵抗が大きくなるため一本の交
差誘導線による位置検出距離は数Kmと短い、運用上の
装置構成を簡易にするためには位置検出可能距離を延ば
すことが望まれるが現状のままでは技術的に無理である
。
また、交差誘導線はケーブル形状が幅広であるため、そ
の敷設位置との関係により高速走行する磁気推進走行体
の走行による風圧を受けやすく、風圧によりケーブルが
ダンシングして疲労し、それが長期信頼性を低下させる
一因となっている。
、 【発明の目的】
本発明の目的は長距離の位置検出が可能で、風圧を受け
にくく信頼性が高く、しかもコストの安い磁気推進走行
体の位置検出方法を提供することにある。
【課題を解決するための手段】
本発明の磁気推進走行体の位置検出方法は、第l図aの
ようにリニアモーターカー等の磁気推進走行体1の走行
路2に沿って、同走行体Iから発生する磁界と交差する
成分をもつように布設されたシングルモードの光伝送路
3にコヒーレント光を伝送し、そのコヒーレント光の偏
波面を走行路2の上を通過する磁気推進走行体lから発
生される磁界のファラデー効果により回転させて同コヒ
ーレント光を第3図に示す光変調信号Aとし、この光変
調信号Aを偏光子4を通して受信して走行体lの位置を
検出するようにしたものである。
【作用】
本発明の磁気推進走行体の位置検出方法では、第1図a
、bの走行路2上を通過する磁気推進走行体lかも磁界
が発生され、それが同走行路2に布設されている光伝送
路3に加わり、光伝送路3内の光の進行方向と磁界の方
向が一致すると、ファラデー効果により磁界の大きさに
比例して光の偏波面が第2図のように回転する0例えば
、第1図aのような光伝送路3に磁界■(光の進行方向
と逆方向の磁界)が加わると、光伝送路3を流れでいる
連続的な光の偏波面がファラデー効果により正方向(第
2図右方向)に回転し、磁気推進走行体1が走行して光
の進行方向と同方向の磁界■が光伝送路3に加わると、
偏波面は第2図のように負方向(第2図左方向)に回転
する。以後、磁気推進走行体10走行に応して偏波面が
同様に変化する。
これを第1図aの偏光子4を通して受光器5で受信する
と、第3図のように正弦波の変調が加えられた光変調信
号Aになる。この変調信号Aのピークの数は磁気推進走
行体1の進行方向に対し直角に存在する光伝送路3の本
数に対応するので、この本数をカウントすることにより
走行体lの位置を検出できる。
【実施例】
本発明の実施例のうち第1図a、bに示すものは、光伝
送路3としてシングルモードの光ファイバを使用し、こ
れを予め絨穂状の基材6に均一ピッチで蛇行させて配線
し、その基材6を光伝送路3が走行体lの進行方向に直
角になるようにリニアモーターカー(磁気推進走行体)
lの走行路2の上に布設したものである。
本発明の実施例のうち第4図のものは光伝送路3として
シングルモードの光ファイバ3a、3bを二本使用し、
その二本の光ファイバ3a、3bを蛇行ピッチを変えて
磁気推進走行体1の走行路2上に布設し、しかも光ファ
イバ3a、3bが磁気推進走行体lの進行方向に直角に
なるようにしである。この場合、蛇行幅の広い光ファイ
バ3aのピッチは蛇行幅の細かい光ファイバ3bのピッ
チの5〜lO倍にしである。このようにすれば大きいピ
ッチの光ファイバ3aで走行体lの大まかな位置を検出
でき、小さいピッチの光ファイバ3bで走行体lの細か
い位置を検出できる。
【発明の効果】
本発明の磁気推進走行体の位置検出方法は次のような効
果がある。
a、光ファイバ等の光伝送路を用いて磁気推進走行体の
位置検出ができるので、交叉誘導線を用いる場合に比し
て一本の光伝送路で長距離に亙って位置検出ができる。
このためシステムが簡潔になり、交叉誘導線に比してコ
ストも安い。
b、光伝送路を使用するので外部ノイズの影響を受けな
い。
C0光伝送路にコヒーレントな光を伝送し、それに磁気
推進走行体lから発生する磁界をかけるだけであるため
検出装置も簡潔になる。
d、Iia気推進走行体の走行路に沿って交叉誘導線よ
りも細い光伝送路を敷設するので、磁気推進走行体の走
行により生ずる風圧を受けにくく、風圧により光伝送路
がダンシングしにくくなる。このため交差誘導線を使用
する場合より長期信頼性が向上する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the position of a magnetically propulsion vehicle that generates a high magnetic field, such as a linear motor car. BACKGROUND OF THE INVENTION Conventionally, crossed guide lines have been used to detect the position of a magnetically propelled vehicle that generates a high magnetic field. [Problems to be Solved by the Invention] The longer the cross-guide wire is, the greater the resistance, so the position detection distance with a single cross-guide wire is as short as several kilometers. It would be desirable to extend the possible distance, but it is technically impossible under the current conditions. In addition, because the cable shape of the crossing guide wire is wide, it is susceptible to wind pressure due to the running of magnetic propulsion vehicles traveling at high speed due to its installation position, and the wind pressure causes the cable to dance and become fatigued, resulting in long-term reliability. This is a contributing factor to the decline in sexuality. OBJECTS OF THE INVENTION An object of the present invention is to provide a method for detecting the position of a magnetically propulsion vehicle that is capable of long-distance position detection, is less susceptible to wind pressure, has high reliability, and is inexpensive. [Means for Solving the Problems] The method for detecting the position of a magnetically-propelled traveling body according to the present invention is to detect the position of a magnetically-propelled traveling body 1, such as a linear motor car, along a running path 2 of the magnetically-propelled traveling body 1, such as a linear motor car, as shown in FIG. A magnetic propulsion vehicle l transmits coherent light to a single-mode optical transmission line 3 installed so as to have a component that intersects the magnetic field generated from the magnetic field I, and passes the polarization plane of the coherent light over the running path 2. The coherent light is rotated by the Faraday effect of the magnetic field generated by the light beam and becomes the light modulation signal A shown in FIG. 3, and this light modulation signal A is received through the polarizer 4 to detect the position of the traveling body l. This is what I did. [Operation] In the method for detecting the position of a magnetically propulsion vehicle according to the present invention, FIG.
A magnetic field is also generated by the magnetic propulsion vehicle l passing on the traveling path 2 of , b, which is applied to the optical transmission line 3 installed on the traveling path 2, and changes the traveling direction of the light within the optical transmission line 3. When the directions of the magnetic fields match, the plane of polarization of the light rotates in proportion to the magnitude of the magnetic field due to the Faraday effect as shown in Figure 2. When a magnetic field (in the direction opposite to the traveling direction of When traveling, a magnetic field ■ in the same direction as the traveling direction of the light is applied to the optical transmission line 3,
The plane of polarization rotates in the negative direction (to the left in FIG. 2) as shown in FIG. Thereafter, the plane of polarization changes in the same manner as the magnetic propulsion vehicle 10 travels. When this is received by the light receiver 5 through the polarizer 4 shown in FIG. 1a, it becomes an optical modulation signal A to which sinusoidal modulation has been added as shown in FIG. Since the number of peaks of the modulation signal A corresponds to the number of optical transmission lines 3 that are present perpendicular to the traveling direction of the magnetically propelled vehicle 1, the position of the vehicle I can be detected by counting this number. [Embodiment] Among the embodiments of the present invention, those shown in FIGS. 1a and 1b use a single-mode optical fiber as the optical transmission line 3, which is meandered in advance at a uniform pitch on a carpet-like base material 6. The base material 6 is connected to a linear motor car (magnetic propulsion vehicle) so that the optical transmission path 3 is perpendicular to the traveling direction of the vehicle L.
It is installed on the running path 2 of 1. Among the embodiments of the present invention, the one in FIG. 4 uses two single mode optical fibers 3a and 3b as the optical transmission line 3,
The two optical fibers 3a and 3b are laid on the running path 2 of the magnetic propulsion vehicle 1 with different meandering pitches, and the optical fibers 3a and 3b are arranged at right angles to the traveling direction of the magnetic propulsion vehicle l. It is. In this case, the pitch of the optical fibers 3a with a wide meandering width is 5 to 10 times the pitch of the optical fibers 3b with a narrow meandering width. In this way, the rough position of the traveling body l can be detected using the optical fibers 3a with a large pitch, and the detailed position of the traveling body l can be detected using the optical fibers 3b with a small pitch. [Effects of the Invention] The method for detecting the position of a magnetically propelled vehicle according to the present invention has the following effects. a. Since the position of the magnetic propulsion vehicle can be detected using an optical transmission line such as an optical fiber, the position can be detected over a long distance with a single optical transmission line, compared to the case where a cross-guide line is used. . This makes the system simpler and the cost lower than that of cross-guiding wires. b. Since it uses an optical transmission line, it is not affected by external noise. Since coherent light is transmitted to the C0 optical transmission path and a magnetic field generated from the magnetic propulsion vehicle l is applied thereto, the detection device is also simple. d. Iia Since an optical transmission line that is thinner than the cross guide line is laid along the running path of the magnetic propulsion vehicle, it is less susceptible to wind pressure generated by the travel of the magnetic propulsion vehicle, making it difficult for the optical transmission line to dance due to wind pressure. . For this reason, long-term reliability is improved compared to when using crossed guiding wires.
第1図aは本発明の光伝送方向と磁界の方向との関係を
示す平面説明図、同図すはその正面図、第2図は本発明
における偏波面の回転方向の説明図、第3図は光変調信
号の説明図、第4図は本発明の光伝送路の配線状態の他
側を示す説明図である。
lは磁気推進走行体
2は走行路
3は光伝送路
4は偏光子
出願人 財団法人鉄道総合技術研究所
第2図
第3図
磁束
t−1゜
lji+、−′ カワ−イア。
時間軸FIG. 1a is an explanatory plan view showing the relationship between the optical transmission direction and the direction of the magnetic field in the present invention, the same figure is a front view thereof, FIG. 2 is an explanatory view of the rotation direction of the polarization plane in the present invention, FIG. 4 is an explanatory diagram of an optical modulation signal, and FIG. 4 is an explanatory diagram showing the other side of the wiring state of the optical transmission line of the present invention. 1 is a magnetic propulsion vehicle 2 is a running path 3 is an optical transmission line 4 is a polarizer Applicant: Railway Technical Research Institute Figure 2 Figure 3 Magnetic flux t-1゜lji+, -' Time axis
Claims (1)
沿って、同走行体1から発生する磁界と交差する成分を
もつように布設されたシングルモードの光伝送路3にコ
ヒーレント光を伝送し、そのコヒーレント光の偏波面を
走行路2の上を通過する磁気推進走行体1から発生され
る磁界のファラデー効果により回転させて同コヒーレン
ト光を光変調信号Aとし、この光変調信号Aを偏光子4
を通して受信して走行体1の位置を検出することを特徴
とする磁気推進走行体の位置検出方法。Coherent light is transmitted along a running path 2 of a magnetically propulsion vehicle 1 such as a linear motor car to a single-mode optical transmission line 3 installed so as to have a component that intersects the magnetic field generated from the vehicle 1. , the plane of polarization of the coherent light is rotated by the Faraday effect of the magnetic field generated from the magnetic propulsion vehicle 1 passing over the traveling path 2, and the coherent light is made into an optical modulation signal A, and this optical modulation signal A is polarized. Child 4
1. A method for detecting the position of a magnetically propulsion vehicle, characterized in that the position of the vehicle 1 is detected by receiving data through a magnetically propelled vehicle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32828190A JPH04198712A (en) | 1990-11-28 | 1990-11-28 | Position detecting method for magnetic propulsion running body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32828190A JPH04198712A (en) | 1990-11-28 | 1990-11-28 | Position detecting method for magnetic propulsion running body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04198712A true JPH04198712A (en) | 1992-07-20 |
Family
ID=18208476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32828190A Pending JPH04198712A (en) | 1990-11-28 | 1990-11-28 | Position detecting method for magnetic propulsion running body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04198712A (en) |
-
1990
- 1990-11-28 JP JP32828190A patent/JPH04198712A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2106635C (en) | Railway coded track circuit apparatus and method utilizing fiber optic sensing | |
US3395341A (en) | Method and apparatus for detecting the velocity of moving metallic masses by means of phasedisplacements produced in magnetic windings | |
JPH03502003A (en) | optical speed detection device | |
JP2018114790A (en) | Railway control system using optical cable | |
CN109813350A (en) | A kind of high-speed magnetic floating novel optical fiber positioning system | |
JP3528435B2 (en) | Road object detection device | |
US4570062A (en) | System for optically transferring information between a moving object and a fixed position | |
US5602946A (en) | Fiber optic sensor system for detecting movement or position of a rotating wheel bearing | |
JPH04198712A (en) | Position detecting method for magnetic propulsion running body | |
JP3159649B2 (en) | Automatic guided vehicle system | |
JPH04198713A (en) | Position detecting method for magneticaly levitated running body | |
JPH05105082A (en) | Train line pole position detecting method | |
JP3520337B2 (en) | Lane marker system | |
JPS603513A (en) | Position and speed detecting device of moving body | |
US8532918B2 (en) | System and method for vehicle position sensing with helical windings | |
JP2008162556A (en) | On-vehicle device and vehicle control device | |
JPH07128012A (en) | Traveling body position detection method | |
JPS60149904A (en) | Optical fiber communication system | |
FR2645980B1 (en) | DEVICE FOR GUIDING VEHICLES ON A NON-MATERIALIZED TRACK | |
JP2559401Y2 (en) | Side monitoring device when driving on a highway | |
JPS5810955B2 (en) | Position detection method for linear motor vehicle | |
JPS5819308U (en) | Vehicle steering control method | |
JPH0575353B2 (en) | ||
JPH0238996B2 (en) | ||
SU1615009A1 (en) | Apparatus for checking the passage of railway vehicle wheel |