JPH04197338A - Fundus camera for fluorescent photographing - Google Patents

Fundus camera for fluorescent photographing

Info

Publication number
JPH04197338A
JPH04197338A JP2331280A JP33128090A JPH04197338A JP H04197338 A JPH04197338 A JP H04197338A JP 2331280 A JP2331280 A JP 2331280A JP 33128090 A JP33128090 A JP 33128090A JP H04197338 A JPH04197338 A JP H04197338A
Authority
JP
Japan
Prior art keywords
fluorescence
fluorescent light
visible
photography
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2331280A
Other languages
Japanese (ja)
Inventor
Hiroyuki Otsuka
浩之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2331280A priority Critical patent/JPH04197338A/en
Publication of JPH04197338A publication Critical patent/JPH04197338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To carry out the visible fluorescent light photographing and the infrared fluorescent light photographing at the same time by installing a barrier filter having the transmission characteristic in a photographing optical system and a separating member which separates the visible fluorescent light and infrared fluorescent light and leads the light to each photographing surface, in the photographing optical system. CONSTITUTION:The visible fluorescent light and infrared fluorescent light pass through the hole part 21 of a mirror 11 having holes through an objective lens, and pass through a barrier filter 14 for the visible fluorescent light and infrared fluorescent light and is introduced into a dividing prism 19 through a focusing lens 17, image formation lens 17', and a factor correcting lens 18. The dividing prism 19 has a cubic shape, and possesses the function for dividing the visible fluorescent light and infrared fluorescent light. The visible fluorescent light which passes through the reflection surface 22 of the dividing prism 19 is focused on a filter 20. The infrared fluorescent light reflected on the reflection surface 22 is reflected on the reflection surface 23 of a prism having an isosceles triangular shape, and focused on a CCD 20. Accordingly, the visible fluorescent light photographing and infrared fluorescent light photographing can be carried out at the same time.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、可視蛍光撮影と赤外蛍光撮影とを同時に行う
ことのできる蛍光撮影用眼底カメラに関する。
The present invention relates to a fundus camera for fluorescence photography that can simultaneously perform visible fluorescence photography and infrared fluorescence photography.

【従来の技術】[Conventional technology]

従来から、眼底カメラには、可視カラー撮影、可視蛍光
撮影を行うことのできる構成のものが知られている。ま
た、特開平1−300926号公報には、−台で可視カ
ラー撮影、可視蛍光撮影、赤外蛍光撮影に兼用できる眼
底カメラが開示されている。
BACKGROUND OF THE INVENTION Conventionally, fundus cameras having a configuration capable of performing visible color photography and visible fluorescence photography are known. Further, Japanese Patent Laid-Open No. 1-300926 discloses a fundus camera that can be used for visible color photography, visible fluorescence photography, and infrared fluorescence photography.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来の眼底カメラでは、−台で可視カラ
ー撮影、可視蛍光撮影、赤外蛍光撮影を行うことができ
るといっても、専用の眼底カメラと同様で、可視蛍光撮
影と赤外蛍光撮影とを連続しであるいは同時に行うこと
ができず、網膜上の疾患検査と脈絡膜上の疾患検査とを
行う場合に、−度に検査をできない不都合があった。 そこで、本発明の目的は、可視蛍光撮影と赤外蛍光撮影
とを同時に行うことのできる蛍光撮影用眼底カメラを提
供することにある。
However, although conventional fundus cameras can perform visible color photography, visible fluorescence photography, and infrared fluorescence photography on a single unit, they are similar to dedicated fundus cameras; Therefore, when testing for diseases on the retina and diseases on the choroid, there was a problem in that the tests could not be performed at the same time. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fundus camera for fluorescence photography that can simultaneously perform visible fluorescence photography and infrared fluorescence photography.

【課題を解決するための手段】[Means to solve the problem]

本発明に係わる蛍光撮影用眼底カメラは、上記の課題を
解決するために、可視蛍光撮影用励起照明光と赤外蛍光
撮影用励起照明光との双方を透過させる透過特性を有す
るエキサイタ−フィルターを照明光学系に設け、可視蛍
光撮影用励起照明光によって励起された可視蛍光と赤外
蛍光撮影用励起照明光によって励起された赤外蛍光との
双方を透過させる透過特性を有するバリアフィルターを
撮影光学系に設けると共に、該撮影光学系には可視蛍光
と赤外蛍光とを分離して各撮像面に導く分離部材を設け
たことを特徴とする。
In order to solve the above-mentioned problems, the fundus camera for fluorescence photography according to the present invention includes an exciter filter having a transmission characteristic that transmits both the excitation illumination light for visible fluorescence photography and the excitation illumination light for infrared fluorescence photography. A barrier filter is installed in the illumination optical system and has a transmission characteristic that transmits both visible fluorescence excited by the excitation illumination light for visible fluorescence photography and infrared fluorescence excited by the excitation illumination light for infrared fluorescence photography. The imaging optical system is also provided with a separation member that separates visible fluorescence and infrared fluorescence and guides them to each imaging surface.

【作 用】[For use]

本発明に係わる蛍光撮影用眼底カメラによれば、可視蛍
光用励起照明光と赤外蛍光用励起照明光とがエキサイタ
−フィルターを通過して眼底に導かれる。可視蛍光用励
起照明光によって励起される蛍光剤はこの可視蛍光用励
起照明光によって可視蛍光を発し、赤外蛍光用励起照明
光によって励起される蛍光剤はこの赤外蛍光用励起照明
光によって赤外蛍光を発する。これらの蛍光は、共にバ
リアフィルターを通過して分離部材に導かれる。その分
離部材は可視蛍光と赤外蛍光とを分離し、可視蛍光と赤
外蛍光と゛は各別に撮像面に導かれ、各撮像面には可視
蛍光に基づく眼底像と赤外蛍光に基づく眼底像とが形成
される。
According to the fundus camera for fluorescence photography according to the present invention, excitation illumination light for visible fluorescence and excitation illumination light for infrared fluorescence are guided to the fundus through an exciter filter. Fluorescent agents excited by the excitation illumination light for visible fluorescence emit visible fluorescence by the excitation illumination light for visible fluorescence, and fluorescent agents excited by the excitation illumination light for infrared fluorescence emit red light by the excitation illumination light for infrared fluorescence. Emits extrafluorescence. Both of these fluorescent lights pass through the barrier filter and are guided to the separation member. The separation member separates visible fluorescence and infrared fluorescence, and the visible fluorescence and infrared fluorescence are guided separately to the imaging plane, and each imaging plane has a fundus image based on visible fluorescence and a fundus image based on infrared fluorescence. is formed.

【実施例】【Example】

第1図は本発明に係わる蛍光撮影用眼底カメラの第1実
施例を示し、第1図において、1は照明光学系、2は撮
影光学系である。照明光学系1はハロゲンランプ3、キ
セノン管4、集光レンズ5.6、励起照明用エキサイタ
−フィルター7、リング状絞り8、反射ミラー9、リレ
ーレンズ101  孔空きミラー11から大略構成され
る。ハロゲンランプ3とキセノン管4とは集光レンズ5
に関して共役である。励起照明用エキサイタ−フィルタ
ー7は第3図に示すように波長路400nmから略52
0nmの可視蛍光用励起照明光と波長路700nmから
略820nmの赤外蛍光用励起照明光とを透過させる透
過特性を有する。 ハロゲンランプ3は観察照明用に用いられ、キセノン管
4は撮影照明用に用いられている。可視蛍光用励起照明
光と赤外蛍光用励起照明光とは集光レンズ6により集光
され、励起照明用エキサイタ−フィルター7、リング状
絞り8、反射ミラー9、リレーレンズ10、孔空きミラ
ー11、対物レンズ12を経由して被検眼13の眼底R
に導かれ、眼底Rが照明される。 撮影光学系2は、可視蛍光・赤外蛍光両用バリアフィル
ター14、可視蛍光用バリアフィルター15、赤外蛍光
用バリアフィルター16、合焦レンズ17、結像レンズ
17′、倍率補正レンズ18、分割プリズム19、撮影
フィルム20を有する。可視蛍光・赤外蛍光両用バリア
フィルター14は、第3図に示すように波長路520n
mから略600nmの可視蛍光と波長路820nmから
略900nmの赤外蛍光とを透過させる波長特性を有す
る。可視蛍光バリアフィルター15は第5図に示すよう
に波長路520nmから略600nmの可視蛍光を透過
させる波長特性、赤外蛍光用バリアフィルター16は第
6図に示すように波長路820nmから略900nmの
赤外蛍光を透過させる波長特性を有する。 倍率補正レンズ18はカラー撮影と蛍光撮影とでの倍率
を補正するために用いる。 励起照明用エキサイタ−フィルター7、可視蛍光・赤外
蛍光両用バリアフィルター14、可視蛍光用バリアフィ
ルター15、赤外蛍光用バリアフィルター16、倍率補
正レンズ18、分割プリズム19は、モノクロ撮影、カ
ラー撮影のときには、照明光学系1、撮影光学系2の各
光路から退避されている。 可視蛍光撮影のみを行うときには、照明光学系1の光路
に励起照明用エキサイタ−フィルター7が挿入され、撮
影光学系2の光路に可視蛍光用バリアフィルター15が
挿入され、可視蛍光・赤外蛍光両用バリアフィルター1
4、赤外蛍光用バリアフィルター16、倍率補正レンズ
18、分割プリズム19は撮影光学系2の光路から退避
されている。赤外蛍光撮影のみを行うときには、照明光
学系1の光路に励起照明用エキサイターフィルター7が
挿入され、撮影光学系2の光路に赤外蛍光用バリアフィ
カラー16が挿入され、可視蛍光・赤外蛍光両用バリア
フィルター14、可視蛍光用バリアフィルター15、倍
率補正レンズ18、分割プリズム19は撮影光学系2の
光路から退避されている。可視蛍光撮影・赤外蛍光撮影
の双方を同時に行うときには、照明光学系1の光路に励
起照明用エキサイタ−フィルター7が挿入され、可視蛍
光・赤外蛍光両用バリアフィルター14、倍率補正レン
ズ18、分割プリズム19が撮影光学系2の光路に挿入
される。 ここでは、可視蛍光撮影・赤外蛍光撮影を同時に行うも
のとして説明する。 眼底Rの可視蛍光、赤外蛍光は対物レンズを介して孔空
きミラー11の孔部21を通過し、可視蛍光・赤外蛍光
両用バリアフィルター14を透過して合焦レンズ17、
結像レンズ17′、倍率補正レンズ18を経由して分割
プリズム19に導かれる。分割プリズム19は可視蛍光
と赤外蛍光とを分離する分離部材として機能し、反射面
22を有する。反射面22は第7図に示すように波長8
20nm以下の波長域の光を透過し、波長820nm以
上の波長域の光を反射する機能を有する。この分割プリ
ズム19は立方体形状とされ、可視蛍光と赤外蛍光とを
分離する機能を有する。 分割プリズム19の反射面22を通過した可視蛍光は、
フィルム20に結像される。その反射面22で反射され
た赤外蛍光は二等辺三角形状のプリズムの反射面23で
反射され、同様にCCD20に結像される。 ここで、赤外蛍光は分割プリズム19からなる物質の中
を可視蛍光に較べて長く経由することになるために、分
割プリズム19の入射点PからCCD20の撮像面Fま
での光学距離が可視蛍光と赤外蛍光とで異なることにな
る。この光学距離を補正するために、赤外蛍光の出射側
には、光路長補正部材24が設けられている。 その分割プリズム19の長さをal  光路長補正部材
24の長さをKa、  光路長補正部材24、分割プリ
ズム19のガラス材料としてBK7を用いるものとする
と、その屈折率nはn =1. 51833であるので
、以下の関係式からに=1. 937となり、分割プリ
ズム19の全長のL  937倍の長さの光路長補正部
材24を設ければよい。 入射中心点Pから反射中心点Q、  Sを経由して出射
中心点Tまでの光学距離PQSTは、点01点8間の距
離をaとすると、 P Q S T = a / n + a / n +
 K a / n −(1)入射中心点Pから反射中心
点Qを経由して出射中心点Tに相当する光軸上の点Rま
での光学距離PQRは、 P Q R= a / n 十K a −(2)上記の
(1)、 (2)式から、 n=(1+K)/に の関係式が得られ、この式を解くことによって、Kの値
が求められる。 このようにして、CCD20には第8図に示すように可
視蛍光に基づく眼底像25と赤外蛍光に基づく眼底像2
6とが同時に形成されることになる。 なお、可視カラー撮影、可視蛍光撮影、赤外蛍光撮影を
単独で個別に行うモードが選択されたときには、撮影光
学系2の分割プリズム19の位置に光軸シフト用光学部
材が挿入され、可視カラー像、可視蛍光像、赤外蛍光像
がCCD20の中央部に結像される。 以上第1実施例では、カラー、可視蛍光、赤外蛍光を選
択して行うことができる眼底カメラについて説明したが
、第9図に示すように交差反射面27.28を有する分
割プリズム19を用い、各ミラー29.30で反射させ
てCCD20に導き、可視蛍光撮影と赤外蛍光撮影のみ
を同時に行う構成とすることもでき、この場合には可視
カラー撮影を行わないので、倍率補正レンズ18は不要
である。なお、反射面29とCCD20との間には、光
路長補正部材31が挿入される。 第10図は本発明に係わる蛍光撮影用眼底カメラの第2
実施例を示し、撮影スイッチ32を1回操作すると、可
視蛍光撮影と赤外蛍光撮影とが連続して行われるように
制御回路33を構成したもので、撮影スイッチ32をオ
ンすると制御回路33が発光回路34を可視蛍光撮影に
応じた発光量でキセノン管4が発光されるように制御す
る。同時に、撮影光学系2の光路に可視蛍光用バリアフ
ィルター15が挿入されると共に、光路長補正部材35
が挿入される。眼底Rからの可視蛍光像はCCD20に
結像され、そのCCD20の信号出力は画像処理装置3
6を介して第1記録手段37に入力され、可視蛍光像が
記録される。 制御回路33は続けて発光回路34を赤外蛍光撮影に応
じた発光量でキセノン管4が発光されるように制御する
。一方、撮影光学系2の光路から可視蛍光撮影用バリア
フィルター15が退避され、赤外蛍光撮影用バリアフィ
ルター16が挿入される。この赤外蛍光撮影用バリアフ
ィルター16の挿入に連動して光路長補正部材38が撮
影光学系2の光路に挿入される。制御回路33はキセノ
ン管4を続けて発光させるときに、切替えスイッチ39
を第2記録手段40の側に切り換える。これによって、
C0D20の信号出力は画像処理装置36を介して第2
記録手段40に入力され、赤外蛍光像が記録される。 その可視蛍光像、眼底像は再生スイッチ41を操作する
ことによりTVモニター42に表示することができる。 なお、1個の画像記録手段の番地を1分して可視蛍光像
と赤外蛍光像とを記録するようにしてもよい。 この第2実施例によれば、光路分割は不要となる。
FIG. 1 shows a first embodiment of a fundus camera for fluorescence photography according to the present invention. In FIG. 1, 1 is an illumination optical system, and 2 is a photographing optical system. The illumination optical system 1 is roughly composed of a halogen lamp 3, a xenon tube 4, a condenser lens 5.6, an exciter filter 7 for excitation illumination, a ring-shaped diaphragm 8, a reflection mirror 9, a relay lens 101, and a perforated mirror 11. The halogen lamp 3 and the xenon tube 4 are the condensing lens 5
is conjugate with respect to As shown in FIG. 3, the exciter filter 7 for excitation illumination is arranged to
It has a transmission characteristic that allows excitation illumination light for visible fluorescence of 0 nm and excitation illumination light for infrared fluorescence of wavelength path from 700 nm to approximately 820 nm to pass through. The halogen lamp 3 is used for observation illumination, and the xenon tube 4 is used for photography illumination. The excitation illumination light for visible fluorescence and the excitation illumination light for infrared fluorescence are condensed by a condenser lens 6, which includes an exciter filter 7 for excitation illumination, a ring-shaped diaphragm 8, a reflection mirror 9, a relay lens 10, and a perforated mirror 11. , the fundus R of the eye to be examined 13 via the objective lens 12
, and the fundus R is illuminated. The photographing optical system 2 includes a barrier filter 14 for both visible fluorescence and infrared fluorescence, a barrier filter 15 for visible fluorescence, a barrier filter 16 for infrared fluorescence, a focusing lens 17, an imaging lens 17', a magnification correction lens 18, and a splitting prism. 19, it has a photographic film 20. The barrier filter 14 for both visible fluorescence and infrared fluorescence has a wavelength path 520n as shown in FIG.
It has a wavelength characteristic that transmits visible fluorescence of about 600 nm from m and infrared fluorescence of about 900 nm from a wavelength path of 820 nm. As shown in FIG. 5, the visible fluorescence barrier filter 15 has a wavelength characteristic of transmitting visible fluorescence in a wavelength path of 520 nm to approximately 600 nm, and the infrared fluorescence barrier filter 16 has a wavelength characteristic of transmitting visible fluorescence in a wavelength path of 820 nm to approximately 900 nm as shown in FIG. It has wavelength characteristics that allow infrared fluorescence to pass through. The magnification correction lens 18 is used to correct the magnification in color photography and fluorescence photography. The exciter filter 7 for excitation illumination, the barrier filter 14 for both visible fluorescence and infrared fluorescence, the barrier filter 15 for visible fluorescence, the barrier filter 16 for infrared fluorescence, the magnification correction lens 18, and the splitting prism 19 are used for monochrome photography and color photography. Sometimes, it is evacuated from each optical path of the illumination optical system 1 and the photographing optical system 2. When only visible fluorescence photography is performed, an excitation illumination exciter filter 7 is inserted into the optical path of the illumination optical system 1, and a visible fluorescence barrier filter 15 is inserted into the optical path of the imaging optical system 2, so that it can be used for both visible fluorescence and infrared fluorescence. Barrier filter 1
4. The infrared fluorescence barrier filter 16, the magnification correction lens 18, and the splitting prism 19 are retracted from the optical path of the photographing optical system 2. When performing only infrared fluorescence photography, an exciter filter 7 for excitation illumination is inserted into the optical path of the illumination optical system 1, and a barrier filter 16 for infrared fluorescence is inserted into the optical path of the imaging optical system 2. The dual fluorescence barrier filter 14, the visible fluorescence barrier filter 15, the magnification correction lens 18, and the splitting prism 19 are retracted from the optical path of the photographing optical system 2. When performing both visible fluorescence photography and infrared fluorescence photography at the same time, an exciter filter 7 for excitation illumination is inserted into the optical path of the illumination optical system 1, and a barrier filter 14 for both visible fluorescence and infrared fluorescence, a magnification correction lens 18, and a division A prism 19 is inserted into the optical path of the photographic optical system 2. Here, the explanation will be given assuming that visible fluorescence photography and infrared fluorescence photography are performed simultaneously. Visible fluorescence and infrared fluorescence of the fundus R pass through the hole 21 of the perforated mirror 11 via the objective lens, pass through the barrier filter 14 for both visible fluorescence and infrared fluorescence, and pass through the focusing lens 17,
The light is guided to a dividing prism 19 via an imaging lens 17' and a magnification correction lens 18. The splitting prism 19 functions as a separating member that separates visible fluorescence and infrared fluorescence, and has a reflective surface 22. The reflective surface 22 has a wavelength of 8 as shown in FIG.
It has a function of transmitting light in a wavelength range of 20 nm or less and reflecting light in a wavelength range of 820 nm or more. This dividing prism 19 has a cubic shape and has a function of separating visible fluorescence and infrared fluorescence. The visible fluorescence that has passed through the reflective surface 22 of the splitting prism 19 is
The image is formed on the film 20. The infrared fluorescence reflected by the reflecting surface 22 is reflected by the reflecting surface 23 of the isosceles triangular prism, and is similarly imaged on the CCD 20. Here, since the infrared fluorescence passes through the substance made of the splitting prism 19 for a longer time than the visible fluorescence, the optical distance from the incident point P of the splitting prism 19 to the imaging surface F of the CCD 20 is longer than the visible fluorescence. and infrared fluorescence. In order to correct this optical distance, an optical path length correction member 24 is provided on the infrared fluorescence emission side. Assuming that the length of the splitting prism 19 is al, the length of the optical path length correction member 24 is Ka, and BK7 is used as the glass material of the optical path length correction member 24 and the splitting prism 19, the refractive index n is n=1. 51833, so from the following relational expression, =1. 937, and the optical path length correction member 24 having a length L 937 times the total length of the splitting prism 19 may be provided. The optical distance PQST from the incident center point P to the output center point T via the reflection center points Q and S is, where a is the distance between points 01 and 8, P QST = a / n + a / n +
K a / n - (1) The optical distance PQR from the incident center point P via the reflection center point Q to the point R on the optical axis corresponding to the output center point T is P Q R = a / n 10 K a - (2) From the above equations (1) and (2), the relational expression n=(1+K)/ is obtained, and by solving this equation, the value of K is obtained. In this way, the CCD 20 displays a fundus image 25 based on visible fluorescence and a fundus image 2 based on infrared fluorescence, as shown in FIG.
6 will be formed at the same time. Note that when a mode in which visible color photography, visible fluorescence photography, and infrared fluorescence photography are performed independently and individually is selected, an optical axis shifting optical member is inserted at the position of the splitting prism 19 of the photographing optical system 2, and the visible color photography is performed. A visible fluorescence image and an infrared fluorescence image are formed at the center of the CCD 20. In the first embodiment, a fundus camera that can selectively perform color, visible fluorescence, and infrared fluorescence has been described, but as shown in FIG. It is also possible to have a configuration in which only visible fluorescence photography and infrared fluorescence photography are performed at the same time by being reflected by each mirror 29, 30 and guided to the CCD 20. In this case, since visible color photography is not performed, the magnification correction lens 18 is Not necessary. Note that an optical path length correction member 31 is inserted between the reflective surface 29 and the CCD 20. FIG. 10 shows a second view of the fundus camera for fluorescence photography according to the present invention.
In this example, the control circuit 33 is configured so that visible fluorescence photography and infrared fluorescence photography are performed continuously when the photography switch 32 is operated once.When the photography switch 32 is turned on, the control circuit 33 is The light emitting circuit 34 is controlled so that the xenon tube 4 emits light at an amount of light corresponding to visible fluorescence photography. At the same time, the visible fluorescence barrier filter 15 is inserted into the optical path of the photographing optical system 2, and the optical path length correction member 35
is inserted. The visible fluorescence image from the fundus R is formed on the CCD 20, and the signal output from the CCD 20 is sent to the image processing device 3.
6 to the first recording means 37, and a visible fluorescence image is recorded. The control circuit 33 then controls the light emitting circuit 34 so that the xenon tube 4 emits light at an amount of light corresponding to infrared fluorescence photography. On the other hand, the barrier filter 15 for visible fluorescence photography is retracted from the optical path of the photography optical system 2, and the barrier filter 16 for infrared fluorescence photography is inserted. In conjunction with the insertion of the barrier filter 16 for infrared fluorescence photography, the optical path length correction member 38 is inserted into the optical path of the photographing optical system 2. The control circuit 33 switches the changeover switch 39 when the xenon tube 4 continues to emit light.
is switched to the second recording means 40 side. by this,
The signal output of C0D20 is sent to the second
The light is input to the recording means 40, and an infrared fluorescence image is recorded. The visible fluorescence image and fundus image can be displayed on the TV monitor 42 by operating the playback switch 41. Note that a visible fluorescent image and an infrared fluorescent image may be recorded by dividing the address of one image recording means into one minute. According to this second embodiment, optical path division is not necessary.

【効 果】【effect】

本発明に係わる眼底カメラでは、以上説明したように構
成したので、可視蛍光撮影と赤外蛍光撮影とを同時に行
うことができるという効果を奏する。
Since the fundus camera according to the present invention is configured as described above, it has the effect of being able to perform visible fluorescence photography and infrared fluorescence photography at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる蛍光撮影用眼底カメラの第1実
施例の光学系図、 第2図は第1図の矢視X図、 第3図ないし第6図は各フィルターの波長特性図、 第7図は第1図に示す分割プリズムの反射面の波長特性
図、 第8図はCODに同時に形成された眼底像を示す図、第
9図は第1図に示す蛍光撮影用眼底カメラの変形例を示
す部分図、 第10図は本発明に係わる蛍光撮影用眼底カメラの第2
実施例の光学系図、 である。 1・・・照明光学系 2・・・撮影光学系 7・・・エキサイタ−フィルター 14・・・バリアフィルター 19・・・分割プリズム(分離部材) −13=
FIG. 1 is an optical system diagram of a first embodiment of a fundus camera for fluorescence photography according to the present invention, FIG. 2 is a diagram viewed from the arrow X in FIG. 1, and FIGS. 3 to 6 are wavelength characteristic diagrams of each filter. Figure 7 is a wavelength characteristic diagram of the reflective surface of the splitting prism shown in Figure 1, Figure 8 is a diagram showing the fundus image simultaneously formed on the COD, and Figure 9 is a diagram of the fundus camera for fluorescence photography shown in Figure 1. A partial view showing a modified example, FIG. 10 is a second view of the fundus camera for fluorescence photography according to the present invention.
This is an optical system diagram of the example. 1...Illumination optical system 2...Photographing optical system 7...Exciter filter 14...Barrier filter 19...Dividing prism (separation member) -13=

Claims (2)

【特許請求の範囲】[Claims] (1)可視蛍光撮影用励起照明光と赤外蛍光撮影用励起
照明光との双方を透過させる透過特性を有するエキサイ
ターフィルターが照明光学系に設けられ、可視蛍光撮影
用励起照明光によつて励起された可視蛍光と赤外蛍光撮
影用励起照明光によつて励起された赤外蛍光との双方を
透過させる透過特性を有するバリアフィルターが撮影光
学系に設けられると共に、該撮影光学系には可視蛍光と
赤外蛍光とを分離して各撮像面に導く分離部材が設けら
れていることを特徴とする蛍光撮影用眼底カメラ。
(1) An exciter filter having transmission characteristics that transmits both the excitation illumination light for visible fluorescence photography and the excitation illumination light for infrared fluorescence photography is provided in the illumination optical system, and is excited by the excitation illumination light for visible fluorescence photography. The photographing optical system is provided with a barrier filter having a transmission characteristic that transmits both the visible fluorescence excited by the excitation illumination light for infrared fluorescence photography and the infrared fluorescence excited by the excitation illumination light for infrared fluorescence photography. A fundus camera for fluorescence photography, characterized by being provided with a separation member that separates fluorescence and infrared fluorescence and guides them to each imaging surface.
(2)一回の撮影動作で可視蛍光撮影と赤外蛍光撮影と
を連続して行うことができることを特徴とする蛍光撮影
用眼底カメラ。
(2) A fundus camera for fluorescence photography, which is capable of continuously performing visible fluorescence photography and infrared fluorescence photography in a single photography operation.
JP2331280A 1990-11-29 1990-11-29 Fundus camera for fluorescent photographing Pending JPH04197338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331280A JPH04197338A (en) 1990-11-29 1990-11-29 Fundus camera for fluorescent photographing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331280A JPH04197338A (en) 1990-11-29 1990-11-29 Fundus camera for fluorescent photographing

Publications (1)

Publication Number Publication Date
JPH04197338A true JPH04197338A (en) 1992-07-16

Family

ID=18241923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331280A Pending JPH04197338A (en) 1990-11-29 1990-11-29 Fundus camera for fluorescent photographing

Country Status (1)

Country Link
JP (1) JPH04197338A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910179A (en) * 1995-06-30 1997-01-14 Canon Inc Eyegrounds inspecting instrument
JPH0910180A (en) * 1995-06-30 1997-01-14 Canon Inc Eyegrounds inspecting instrument
WO2016136858A1 (en) * 2015-02-27 2016-09-01 興和株式会社 Fundus photography system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910179A (en) * 1995-06-30 1997-01-14 Canon Inc Eyegrounds inspecting instrument
JPH0910180A (en) * 1995-06-30 1997-01-14 Canon Inc Eyegrounds inspecting instrument
WO2016136858A1 (en) * 2015-02-27 2016-09-01 興和株式会社 Fundus photography system

Similar Documents

Publication Publication Date Title
EP1138255B1 (en) Fundus camera
JP4649229B2 (en) Fundus camera
US5214454A (en) Fundus camera
US5181055A (en) Fundus camera
JP3017275B2 (en) Fundus camera
JPH04170933A (en) Fundus camera
JP4627169B2 (en) Fundus camera
JP2736780B2 (en) Fundus camera
JPH04197338A (en) Fundus camera for fluorescent photographing
JP2938483B2 (en) Stereo microscope for ophthalmic surgery
JPH05344997A (en) Medical stereoscopic microscope
JP3376040B2 (en) Eye photographing device
JPH06277186A (en) Ophthalmic observation and photographing apparatus
JPH06277185A (en) Ophthalmic observation and photographing apparatus
JPH06205742A (en) Fundus camera
JP3672329B2 (en) Stereoscopic fundus camera
JPH0966031A (en) Fundus camera
JP3423377B2 (en) Fundus camera
JP3056282B2 (en) Ophthalmic imaging equipment
JPH08117193A (en) Fundus camera
JP3269675B2 (en) Fundus camera
JP2541974B2 (en) Fundus camera
JPH07327931A (en) Eye ground camera
JP3327713B2 (en) Ophthalmic imaging equipment
JP3073510B2 (en) Ophthalmic imaging equipment