JPH04198405A - Production of hard long raw material with hole - Google Patents

Production of hard long raw material with hole

Info

Publication number
JPH04198405A
JPH04198405A JP33191990A JP33191990A JPH04198405A JP H04198405 A JPH04198405 A JP H04198405A JP 33191990 A JP33191990 A JP 33191990A JP 33191990 A JP33191990 A JP 33191990A JP H04198405 A JPH04198405 A JP H04198405A
Authority
JP
Japan
Prior art keywords
core member
raw material
cylinder
mold
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33191990A
Other languages
Japanese (ja)
Inventor
Katsuhiko Maehara
克彦 前原
Akira Egami
江上 明
Sadashi Kusaka
日下 貞司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33191990A priority Critical patent/JPH04198405A/en
Publication of JPH04198405A publication Critical patent/JPH04198405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds, Cores, Or Mandrels (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To efficiently obtain the raw material having excellent internal quality by penetrating core member, which can decompose during debinder treatment, to hard powder raw material containing binder sealed in a compacting die composed of a cylinder sealing both opening parts and embedding it. CONSTITUTION:One end side of a core member 3 is fixed to a sealed cover 2 and the other side of this core member 3 is freely inserted from the one end side of rubber cylinder 1 and also the sealed cover 2 is fitted to the opening part at one end side of the cylinder 1. Successively, the powder P is packed from the opening part at the other end side of cylinder 1 and free end side of the core member 3 is penetrated to the other cover 2, and the cover 2 is fitted to the opening part at the other end side of cylinder 1 and also the core member 5 is fixed to obtain a compacting mold (m) sealing the powder P. Further, isostatic pressure is acted to the compacting mold (m) to obtain the long green compact 4 embedding the core member 3 and this is separated from the mold and the debinder treatment is executed at the temp., which can decompose the core member 3, and this is sintered to obtain the raw material. Further, by twisting the green compact 4, the long twisted body embedding the core member 3 as spiral state is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] 本発明は、超硬合金、ザーメット、セラミックス等からなる硬質粉末原料から穴付硬質長尺素材を製造する穴付硬質長尺素材の製造方法に関する。 【従来の技術】[Industrial application field] The present invention relates to a method for manufacturing a hard elongated material with holes, which manufactures a hard elongated material with holes from a hard powder raw material made of cemented carbide, cermet, ceramics, or the like. [Conventional technology]

周知のように硬質素材は、例えは金属や金属の炭化物、
窒化物、酸化物、はう化物等の硬質材料からなる粉末を
原料としており、硬質材料製品はこれら硬質粉末原料(
以下、粉末源1′−1という)に1種類あるいは数種類
のバインダを混練して結合した後に成形し、成形後に脱
バインダ処理、機械加工、焼結等の各処理を施して製造
されている。 ところで、成形素材の成形方法としては、例えば金型成
形法、射出成形法、ドクターブレード法等が知られてい
るか、ドリルやエンドミル等の工具の製造には長尺の成
形素材を必要とするため、押出し成形方法が広く用いら
れている。 」1記押出し成形方法は、粉末原料に1種類以上のバイ
ンダを混練して可塑性混練体(以下、混練体という)を
造り、これを押出し成形機により所定の1jji面形状
を存する押出しダイスから押し出して種々の断面形状を
有する長尺素1Aを成形して製造するものである。 しかしながら、押出し素材の断面形状の複雑化に伴なう
押出し抵抗の増大に対処すへく混練体の可塑性を向」ニ
させるために、例えは特公昭59−26653号公報、
特公昭62−59074号公報、特公昭61−4602
6号公報、特公平1−24743号公報等に見られるよ
うに、粉末原料にl凡人するバインダの足と種類とを益
々多く混入せさるを得ない状況になってきている。 つまり、押出ダイスの構造の複雑化に伴って、混練体の
押出し抵抗か増大するので、バインダの量と種類とを多
くして混練体の可塑性を向上させることによって対応し
ている。
As is well known, hard materials include metals, metal carbides,
The raw material is powder made of hard materials such as nitrides, oxides, and ferrides, and hard material products are made from these hard powder raw materials (
It is manufactured by kneading and bonding one or more types of binder to a powder source 1'-1 (hereinafter referred to as powder source 1'-1) and then molding, and after molding, performing various treatments such as binder removal treatment, machining, and sintering. By the way, as methods for forming the molding material, for example, the molding method, injection molding method, doctor blade method, etc. are known, and the manufacturing of tools such as drills and end mills requires long molding materials. , extrusion molding methods are widely used. 1. The extrusion molding method involves kneading one or more types of binder with a powder raw material to create a plastic kneaded body (hereinafter referred to as a kneaded body), and extruding this by an extrusion molding machine through an extrusion die having a predetermined 1jji surface shape. It is manufactured by molding elongated elements 1A having various cross-sectional shapes. However, in order to improve the plasticity of the kneaded material in order to cope with the increase in extrusion resistance due to the complicated cross-sectional shape of the extruded material, for example, Japanese Patent Publication No. 59-26653,
Special Publication No. 62-59074, Special Publication No. 61-4602
As seen in Japanese Patent Publication No. 6, Japanese Patent Publication No. 1-24743, etc., it has become unavoidable to mix more and more common types of binders into powder raw materials. That is, as the structure of the extrusion die becomes more complex, the extrusion resistance of the kneaded body increases, so this is dealt with by increasing the amount and type of binder to improve the plasticity of the kneaded body.

【発明か解決しようとする課題】[Invention or problem to be solved]

上記したように、確かに混練体の可塑性の向上によって
押出ダイスから容易に混練体を押出し得るようになるか
、バインダ量の増大によって以下に説明するような他の
不具合か生している。 先ず、第1の不具合は、脱バインダ処理時に一度に多量
のバインダか流れ出るため、成形素材に割れか発生する
頻度か多くなり、製品の不良率か高くなることである。 これを回避するには、脱バインダ処理を行うに際して昇
温速度を緩やかにすれば良いが、処理時間の延長に伴っ
て生産能率か低下するので好ましくない。 また、第2の不具合は、焼結後の焼結製品の組織にボア
か残存し易(なり、これか原因で破損する等、製品品質
に悪影響を与えることである。 さらに、第3の不具合は、脱バインダ後の分解残渣か多
くなり、例えば超硬合金の場合には焼結組織内に遊離炭
素等の不良組織か発生するだけてなく、焼結処理後の収
縮量や曲げ変形か大きく、品質の低下、機械加工代の増
加、寸法不足による歩留りの低下を来しているというこ
とである。 従って、本発明は内部品質か優れた穴付硬質長尺素材を
能率的に製造し得る穴付硬質長尺素材の製造方法の提供
を目的とする。
As mentioned above, it is true that the kneaded product can be easily extruded from an extrusion die by improving the plasticity of the kneaded product, or other problems as described below occur due to an increase in the amount of binder. First, the first problem is that a large amount of binder flows out at once during the binder removal process, which increases the frequency of cracks in the molding material and increases the defective rate of the product. This can be avoided by slowing down the temperature increase rate when performing the binder removal process, but this is not preferable since the production efficiency decreases as the process time increases. In addition, the second problem is that bores tend to remain in the structure of the sintered product after sintering, and this has a negative impact on product quality, such as damage. For example, in the case of cemented carbide, not only does a defective structure such as free carbon occur in the sintered structure, but also the amount of shrinkage and bending deformation after sintering increases. This results in a decrease in quality, an increase in machining costs, and a decrease in yield due to insufficient dimensions. Therefore, the present invention can efficiently produce a hard long material with holes with excellent internal quality. The purpose of this invention is to provide a method for manufacturing a hard long material with holes.

【課題を解決するための手段] 本発明は、上記した課題に鑑みてなされたもので、従っ
て第1発明に係る穴付硬質長尺素材の製造方法の要旨は
、筒体と該筒体の両開口部を密封する密封蓋とからなる
成形型内に、硬質粉末原料を所定量のバインダと共に密
1シシ、前記密封蓋により支持した有機物質からなる芯
部材を硬質粉末原料に埋設し、該成形型に静水圧を作用
させて得られた成形体を脱型してこれを前記芯部材か分
解し得る温度で脱バインダ処理した後、所定の焼結処理
を施すことを特徴とする。 また、第2発明に係る穴付硬質長尺素材の製造方法の要
旨は、筒体と該筒体の両開口部を密封する密封蓋とから
なる成形型内に、硬質粉末原料を所定量のバインダと共
に密封し、前記密封蓋により支持した有機物質からなる
芯部材を硬質粉末原料に埋設し、該成形型に静水圧を作
用させて得られた成形体を脱型してそれを所定の温度に
加熱しながら捩じり加工を施し、次いで前記芯部材か分
解し得る温度で脱バインダ処理をした後、所定の焼結処
理を施すことを特徴とする。 【作用】 第1発明に係る穴付硬質長尺素材の製造方法によれば、
静水圧の加圧作用により筒体中に密封蓋により密封され
た粉末原料と少量のバインダとから、内部に芯部材が埋
設された成形体が得られ、そしてこの成形体は前記芯部
材か分解し得る温度で脱バインダ処理されるので、脱バ
インダ処理中にこの芯部材が除去されて成形体には貫通
穴か残されると共に、これを焼結処理することにより穴
付硬質長尺素材が得られる。 また、第2発明に係る穴付硬質長尺素材の製造方法によ
れば、静水圧の加圧作用により筒体中に密封蓋により密
封された粉末原料と少量のバインダとから、内部に芯部
材が埋設された成形体か得られ、そしてこの成形体は所
定の温度加熱による可塑性の向上により容易に捩じるこ
とができる。 次いで、芯部材が分解し得る温度で脱パインダ処理され
るので、脱バインダ処理中にこの芯部イAか除去されて
成形体に貫通穴か残されると共に、焼結処理によって捩
しられた穴付硬質長尺素材を得ることかできる。 〔実施例] 本発明に係る実施例を、成形型の側面断面図の第1図と
、得られた長尺成形体の斜視図の第2図と、捩じり加]
ニジた長尺成形体の斜視図の第3図と、模式的に示す捩
じり装置の側面図の第4図と、第4図の八−入線断面図
の第5図とを参照しながら以下に説明する。 即ち、第1図に示す符号mは成形型で、この成形型mは
、コム筒1と、このコム筒1の両開口部に嵌着されるゴ
ムからなる密封蓋2とからなっている。そして、これら
の密封蓋2によって所定間隔てあってかつ平行にナイロ
ン紐からなる2本の芯部(A3か支持される構成になっ
ている。この成形型mの内部にはWC−CO系の超硬合
金になる粉末原料の表面に、パラフィン系のバインダと
して、1.5wt%のパラフィンワックスと0.5 W
 t%のエチレン酢酸ビニルをコーティングした粉末p
かJr1人される。なお、粉末原料と所定量のバインダ
とからなる混練体であっても良い。 粉末pの封入は以下の手順によって行われる。 即ち、この粉末pの封′入手順は、先ず密封蓋2に芯部
イ13の一端側を固定し、この芯部材3の他端側をコム
筒1の一端側から遊嵌させると共に、ゴム筒1の一端側
開口部に密封蓋2を嵌着する。 次に、ゴム筒lの他端側の開口部から粉末pを充填し、
芯部祠3の遊端側を他の密封蓋2に貫通させ、この密封
蓋2をゴム筒1の他端側聞口部に嵌着すると共に芯部材
3を固着することにより、粉末pか封入されてなる成形
型mか得られる。 次いで、このようにして得た成形型mに対して1000
kgf /crtlの静水圧を作用させて芯部材3か埋
設されてなる長尺成形体4を得ると共に、これを後述す
る構成になる捩じり装置lOにより捩じり、第3図に示
すように、芯部材3か螺旋状に埋設されてなる長尺捩じ
り体5を製造した。 なお、この場合長尺成形体4を静水圧成形によ   ・
って得たか、成形型mをプレスにより1500kgf/
cn?て加圧することによっても同等の長尺成形体4を
成形し得ることを確認している。 以下、上記板じり装置10の詳細を、その構成説明図の
第4図と第5図とに基ついて説明すると、図中符号Sは
作業台であって、この作業台Sの上には、その略中央に
長尺成形体4か通過する通過穴1]、aを有する枠体1
1か立設されている。 そして、この枠体11の一方の側面には前記通過穴11
aの中心を中心として、長尺成形体4の外周部に転接す
る3つの回転ローラ12か同距離かつ等間隔で回転自在
に支持されており、これら3つの回転ローラ12の全て
か枠体Ilの他方の側面に付設されたパルスモータ13
によって回転されるようになっている。また、これら回
転ローラI2の反支持側であってかつ回転ローラ12に
近接した位置には、前記通過穴11aの中心と同心にな
るように環状加熱ヒータ14か配設されている。さらに
、作業台Sの回転ローラ12の反支持側には、軌道15
か敷設されており、この軌道15によって長尺成形体4
の一端側を把持するチャック装置16か枠体11に対し
て接近、避退自在に支持されている。 一方、前記枠体11の他方の側面側でかつ作業台Sの上
には回転ローラ12の回転軸心と平行な2つの回転軸心
回りに回転自在に、長尺捩じり体5を保持する保持ロー
ラ列17aを支持する保持台17か配設されてなる構成
になっている。 以下、」1記構成になる捩じり装置10の使用態様を説
明すると、先ず長尺成形体4の一端をチャック装置16
により把持すると共にこのチャック装置16を枠体11
に向かって移動させる。さすれば、長尺成形体4は環状
加熱ヒータI4をとおって60〜70°Cに加熱され、
その可塑性か向」ニされて、パルスモータ13によって
回転されている3つの回転ローラ12の間に順次送り込
まれ続ける。 一方、回転ローラ12はパルスモータ13によす所定の
正確な回転数で回転されているので、この回転ローラ1
2によって長尺成形体4は捩しられながら枠体11の通
過穴11aをとおり、通過穴11aをとおり過きな部分
はパルスモータ13の回転数に応して回転しながら保持
ローラ列17aにより案内されて捩じり加工されること
によって、第3図に示すような芯部材3か螺旋状に埋設
されてなる長尺板じり体5が得られる。 そして、捩じり加工した長尺板じり体5を水素雰囲気中
において450°Cの温度て脱バインダ処理を施した。 すると、この脱バインダ処理中において芯部u3は水素
との反応により分解して除去され、芯部材3の埋設部位
に螺旋穴か残される。 次いで、これを840°Cの温度で仮焼結し、さらにこ
れを1400’Cの温度で真空焼結すると共に、ダイヤ
モンド砥石で研削加工を施して周知の構成になる直径1
5mmのドリルを製造した。 ところで、貫通穴を有する成形体を従来の成形方法で押
出し成形する場合には、少なくともWC−Co系の粉末
原料に対しては8wt%のバインダを混練しなけれはな
らないのに対して、本実施例では上記のような少量のバ
インダで成形し得るので、従来発生していた種々の不具
合、つまり成形素材への割れ発生、焼結製品の組織の欠
陥の残存、焼結組織内における遊離炭素等の不良組織の
発生、焼結処理後の収縮量や曲げ変形や寸法不足等を回
避し得るようになった。 以上の説明から良く理解されるように、この実施例に係
る穴付硬質長尺累月の製造方法によれは、パルスモータ
13の回転数制御によって自在に捩しりピッチを変更し
得るので、例えば特開昭60−206523号公報や特
開昭61−219536号公報等に開示されているドリ
ルやエンドミル、つまり刀先に近つくにつれてリード角
度か大きくなる、切削振動の減少や油吐出量の増量を期
待し得るドリルやエンドミルの製造に対して極めて多大
な効果を発揮することができる。 なお、以上では螺旋穴を有する穴付硬質長尺素材の製造
について説明したか、長尺成形体4に対して捩じり加工
を施さずに、これを脱バインダするに次いで所定の焼結
処理を施せば、例えば長尺成形体4の径方向の中心をと
おる中心線の一方のみの偏心した位置に真っ直ぐな油室
を有するガンドリル用の穴付硬質長尺素材(図示省略)
を製造することも可能であって、粉末pへの芯部材3の
埋設位置は自由自在である。 【発明の効果] 以」二詳述したように、第1発明と第2発明とに係る穴
付硬質長尺素材の製造方法によれば、静水圧の作用によ
り筒体中に密にノ蓋により密封された粉末原料と少量の
バインダとから、内部に芯部材か埋設された成形体か得
られ、そして成形体は前記芯部材か分解し得る温度で脱
バインダ処理されるので、脱バインダ処理中に芯部材か
除去されて成形体には貫通穴が残されると共に、これを
焼結処理することにより付硬質長尺素材か得られ、さら
に第2発明に1系る穴付硬質長尺素材の製造方法によれ
ば、螺旋穴付硬質長尺素を才か容易に得られるので、従
来の成形方法で間層となっていたような成形素材の割れ
発生、焼結製品の組織への欠陥の残存、脱バインダ後の
多量の分解残渣に基づく不良組織の発生、焼結処理後の
収縮量や曲げ変形に基づく品質の低下、機械加工代の増
加、寸法不足による歩留りの低下等を防止することか可
能になり、生産性の向上と品質の向」二等に対して極め
て多大な効果を期待することかできる。
[Means for Solving the Problems] The present invention has been made in view of the above-mentioned problems. Therefore, the gist of the method for manufacturing a hard elongated material with holes according to the first invention is as follows: In a mold consisting of a sealing lid that seals both openings, a hard powder raw material is sealed together with a predetermined amount of binder, and a core member made of an organic substance supported by the sealing lid is buried in the hard powder raw material. The method is characterized in that a molded body obtained by applying hydrostatic pressure to a mold is demolded, subjected to a binder removal treatment at a temperature at which the core member can be decomposed, and then subjected to a predetermined sintering treatment. Further, the gist of the method for producing a hard elongated material with holes according to the second invention is to place a predetermined amount of hard powder raw material into a mold consisting of a cylinder and a sealing lid that seals both openings of the cylinder. A core member made of an organic substance sealed together with a binder and supported by the sealing lid is embedded in a hard powder raw material, and hydrostatic pressure is applied to the mold to demold the resulting molded body and heat it to a predetermined temperature. It is characterized in that the core member is twisted while being heated, and then the binder is removed at a temperature at which the core member can be decomposed, and then a predetermined sintering process is performed. [Function] According to the method for manufacturing a hard elongated material with holes according to the first invention,
By the pressurizing action of hydrostatic pressure, a molded body with a core member embedded inside is obtained from the powder raw material and a small amount of binder, which are sealed in a cylinder with a sealing lid, and this molded body is separated from the core member. During the binder removal process, the core member is removed and a through hole is left in the molded body, and by sintering this, a hard elongated material with holes is obtained. It will be done. According to the method for manufacturing a hard elongated material with holes according to the second aspect of the invention, a powder raw material sealed with a sealing lid and a small amount of binder are mixed into a core member inside the cylindrical body by the pressurizing action of hydrostatic pressure. A molded body in which is embedded is obtained, and this molded body can be easily twisted due to improved plasticity by heating at a predetermined temperature. Next, the core member is de-pindered at a temperature that can decompose it, so during the de-bindering process, this core part A is removed, leaving a through hole in the molded body, and the hole twisted by the sintering process is removed. It is possible to obtain a rigid long material with a tack. [Example] Examples according to the present invention are shown in FIG. 1, which is a side sectional view of a mold, FIG. 2, which is a perspective view of the obtained elongated molded body, and by twisting]
While referring to FIG. 3, which is a perspective view of the twisted elongated molded body, FIG. 4, which is a schematic side view of the twisting device, and FIG. This will be explained below. That is, the symbol m shown in FIG. 1 is a mold, and this mold m consists of a comb tube 1 and a sealing lid 2 made of rubber that is fitted into both openings of the comb tube 1. Two cores (A3) made of nylon strings are supported by these sealing lids 2 at a predetermined distance and in parallel. Inside this mold m is a WC-CO based core. 1.5wt% paraffin wax and 0.5W as a paraffin binder are applied to the surface of the powder raw material that will become the cemented carbide.
P powder coated with t% ethylene vinyl acetate
Or one Jr. will be taken. Note that a kneaded body consisting of a powder raw material and a predetermined amount of binder may be used. The powder p is encapsulated by the following procedure. That is, the procedure for sealing the powder P is to first fix one end of the core member 13 to the sealing lid 2, loosely fit the other end of the core member 3 from one end of the comb cylinder 1, and then A sealing lid 2 is fitted into the opening at one end of the cylinder 1. Next, fill the powder p from the opening on the other end side of the rubber cylinder l,
By passing the free end of the core shell 3 through another sealing lid 2, fitting this sealing lid 2 into the opening on the other end of the rubber cylinder 1, and fixing the core member 3, the powder p can be removed. A mold m in which the mold is enclosed is obtained. Next, for the mold m obtained in this way, 1000
A hydrostatic pressure of kgf/crtl is applied to obtain a long molded body 4 in which the core member 3 is embedded, and this is twisted by a torsion device IO having a configuration described later, as shown in FIG. A long twisted body 5 in which the core member 3 was embedded in a spiral shape was manufactured. In this case, the long molded body 4 is formed by isostatic pressing.
The mold M was pressed to 1500kgf/
cn? It has been confirmed that an equivalent long molded body 4 can also be formed by applying pressure. Hereinafter, the details of the above-mentioned sheet-shaping device 10 will be explained based on FIG. 4 and FIG. 5, which are explanatory diagrams of its configuration. , a frame body 1 having a passage hole 1 through which the elongated molded body 4 passes, approximately in the center thereof;
1 is installed. The passage hole 11 is formed on one side of the frame 11.
Three rotary rollers 12 are rotatably supported at the same distance and at equal intervals to be in contact with the outer circumferential portion of the long molded body 4, and all of these three rotary rollers 12 are connected to the frame Il. A pulse motor 13 attached to the other side of the
It is designed to be rotated by Further, an annular heater 14 is disposed at a position opposite to the support side of the rotating roller I2 and close to the rotating roller 12 so as to be concentric with the center of the passage hole 11a. Furthermore, a track 15 is provided on the opposite side of the rotating roller 12 of the workbench S.
A long molded body 4 is laid by this track 15.
A chuck device 16 that grips one end side is supported so as to be able to approach and retreat from the frame 11. On the other hand, on the other side of the frame 11 and on the workbench S, a long torsion body 5 is held rotatably around two rotation axes parallel to the rotation axis of the rotation roller 12. The structure includes a holding table 17 that supports a holding roller row 17a. Hereinafter, to explain how to use the twisting device 10 having the configuration described in item 1, first, one end of the elongated molded body 4 is
while holding this chuck device 16 with the frame 11.
move towards. Then, the long molded body 4 is heated to 60 to 70°C through the annular heater I4,
Its plasticity is reversed and it continues to be fed in sequence between three rotating rollers 12 that are rotated by a pulse motor 13. On the other hand, since the rotating roller 12 is rotated at a predetermined accurate rotation speed by the pulse motor 13, this rotating roller 1
2, the long molded body 4 passes through the passage hole 11a of the frame body 11 while being twisted, and the part beyond passing through the passage hole 11a is rotated according to the rotation speed of the pulse motor 13 by the holding roller row 17a. By being guided and twisted, a long plate body 5 in which the core member 3 is embedded in a spiral shape as shown in FIG. 3 is obtained. Then, the twisted long plate body 5 was subjected to binder removal treatment at a temperature of 450° C. in a hydrogen atmosphere. Then, during this binder removal process, the core portion u3 is decomposed and removed by reaction with hydrogen, leaving a spiral hole in the buried portion of the core member 3. Next, this is pre-sintered at a temperature of 840°C, further vacuum-sintered at a temperature of 1400'C, and ground with a diamond grindstone to obtain a diameter of 1 in a well-known configuration.
A 5mm drill was manufactured. By the way, when extruding a molded body with through holes using a conventional molding method, it is necessary to knead at least 8 wt % of binder with respect to the WC-Co powder raw material. In this example, since molding can be performed with a small amount of binder as described above, various problems that have conventionally occurred, such as cracks in the molded material, residual defects in the structure of the sintered product, and free carbon in the sintered structure, can be avoided. This makes it possible to avoid the occurrence of defective structures, shrinkage after sintering, bending deformation, insufficient dimensions, etc. As can be well understood from the above explanation, according to the manufacturing method of the hard elongated moon with holes according to this embodiment, the twisting pitch can be freely changed by controlling the rotation speed of the pulse motor 13. Drills and end mills disclosed in JP-A No. 60-206523 and JP-A No. 61-219536, etc., in other words, the lead angle increases as it approaches the tip, reducing cutting vibration and increasing oil discharge amount. It can be extremely effective in manufacturing drills and end mills that can be expected to have the following properties. In the above, the production of a hard elongated material with a hole having a spiral hole has been explained, or rather, the elongated molded body 4 is not subjected to twisting processing, but is subjected to a predetermined sintering treatment after removing the binder. For example, a hard elongated material with a hole for a gun drill having a straight oil chamber at an eccentric position on one side of the center line passing through the radial center of the elongated molded body 4 (not shown)
It is also possible to manufacture the core member 3, and the position of embedding the core member 3 in the powder p can be freely determined. [Effects of the Invention] As described in detail below, according to the method for manufacturing a hard elongated material with holes according to the first invention and the second invention, the holes are tightly formed in the cylinder by the action of hydrostatic pressure. A molded body with a core member embedded inside is obtained from the sealed powder raw material and a small amount of binder, and the molded body is subjected to binder removal treatment at a temperature that allows the core member to decompose. The core member inside is removed and a through hole is left in the molded body, and by sintering this, a hard elongated material with holes is obtained, and furthermore, a hard elongated material with holes is obtained according to the second invention. According to this manufacturing method, a hard long blank with a spiral hole can be easily obtained, so there are no cracks in the forming material, which is an interlayer in the conventional forming method, and defects in the structure of the sintered product. This prevents the occurrence of defective structures due to the residual amount of decomposition residue after binder removal, deterioration of quality due to shrinkage and bending deformation after sintering, increase in machining costs, and decrease in yield due to insufficient dimensions. This can be expected to have an extremely large effect on productivity improvement and quality improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は本発明の実施例に係り、第1図は成
形型の側面断面図、第2図と得られた長尺成形体の斜視
図、第3図は捩じり加工した長尺板じり体の斜視図、第
4図は捩じり装置の側面図、第5図は第4図のA−A線
断面図である。 1・・・ゴム筒、2・・・密封蓋、3・・・芯部材、4
・・・長尺成形体、5・・・長尺板じり体、10・・・
捩じり装置、11・・・枠体、lla・・・通過穴、1
2・・・回転ローラ、13・・・パルスモータ、14・
・・環状加熱ヒータ、15・・・軌道、16・・・チャ
ック装置、17・・・保持台、+7a・・・保持ローラ
列、m・・・成形型、p・・・粉末、S・・・作業台。 特許出願人 株式会社神戸製鋼所 代理人 弁理士 金 丸 章 −
1 to 5 relate to examples of the present invention, in which FIG. 1 is a side sectional view of the mold, FIG. 2 is a perspective view of the obtained long molded product, and FIG. 3 is a twisting process. FIG. 4 is a side view of the twisting device, and FIG. 5 is a sectional view taken along line A--A in FIG. 4. 1... Rubber tube, 2... Sealing lid, 3... Core member, 4
...Long molded body, 5...Long plate jiggly body, 10...
Twisting device, 11... Frame, lla... Passing hole, 1
2... Rotating roller, 13... Pulse motor, 14...
... Annular heater, 15... Orbit, 16... Chuck device, 17... Holding stand, +7a... Holding roller row, m... Molding mold, p... Powder, S... ·Workbench. Patent Applicant Kobe Steel Corporation Representative Patent Attorney Akira Kanemaru −

Claims (1)

【特許請求の範囲】 1 筒体と該筒体の両開口部を密封する密封蓋とからな
る成形型内に、硬質粉末原料を所定量のバインダと共に
密封し、前記密封蓋により支持した有機物質からなる芯
部材を硬質粉末原料に埋設し、該成形型に静水圧を作用
させて得られた成形体を脱型してこれを前記芯部材が分
解し得る温度で脱バインダ処理した後、所定の焼結処理
を施すことを特徴とする穴付硬質長尺素材の製造方法。 2 筒体と該筒体の両開口部を密封する密封蓋とからな
る成形型内に、硬質粉末原料を所定量のバインダと共に
密封し、前記密封蓋により支持した有機物質からなる芯
部材を硬質粉末原料に埋設し、該成形型に静水圧を作用
させて得られた成形体を脱型してそれを所定の温度に加
熱しながら捩じり加工を施し、次いで前記芯部材が分解
し得る温度で脱バインダ処理をした後、所定の焼結処理
を施すことを特徴とする穴付硬質長尺素材の製造方法。
[Scope of Claims] 1. A hard powder raw material is sealed together with a predetermined amount of binder in a mold consisting of a cylinder and a sealing lid that seals both openings of the cylinder, and an organic substance is supported by the sealing lid. A core member consisting of is embedded in a hard powder raw material, hydrostatic pressure is applied to the mold, the resulting molded body is demolded, and the core member is subjected to debinding treatment at a temperature at which it can be decomposed, and then a predetermined amount of A method for manufacturing a hard elongated material with holes, characterized by subjecting it to a sintering process. 2. A hard powder raw material is sealed together with a predetermined amount of binder in a mold consisting of a cylindrical body and a sealing lid that seals both openings of the cylindrical body, and a core member made of an organic substance supported by the sealing lid is hardened. The core member is embedded in a powder raw material, and the molded body obtained by applying hydrostatic pressure to the mold is demolded and twisted while being heated to a predetermined temperature, and then the core member can be decomposed. A method for manufacturing a hard elongated material with holes, the method comprising performing a predetermined sintering treatment after debinding at a high temperature.
JP33191990A 1990-11-28 1990-11-28 Production of hard long raw material with hole Pending JPH04198405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33191990A JPH04198405A (en) 1990-11-28 1990-11-28 Production of hard long raw material with hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33191990A JPH04198405A (en) 1990-11-28 1990-11-28 Production of hard long raw material with hole

Publications (1)

Publication Number Publication Date
JPH04198405A true JPH04198405A (en) 1992-07-17

Family

ID=18249106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33191990A Pending JPH04198405A (en) 1990-11-28 1990-11-28 Production of hard long raw material with hole

Country Status (1)

Country Link
JP (1) JPH04198405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527943A (en) * 2008-07-16 2011-11-10 フリードリヒス アルノ Method and apparatus for producing a cylindrical object with an inner helical cut-out consisting of a plastic mass
CN105033247A (en) * 2015-06-30 2015-11-11 成都易态科技有限公司 Method for forming honeycomb intermetallic compound filter element and die for method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527943A (en) * 2008-07-16 2011-11-10 フリードリヒス アルノ Method and apparatus for producing a cylindrical object with an inner helical cut-out consisting of a plastic mass
US8850861B2 (en) 2008-07-16 2014-10-07 Arno Friedrichs Method and device for producing a circularly cylindrical body, which consists of deformable material, with internally disposed helical recesses
US9044797B2 (en) 2008-07-16 2015-06-02 Arno Friedrichs Device for producing a circularly cylindrical body
CN105033247A (en) * 2015-06-30 2015-11-11 成都易态科技有限公司 Method for forming honeycomb intermetallic compound filter element and die for method

Similar Documents

Publication Publication Date Title
US4813823A (en) Drilling tool formed of a core-and-casing assembly
JP2001059102A (en) Production of tool, tool and device
CN102825254A (en) Diamond bead string and manufacturing method thereof as well as rope saw without base body supporting layer
US6669414B1 (en) Method and a device for manufacturing a tool and a tool made by the method
JPH03183705A (en) Manufacture of material having hole in its interior and metal die for extrusion molding
JPH04198405A (en) Production of hard long raw material with hole
US20120039739A1 (en) Cutter rings and method of manufacture
CN109227412B (en) Preparation method of fan-shaped diamond tool bit
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
JP4290850B2 (en) Press forming method of disk-shaped parts made of aluminum matrix composite
JPH09324202A (en) Sintered die for forming and forming thereof
CN115007865B (en) Preparation process of carbon nano tube chemical nickel plating enhanced nickel-based alloy bushing
FI80222B (en) FOERFARANDE FOER FRAMSTAELLNING AV EN NIT FOER EN FAST DUBB RESPEKTIVA HOLKDUBB OCH ANLAEGGNING FOER TILLAEMPNING AV FOERFARANDET.
KR100650409B1 (en) Manufacturing method of complex-shaped workpiece using powder injection molding and workpiece therefrom
US3694177A (en) Method for making abrasive tools
JPH04198404A (en) Production of hard long raw material with hole
JP3250193B2 (en) Tool with oil hole and method of manufacturing the same
EP0163718A1 (en) A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method
JPH04191304A (en) Method for extruding hard material
JP2006272419A (en) Production method of die for powder molding
JP2006213004A (en) Member for injection molding machine and film forming method
EP0321430B1 (en) Method for producing a tubular compact and apparatus for carrying out said method
CN114228196B (en) Efficient forming method of thin-wall graphite heating pipe
CN115502402A (en) Manufacturing method of hard alloy multi-edge milling blade difficult to form
JP4918508B2 (en) Manufacturing method of carbide tools