JPH04197170A - Stepwise aerobic culture and apparatus therefor - Google Patents

Stepwise aerobic culture and apparatus therefor

Info

Publication number
JPH04197170A
JPH04197170A JP33218690A JP33218690A JPH04197170A JP H04197170 A JPH04197170 A JP H04197170A JP 33218690 A JP33218690 A JP 33218690A JP 33218690 A JP33218690 A JP 33218690A JP H04197170 A JPH04197170 A JP H04197170A
Authority
JP
Japan
Prior art keywords
culture
aeration
ventilation
submerged
stepwise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33218690A
Other languages
Japanese (ja)
Inventor
Nobuko Nishimura
信子 西村
Ryoichi Haga
良一 芳賀
Hikari Murakami
光 村上
Harumi Matsuzaki
松崎 晴美
Takamori Nakano
中野 隆盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33218690A priority Critical patent/JPH04197170A/en
Publication of JPH04197170A publication Critical patent/JPH04197170A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis

Landscapes

  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To carry out the subject high-density aeration culture without damage to cells by changing the method for supplying oxygen to a culture tank from the liquid surface aeration method through the membrane surface aeration method to the submerged aeration method in order in accordance with the stage of the culture. CONSTITUTION:In an aeration culture, oxygen is supplied to a culture tank while changing the aeration method from the liquid surface aeration method through the membrane surface aeration method to the submerged aeration method in order in accordance with the stage of the culture. Specifically, oxygen is supplied by the liquid surface aeration method at the initial stage of the culture. In case the consumption of oxygen is increased following the growth of the cells, the aeration method is changed to the membrane surface aeration method capable of supplying more oxygen than in the liquid surface aeration method without generation of air bubbles. At the stationary state of the culture, the aeration method is further changed from the membrane surface aeration method to the submerged aeration method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、培養槽に酸素を供給する方法及び装置に係り
、さらに詳しくは、培養物にダメージを与えることなく
高密度に培養するための酸素供給方法及び装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and device for supplying oxygen to a culture tank, and more particularly, to a method and apparatus for supplying oxygen to a culture tank, and more specifically, for culturing at high density without damaging the culture. The present invention relates to an oxygen supply method and device.

〔従来の技術〕[Conventional technology]

動物細胞、植物細胞、微生物及びウィルス等(以下、こ
れらを単に細胞と総称する)を培養して有用物質を工業
的規模で生産するための様々な培養方法、及び装置が提
案されている。
Various culturing methods and devices have been proposed for producing useful substances on an industrial scale by culturing animal cells, plant cells, microorganisms, viruses, etc. (hereinafter collectively referred to simply as cells).

細胞培養において、有用物質を効率的に生産するだめに
は、細胞を高密度に培養することが必要である。
In cell culture, in order to efficiently produce useful substances, it is necessary to culture cells at high density.

そのために、栄養成分の供給や老廃成分の除去に関して
は、パーフュージョン方式などが提案されている。
To this end, perfusion methods and the like have been proposed for supplying nutritional components and removing waste components.

一方、酸素の供給に関しては、培養液の上部に通気する
液面通気方法や、 疎水性の膜面に形成される気液接触界面或いは酸素透過
性の膜面を通して培養液内に拡散にて酸素を供給する膜
面通気方法や、 培養液中に気泡を吹き込む液中通気方法がそれぞれ提案
されている。
On the other hand, regarding the supply of oxygen, there are two methods: a liquid level aeration method that aerates the top of the culture medium, and oxygen that is diffused into the culture medium through an air-liquid contact interface formed on a hydrophobic membrane surface or an oxygen permeable membrane surface. Two methods have been proposed: a membrane aeration method that supplies air bubbles, and a submerged aeration method that blows air bubbles into the culture solution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の酸素の供給方式に関して、液面及び膜面通気方法
は、細胞の高密度培養に必要な酸素を充分に供給するこ
とができず、また、培養槽のスケールアップに対応でき
ない。
Regarding the above-mentioned oxygen supply methods, the liquid surface and membrane surface aeration methods cannot sufficiently supply oxygen necessary for high-density culture of cells, and cannot support scale-up of culture vessels.

液中通気方法は、高密度培養に対応するに充分な酸素を
供給でき、培養槽のスケールアップにも対応できるが、
特に剪断力に対して耐性の小さい細胞に対してはダメー
ジが大きいという一長一短があった。
The submerged aeration method can supply sufficient oxygen for high-density culture, and can also be used to scale up the culture tank.
It has the advantage and disadvantage of causing significant damage, especially to cells that have low resistance to shearing force.

本発明は以上の点に鑑みてなされたもので、その目的と
するところは、細胞にダメージを与えることなく、しか
も細胞を高密度で培養するための酸素を供給できる方法
及び装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide a method and device that can supply oxygen for culturing cells at high density without damaging cells. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

発明者らは、特に剪断力に対し耐性の小さい細胞の培養
実験を繰り返し、培養物の細胞の培養時期つまり細胞密
度によって剪断力への耐性が次第に変化(増す)するこ
とを見出して、以下の発明に至った。
The inventors repeated culture experiments with cells that have particularly low resistance to shear force, and found that the resistance to shear force gradually changes (increases) depending on the culture period of the cultured cells, that is, the cell density. This led to the invention.

基本的には、次のような課題解決手段を提案する。Basically, we propose the following problem-solving methods.

すなわち、細胞を培養するに当たって、培養の段階に応
じて(イ)液面通気、膜面通気及び液中通気を順次切り
換えて酸素の供給を行うか、(ロ)液面通気の後に膜面
通気を加え、その後液中通気を加えて酸素の供給を行う
か、(ハ)培養の段階に応じて最初に液面通気及び膜面
通気の少なくとも一つを行い、その後に液中通気に切り
換えて酸素の供給を行うか、(ニ)培養の段階に応じて
最初に液面通気及び膜面通気の少なくとも一つを行い、
その後に液中通気を加えて酸素の供給を行う段階的な通
気培養方法を提案する。
That is, when culturing cells, depending on the stage of culture, either (a) liquid surface aeration, membrane surface aeration, and submerged aeration are sequentially switched to supply oxygen, or (b) membrane surface aeration is performed after liquid surface aeration. (c) Depending on the stage of culture, first perform at least one of liquid level aeration and membrane surface aeration, and then switch to submerged aeration. supplying oxygen, or (d) initially performing at least one of liquid surface aeration and membrane surface aeration depending on the stage of culture;
We propose a stepwise aerated culture method in which submerged aeration is then added to supply oxygen.

また、上記のような通気培養を行う場合には、その通気
方式の段階的切り換え或いは加えを、培養液中の溶存酸
素濃度の状態や培養物の細胞の密度の状態をとらえて行
うことを提案する。
In addition, when performing aerated culture as described above, it is proposed that the aeration method be changed or added in stages based on the state of dissolved oxygen concentration in the culture medium and the state of cell density in the culture. do.

さらに、前記(イ)から(ニ)までの各種の段階的通気
培養を実行するための装置として、基本的には、培養槽
に液面通気手段及び膜面通気手段の少なくとも一つと、
液中通気手段と、これらの液面通気手段、膜面通気手段
及び液中通気手段を培養の段階に応じて切り憤え或いは
組み合わせて作動させる手段とを備えたものを提案する
Furthermore, as an apparatus for carrying out the various stepwise aerated culture from (a) to (d) above, basically, at least one of a liquid surface aeration means and a membrane surface aeration means is provided in the culture tank,
We propose a method that includes a submerged aeration means and a means for operating these liquid surface aeration means, membrane surface aeration means, and submerged aeration means selectively or in combination depending on the stage of culture.

また、このような段階的通気培養装置の自動化を図る課
題解決手段として、 前記液面通気手段、膜面通気手段、液中通気手段などの
ほかに、前記培養槽の培養液中の溶存酸素濃度を検出す
る手段と、前記溶存酸素濃度の検出値を指標として前記
液面通気手段、膜面通気手段及び液中通気手段を設定の
パターンに基づき切り換え或いは組み合わせて作動制御
する通気制御手段とを備えたものを提案する。
In addition, as a problem-solving means for automating such a stepwise aerated culture device, in addition to the above-mentioned liquid level aeration means, membrane surface aeration means, submerged aeration means, etc., the dissolved oxygen concentration in the culture solution of the culture tank is and ventilation control means for controlling the operation of the liquid level ventilation means, membrane surface ventilation means, and submerged ventilation means by switching or combining them based on a set pattern using the detected value of the dissolved oxygen concentration as an index. suggest something.

さらに、これに代わる自動化手段として、前記培養槽内
の培養物の細胞密度を検出する手段と、前記細胞密度の
検出値を指標として前記液面通気手段、膜面通気手段及
び液中通気手段を設定のパターンに基づき切り換え或い
は組み合わせて作動制御する通気制御手段とを備えたも
のを提案する。
Furthermore, as an alternative automated means, a means for detecting the cell density of the cultured material in the culture tank, and a means for detecting the cell density of the cultured material in the culture tank, and controlling the liquid level ventilation means, membrane surface ventilation means, and submerged ventilation means using the detected value of the cell density as an index. We propose a device equipped with ventilation control means that controls the operation by switching or combining them based on the setting pattern.

なお、本発明は、例えば動物細胞、植物細胞、微生物及
びウィルスの培養に適用可能である。
Note that the present invention is applicable to, for example, culturing animal cells, plant cells, microorganisms, and viruses.

また、少なくとも膜面通気と液中通気を順次に行う場合
には、次のような膜を提案する。
Furthermore, in the case where at least membrane surface ventilation and submerged ventilation are performed sequentially, the following membrane is proposed.

すなわち、膜の素材は特に限定されるものではなく、細
胞に無害な物質であって培養液中に酸素を供給できるも
のであればよいが、望ましくは気液接触面積が太き(取
れる材質で、酸素の供給効率の高いものが良い。この膜
は、通気する気体の圧力を上昇させると膜面通気から液
中通気に変わる細孔を有するように形成する。例えば、
膜に膜面通気用の微細孔と、通常のガスの圧力では膜面
通気を行い通気ガスの圧力があるしきい値を超えると気
泡が発生して液中通気が可能となる疎細孔とを多数形成
する。この微細孔と疎細孔との全体の面積比率は適宜設
定すればよいが、通常は、液中通気の酸素供給能力は膜
面通気よりも格段に大きいため、疎細孔部分の面積はか
なり小さ(押さえることができる。
In other words, the material of the membrane is not particularly limited, as long as it is harmless to cells and can supply oxygen to the culture solution, but it is preferable that the material has a large air-liquid contact area (it is made of a material that can be obtained). , one with high oxygen supply efficiency is preferable.This membrane is formed to have pores that change from membrane surface ventilation to liquid ventilation when the pressure of the gas to be vented is increased.For example,
The membrane has fine pores for ventilation on the membrane surface, and loose pores that allow ventilation on the membrane surface under normal gas pressure, but when the pressure of the ventilation gas exceeds a certain threshold, bubbles are generated and ventilation in the liquid becomes possible. form a large number of The overall area ratio of the fine pores and the loose pores can be set appropriately, but normally, the oxygen supply capacity of submerged aeration is much larger than that of membrane surface aeration, so the area of the sparse pores is quite large. Small (can be held down)

そして、このような酸素透過性の膜を培養液内に浸漬す
る。
Then, such an oxygen-permeable membrane is immersed in the culture solution.

〔作用〕[Effect]

液面通気、膜面通気、液中通気を比較した場合、培養細
胞に対してのダメージの大きさは、液面通気、膜面通気
が小さく液中通気が最も太きい。−方、酸素の供給能力
は、液中通気が最も大きく、その後、膜面通気、液面通
気の順になる。
When comparing liquid surface aeration, membrane surface aeration, and submerged aeration, the amount of damage to cultured cells is small for liquid surface aeration and membrane surface aeration, and is greatest for submerged aeration. - On the other hand, the oxygen supply capacity is greatest for submerged aeration, followed by membrane surface aeration and then liquid surface aeration.

ところで、細胞を培養するに当たって、細胞培養の初期
、つまり細胞密度の低い時期には細胞の剪断力への耐性
が著しく小さいが、この場合には培養物による酸素消費
量も少ない。そして、培養細胞が増殖するにつれて、そ
の酸素消費量も増大するが、剪断力への耐性も次第に増
す。
By the way, when culturing cells, in the early stage of cell culture, that is, when the cell density is low, the resistance of the cells to shear force is extremely low, and in this case, the amount of oxygen consumed by the culture is also small. As cultured cells proliferate, their oxygen consumption also increases, but their resistance to shear forces also gradually increases.

従って、このような培養段階に合わせて、例えば前述の
(イ)から(ニ)までの方式を適宜採用すれば、培養細
胞に対してダメージを与えることなく、高密度培養を可
能にする。
Therefore, if, for example, the above-mentioned methods (a) to (d) are appropriately adopted in accordance with such culture stages, high-density culture can be achieved without damaging the cultured cells.

具体的には、例えば、細胞初期には液面通気を行う。そ
して、細胞が増殖するに従って酸素の消費量が増大し、
液面通気では充分でな(なる場合は(動物細胞の場合、
この時の細胞密度は106個/ m eの後半から10
6個/ m Eの前半であることが多い)、通気方法を
膜面通気に切り換えるか或いは液面通気に膜面通気を加
える。
Specifically, for example, liquid surface aeration is performed at the initial stage of cells. As cells proliferate, oxygen consumption increases,
Liquid surface aeration is not sufficient (in the case of animal cells,
The cell density at this time was 106/m from the latter half of 10
(often in the first half of 6/mE), switch the ventilation method to membrane ventilation, or add membrane ventilation to liquid surface ventilation.

膜面通気では、液面通気よりも気液接触面積が多(取れ
るので、より多(の酸素を供給でき、細胞はさらに増殖
する。
Membrane surface aeration allows for a larger air-liquid contact area than liquid surface aeration, so more oxygen can be supplied and cells proliferate further.

また、膜面通気では液中の泡沫(気泡)の発生が少ない
ため、剪断力に対する耐性の小さい細胞でも、ダメージ
を受けることなく培養を継続することができる。
In addition, since membrane surface aeration reduces the generation of bubbles (air bubbles) in the liquid, even cells with low resistance to shearing force can be cultured without being damaged.

動物細胞の多くはこの膜面通気によって細胞密度107
個/mルベルの高密度に達することができる。しかし、
細胞は増殖期よりも定常期の方が細胞−個当たりの酸素
消費量が大きいことが多く、膜面通気も培養槽の体積当
たりの膜面積に限界があるため、107個/mg以上の
細胞密度を維持するために充分な酸素を供給することが
できなくなる。
Many animal cells have a cell density of 107 due to this membrane surface ventilation.
High densities of 1/m lb can be reached. but,
Cells often consume more oxygen per cell in the stationary phase than in the growth phase, and there is a limit to the membrane area per culture tank volume for membrane aeration. It becomes impossible to supply enough oxygen to maintain density.

そこで、膜面通気から液中通気に切り換えるか、これを
加える。細胞密度は高密度(多くの動物細胞の場合10
7個/ m lレベル)に達しているため、培養の継続
に充分な程度に剪断力に対する耐性が増大しており、細
胞は、液中通気によるダメージを受けることなく10’
個/ m lレベル以上を維持するに足りる酸素の供給
を受けることになる。
Therefore, either switch from membrane surface ventilation to submerged ventilation, or add this. Cell density is high (for many animal cells 10
7 cells/ml level), the resistance to shear force has increased to a sufficient extent for continued culture, and the cells can be grown for 10' without being damaged by submerged aeration.
The oxygen supply will be sufficient to maintain the oxygen concentration at or above the 2000 ml/ml level.

この通気方法の選択は、細胞密度あるいは溶存酸素濃度
、またはその両方を指標にして行えば、的確な段階的通
気培養がなされる。
If this aeration method is selected based on cell density, dissolved oxygen concentration, or both, accurate stepwise aeration culture can be achieved.

また、上記のような(イ)〜(ニ)のいずれの段階的通
気培養方法を採用するかは、培養の初期段階、細胞増殖
段階、その後の定常段階における細胞の剪断力に対する
耐性がどの程度のものであるか、及び酸素供給量がどの
程度要求されるのかを見定めてこれに最もふされしい方
法を採用すればよい。
In addition, which of the stepwise aerated culture methods (a) to (d) above should be adopted depends on the degree of resistance of cells to shear force during the initial stage of culture, cell proliferation stage, and subsequent steady stage. What is necessary is to determine the type of oxygen supply required and the amount of oxygen supply required, and then adopt the most appropriate method.

なお、これらの方法を実現させる装置の動作については
、実施例の項で詳述しであるので、ここでの説明を省略
する。
Note that the operation of the apparatus for implementing these methods has been described in detail in the Examples section, and therefore will not be described here.

次に膜として、前述したような微細孔及び疎細孔を有す
るものを使用した通気方式の作用について説明する。
Next, the operation of a ventilation system using a membrane having fine pores and sparse pores as described above will be explained.

例えば、細胞を培養するに当たり、培養初期には通常の
ガス圧、多くの場合は0−1気圧近辺で通気し、膜の微
細孔部分及び疎細孔部分も膜面通気としt使用する。
For example, when culturing cells, aeration is carried out at a normal gas pressure, in most cases around 0-1 atm, in the early stage of the culture, and the membrane surface aeration is also used in the fine and sparse pore areas of the membrane.

細胞が増殖して、膜面通気では充分な酸素を供給できな
くなったときに、通気ガスの圧力を高くする。疎細孔部
分から気泡の生じる圧力はその細孔径に依存する。
When cells proliferate and sufficient oxygen cannot be supplied through membrane ventilation, the pressure of the ventilation gas is increased. The pressure at which bubbles are generated from the sparse pores depends on the pore diameter.

このことにより、疎細孔部分からの気泡の生じる圧力が
加えて行われるため、細胞が高密度に増殖でき、その状
態を維持するのに充分な酸素が供給される。
This adds pressure to generate bubbles from the loose pores, allowing cells to grow at high density and supplying enough oxygen to maintain this state.

〔実施例〕〔Example〕

本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は、本発明の第1実施例に係る培養装置の概略構
成図である。
FIG. 1 is a schematic diagram of a culture apparatus according to a first embodiment of the present invention.

培養槽lの培養容積は約1.22である。ここで、培養
槽1内には液面通気のためのノズル3、膜面通気のため
のチューブ4、液中通気のための散気フィルタ5及び溶
存酸素計lOが取付けられている。培養槽1にはこの他
にパーフュージョンを行うための手段や、各種センサ等
の装置が取付けられているが、図ではこれらは省略され
ている。
The culture volume of culture tank 1 is approximately 1.22. Here, a nozzle 3 for aeration of the liquid surface, a tube 4 for aeration of the membrane surface, an aeration filter 5 for aeration of the liquid, and a dissolved oxygen meter 1O are installed in the culture tank 1. The culture tank 1 is also equipped with means for performing perfusion and devices such as various sensors, but these are omitted in the figure.

培養槽1内には培養液2が収容しである。A culture solution 2 is stored in the culture tank 1 .

6は溶存酸素濃度コントローラ(以下、DOコントロー
ラとする)である。Aは酸素などのガス供給ラインで、
ラインAは途中でラインB、ラインC、ラインDに分岐
する。このうち、ラインBは液面通気用でノズル3に接
続され、ラインCは膜面通気用でチューブ4に接続され
、ラインDは液中通気用で散気フィルタ5に接続される
6 is a dissolved oxygen concentration controller (hereinafter referred to as a DO controller). A is a gas supply line such as oxygen,
Line A branches into line B, line C, and line D along the way. Of these, line B is for liquid surface ventilation and is connected to the nozzle 3, line C is for membrane surface ventilation and is connected to the tube 4, and line D is for submerged ventilation and is connected to the aeration filter 5.

ラインB、ラインC、ラインDには、バルブ7、流量計
8、除菌フィルタ9がそれぞれ配置される。
A valve 7, a flow meter 8, and a sterilization filter 9 are arranged in line B, line C, and line D, respectively.

Eは排気ラインである。E is an exhaust line.

Doコントローラ6は、酸素ガス、空気、窒素ガスなど
を適量取り込み、これらを供給ラインAに送出する機能
を有し、さらに溶存酸素計(溶存酸素濃度検出手段)1
0からの検出データを入力して、その検出値を指標とし
て液面通気、膜面通気、液中通気を順次切り換えるため
の判定を行う機能を有している。この切り換えの判定償
号はバルブ制御回路16に送られ、バルブ制御回路16
によって液面通気ラインB、膜面通気ラインC1液中通
気ラインDのバルブの切り換えがなされるようにしであ
る。
The Do controller 6 has a function of taking in an appropriate amount of oxygen gas, air, nitrogen gas, etc. and sending these to the supply line A, and also has a function of dissolving oxygen meter (dissolved oxygen concentration detection means) 1.
It has a function of inputting detection data from 0 and using the detected value as an index to make a determination for sequentially switching between liquid surface ventilation, membrane surface ventilation, and submerged ventilation. This switching judgment signal is sent to the valve control circuit 16, and the valve control circuit 16
The valves of the liquid level ventilation line B, the membrane surface ventilation line C1, and the submerged ventilation line D are switched by this.

培養初期には細胞密度が低いため、溶存酸素濃度も比較
的あるものと検出され、この場合には、Doコントロー
ラ6はバルブ制御回路16を介してラインBのバルブ7
を開け、その他のラインC1Dのバルブは閉じた状態の
ままにしておく。
Since the cell density is low in the early stage of culture, it is detected that the dissolved oxygen concentration is relatively high, and in this case, the Do controller 6 controls the valve 7 of line B via the valve control circuit 16.
, and leave the other valves in line C1D closed.

この場合には、Doコントローラ6で制御されたガスは
ラインAからラインBを通して液面通気によって培養槽
に通気される。
In this case, the gas controlled by the Do controller 6 is vented from line A to line B into the culture tank by liquid level ventilation.

排気はラインEによって行われる。Evacuation takes place via line E.

細胞が増殖するにつれて、酸素の消費量が多くなり、液
面通気では酸素を充分に供給できなくなる。この場合に
は、溶存酸素濃度検出値を指欅としてDoコントローラ
6及びバルブ制御回路I6からの指令によりラインBを
閉じてラインCを開け、膜面通気に切り換える。
As the cells proliferate, the amount of oxygen consumed increases, and surface aeration is no longer sufficient to supply oxygen. In this case, the line B is closed and the line C is opened according to commands from the Do controller 6 and the valve control circuit I6 using the detected dissolved oxygen concentration value as a guide, and the system is switched to membrane surface ventilation.

さらに細胞が増殖すると、膜面通気でも酸素を充分に供
給できなくなるので、ラインCを閉じてラインDを開け
、液中通気に切り換える。
If the cells further proliferate, oxygen cannot be supplied sufficiently by membrane surface aeration, so line C is closed and line D is opened to switch to submerged aeration.

本発明の段階的通気培養方法による培養の結果を第5図
に示す。破線が本実施例の結果である。
The results of culture using the stepwise aerated culture method of the present invention are shown in FIG. The broken line is the result of this example.

供試細胞はマウス−ヒトハイブリドーマで、培地は無血
清培地を用いた。培養初期は液面通気を行い、細胞密度
がI X 10’個/ m eになった時点で膜面通気
に切り換えた。その後、細胞密度がlXl0’個/ m
 lになった時点で液中通気に切り換えた。
The test cells were mouse-human hybridomas, and the medium used was a serum-free medium. At the initial stage of culture, liquid surface aeration was performed, and when the cell density reached I x 10' cells/me, it was switched to membrane surface aeration. After that, the cell density is lXl0' cells/m
When the temperature reached 1, it was switched to submerged aeration.

その結果、細胞密度を10’個/ m l近辺に維持し
ながら長期間に培養を行うことができた。
As a result, it was possible to culture for a long period of time while maintaining the cell density at around 10 cells/ml.

第2図は、本発明による培養装置の第2実施例の概略構
成図である。図中、第1実施例と同一符号は同−或いは
共通する要素を示す。
FIG. 2 is a schematic diagram of a second embodiment of the culture apparatus according to the present invention. In the figure, the same reference numerals as in the first embodiment indicate the same or common elements.

本実施例における培養槽1の培養容積は約1゜2でであ
る。培養槽l内には第1実施例と同様に液面通気のため
のノズル3、膜面通気のためのチューブ4、液中通気の
ための散気フィルタ5及び溶存酸素計lOが設けである
The culture volume of the culture tank 1 in this example is approximately 1°2. Inside the culture tank 1, there are provided a nozzle 3 for aeration of the liquid surface, a tube 4 for aeration of the membrane surface, an aeration filter 5 for aeration of the liquid, and a dissolved oxygen meter 1O, as in the first embodiment. .

本実施例では、DOコントローラ6からラインAを経て
ラインB、C,Dにバルブ7を介して選択的につながる
通気系のほかに、Doコントローラ6と別系統のライン
Fを経てラインB、C,Dにバルブ7′を介して選択的
につながる通気系とを備える。
In this embodiment, in addition to a ventilation system that selectively connects the DO controller 6 to the lines B, C, and D via the line A via the valve 7, the ventilation system connects the DO controller 6 to the lines B, C, and D via a separate line F. , D through a valve 7'.

培養槽1にはこの他に、パーフュージョンを行うための
手段や、各種のセンサ等の装置が取付けられているが、
図ではこれらは省略されている。
In addition to this, the culture tank 1 is equipped with means for performing perfusion and devices such as various sensors.
These are omitted in the figure.

培養槽1内には培養液2が収容されている。A culture solution 2 is contained within the culture tank 1 .

培養初期には細胞密度が低いため、第1実施例と同様の
バルブ制御が行われ、DOコントローラ6で制御された
ガスはラインAからラインBを通して液面通気によって
培養槽1に供給される(ラインC及びラインDは閉じた
状態にある)。排気はラインEによって行われる。
Since the cell density is low in the early stage of culture, the same valve control as in the first embodiment is performed, and the gas controlled by the DO controller 6 is supplied to the culture tank 1 by surface ventilation from line A to line B ( Line C and Line D are in a closed state). Evacuation takes place via line E.

細胞が増殖するにつれて、酸素の消費量が多くなり、液
面通気では酸素を充分に供給できなくなる。この場合に
は、バルブ7.7′の選択的な開閉制御により、ライン
BにはラインFがらのベースガスを流し、ラインCには
Doコントローラ6からのガスを通すことによって、液
面通気と膜面通気を行う。
As the cells proliferate, the amount of oxygen consumed increases, and surface aeration is no longer sufficient to supply oxygen. In this case, by selectively opening and closing the valves 7 and 7', the base gas from the line F flows through the line B, and the gas from the Do controller 6 flows through the line C, thereby achieving liquid level ventilation. Perform membrane ventilation.

さらに細胞が増殖すると、液面通気と膜面通気でも酸素
を充分に供給できなくなるので、ラインBとラインCに
ラインFがらのベースガスを流し、ラインDには、Do
コントローラ6がらのガスを流すようにバルブ7.7′
の制御を行い、液面通気1M膜面通気加えて液中通気を
行う。
If the cells further proliferate, it will no longer be possible to supply sufficient oxygen even with liquid surface ventilation and membrane surface ventilation, so the base gas from line F is flowed into line B and line C, and the line D is
Valve 7.7' to flow gas from controller 6.
In addition to the 1M membrane surface ventilation, submerged ventilation is performed.

本実施例の段階的通気培養方法による培養の結果を第5
図に実線により示す。供試細胞はマウス−ヒトハイブリ
ドーマで、培地は無血清培地を用いた。培養初期は液面
通気を行い、細胞密度が1×106個/ m lになっ
た時点で膜面通気を加えた。その後、細胞密度がl X
 10’個/meになった時点で液中通気を加えた。
The results of the culture using the stepwise aerated culture method of this example are shown in the fifth column.
Indicated by solid lines in the figure. The test cells were mouse-human hybridomas, and the medium used was a serum-free medium. Liquid surface aeration was performed at the initial stage of culture, and membrane surface aeration was added when the cell density reached 1 x 106 cells/ml. Then the cell density is l
When the number of particles reached 10'/me, submerged aeration was added.

その結果、細胞密度を10?個/mJ!近辺に維持しな
がら長時間の培養を行うことができた。
As a result, the cell density was 10? pieces/mJ! It was possible to perform long-term culture while maintaining the surrounding area.

また、第1実施例と比較しても、液中通気を加えた時点
でのダメージが軽減されており、その後の経過も順調で
ある。
Also, compared to the first example, the damage at the time of adding submerged aeration was reduced, and the subsequent progress was smooth.

第3図は、本発明の第3実施例における培養装置の概略
構成図である。本実施例では、膜面通気と液中通気の組
み合わせで通気を行う。
FIG. 3 is a schematic diagram of a culture apparatus in a third embodiment of the present invention. In this embodiment, ventilation is performed by a combination of membrane surface ventilation and submerged ventilation.

本実施例における培養槽1の培養容積も約1゜21であ
る。培養槽1内には、液中通気のための練絹孔領域Oを
持つ通気チューブ4及び溶存酸素計lOが取付けられて
いる。すなわち、チューブ4は酸素透過性の膜で形成さ
れるが、この膜4には、膜面通気を専ら行う微細孔と、
通常のガスの圧力では膜面通気を行い通気ガスの圧力が
あるしきい値を超えると気泡が発生して液中通気が可能
となる練絹孔とを有している。
The culture volume of the culture tank 1 in this example is also about 1°21. Inside the culture tank 1, a ventilation tube 4 having a hole area O for aeration in the liquid and a dissolved oxygen meter 1O are installed. That is, the tube 4 is formed of an oxygen-permeable membrane, and this membrane 4 has micropores that exclusively perform membrane surface ventilation;
At normal gas pressure, membrane surface ventilation is performed, and when the pressure of the ventilation gas exceeds a certain threshold value, bubbles are generated to enable submerged ventilation.

この実施例では取付けなかったが、液面通気の手段を併
設してもよい。
Although not installed in this embodiment, a means for venting the liquid surface may also be provided.

本実施例では、培養槽1に供給すべき酸素及び窒素の流
量は、Doコントローラ6からの指令信号によりライン
J、Lに設けた流量調節弁11が作動して制御される。
In this embodiment, the flow rates of oxygen and nitrogen to be supplied to the culture tank 1 are controlled by operating the flow control valves 11 provided in the lines J and L in response to a command signal from the Do controller 6.

また、通気チューブ4の排気ラインE上には通気チュー
ブ4内のガス圧を制御するためのバルブ12が付いてお
り、このガス圧はDOコントローラ6によって制御され
る。
Further, a valve 12 for controlling the gas pressure inside the ventilation tube 4 is attached on the exhaust line E of the ventilation tube 4, and this gas pressure is controlled by the DO controller 6.

培養槽1には、この他にバーフュージョンを行うだめの
手段や、各種のセンサ等の装置が取付けられているが、
図ではこれらは省略されている。
In addition to this, the culture tank 1 is equipped with means for performing burfusion and devices such as various sensors.
These are omitted in the figure.

培養槽l内には、培養液2が収容されている。A culture solution 2 is contained in the culture tank 1.

培養初期には細胞密度が低いため、この状態を溶存酸素
濃度検出値からとらえ、Doコントローラ6で制御され
たガスがラインAから通気チューブ4に通され膜面通気
を行う。細胞が増殖すると、膜面通気で酸素を充分に供
給できな(なるので、DOコントローラ6の制御によっ
てラインE上にあるバルブ12によって通気チューブ4
内のガス圧を高め、練絹孔領域Oからは気泡が発生する
ようにし、その気泡によって液中通気を行う。
Since the cell density is low in the early stage of culture, this state is detected from the detected value of dissolved oxygen concentration, and gas controlled by the Do controller 6 is passed through the ventilation tube 4 from the line A to ventilate the membrane surface. When cells proliferate, sufficient oxygen cannot be supplied through membrane ventilation (this is why the valve 12 on line E is controlled by the DO controller 6 and the ventilation tube 4 is
The gas pressure inside is increased to generate air bubbles from the kneading hole area O, and the air bubbles are used to vent the liquid.

しかして、本実施例でも上記第1.第2実施例と同様の
効果を奏することができる。
However, in this embodiment as well, the above-mentioned 1. The same effects as in the second embodiment can be achieved.

第4図は、本発明の第4実施例を示す概略構成図である
FIG. 4 is a schematic configuration diagram showing a fourth embodiment of the present invention.

培養槽1の培養容積は約1.22である。ここで、培養
槽l内には液面通気のためのノズル3、膜面通気のため
のチューブ4、液中通気のための散気フィルタ5及び溶
存酸素計10が取付けられいる。また、培養槽lには、
細胞密度の検出手段として無菌サンプリング系13、顕
微鏡14及び画像処理装置15が接続されている。
The culture volume of culture tank 1 is approximately 1.22. Here, a nozzle 3 for aeration of the liquid surface, a tube 4 for aeration of the membrane surface, an aeration filter 5 for aeration of the liquid, and a dissolved oxygen meter 10 are installed in the culture tank l. In addition, in the culture tank L,
A sterile sampling system 13, a microscope 14, and an image processing device 15 are connected as means for detecting cell density.

培養槽lは、この他にパーフュージョンを行うための手
段や、各種のセンサ等の装置が取付けられているが、図
ではこれらは省略されている。
The culture tank 1 is also equipped with means for performing perfusion and devices such as various sensors, but these are omitted in the figure.

本実施例では、培養液2は、培養全期間を通じて経時的
にサンプリングされ、細胞密度がモニタされている。こ
の細胞密度の検出値と溶存酸素計10からの検出値から
、Doコントローラ6がラインB、C,Dのいずれを開
くか選択制御するもので、その段階的通気方式のパター
ンは第1実施例と同様である。
In this example, the culture solution 2 is sampled over time throughout the entire culture period, and the cell density is monitored. Based on the detected value of cell density and the detected value from the dissolved oxygen meter 10, the Do controller 6 selectively controls which of the lines B, C, and D to open. It is similar to

〔比較例〕[Comparative example]

本発明の比較例について説明する6 第1の比較例は、培養槽に膜面通気の手段を設置してい
ないこと以外は、用いた培養装置の構成、細胞株及び培
地は第1の実施例と同じである。
Describing a comparative example of the present invention 6 In the first comparative example, the structure of the culture device, cell line, and medium used were the same as in the first example, except that the culture tank was not equipped with a membrane ventilation means. is the same as

培養初期には液面通気を行い、細胞が増殖して液面通気
では充分な酸素が供給できなくなった時点で液中通気に
切り換えた。
Liquid level aeration was performed at the beginning of the culture, and when the cells proliferated and sufficient oxygen could no longer be supplied by liquid level aeration, it was switched to submerged aeration.

その結果を第5図の点線で示した。液中通気に切り換え
た時点での細胞濃度が10@個/meと比較的低いとこ
ろであったため、細胞は未だ剪断力に対する耐性が充分
ではな(、液中通気による気泡のダメージを受け、細胞
はその後増殖することができず死滅した。
The results are shown by the dotted line in FIG. Since the cell concentration at the time of switching to submerged aeration was relatively low at 10 cells/me, the cells still did not have sufficient resistance to shear force (due to damage from air bubbles caused by submerged aeration, cells After that, they were unable to reproduce and died.

第2の比較例は、培養槽に膜面通気及び液中通気の手段
を設置していないこと以外は、用いた培養装置の構成、
細胞株及び培地は第1の実施例と同じである。
In the second comparative example, the structure of the culture apparatus used was
The cell line and culture medium are the same as in the first example.

培養期間を通じて液面通気を行った。その結果を第5図
の一点鎖線で示した。細胞が増殖して液面通気では充分
な酸素が供給できなくなった時点以降で細胞は徐々に死
滅した。
Surface aeration was performed throughout the culture period. The results are shown by the dashed line in FIG. After the cells proliferated and sufficient oxygen could no longer be supplied by aeration at the liquid level, the cells gradually died.

第3の比較例は、培養槽に液中通気の手段を設置してい
ないこと以外は、用いた培養装置の構成、細胞株及び培
地は第1の実施例と同じである。
In the third comparative example, the structure of the culture apparatus, cell line, and medium used were the same as in the first example, except that the culture tank was not equipped with a means for submerged aeration.

培養初期には液面通気を行い、細胞が増殖して液面通気
では充分に酸素が供給できなくなった時点で膜面通気に
切り換えた。その結果を第5図の二点鎖線で示した。細
胞は膜面通気により、107個/me近辺まで増殖した
が、その後、膜面通気では充分な酸素供給ができなくな
り、細胞は徐々に死滅した。
Liquid surface aeration was performed at the beginning of the culture, and when the cells proliferated and oxygen could no longer be sufficiently supplied by liquid surface aeration, it was switched to membrane surface aeration. The results are shown by the two-dot chain line in FIG. Cells proliferated to around 107 cells/me by membrane surface aeration, but after that, membrane surface aeration was no longer able to provide sufficient oxygen supply and the cells gradually died.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば段階的通気培養方式を採用
することで、培養物にダメージを与えることなく培養の
細胞増殖状態に応じて充分な酸素を供給することができ
、高密度の培養を可能にする。
As described above, by adopting the stepwise aerated culture method according to the present invention, sufficient oxygen can be supplied according to the cell growth state of the culture without damaging the culture, and high-density culture can be achieved. enable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に用いる培養装置の構成図
、第2図は本発明の第2実施例に用いる培養装置の構成
図、第3図は本発明の第3実施例に用いる培養装置の構
成図、第4図は本発明の第4実施例に用いる培養装置構
成図、第5図は本発明による段階的通気培養方法を用い
た培養結果及び比較例の培養結果の説明図である。 1・・・培養槽、2・・・培養液、3・・・液面通気用
ノズル、4 膜面通気用チューブ(膜体)、5・・液中
通気用フィルタ、6・Doコントローラ(通気制御手段
)、7・・バルブ、8・流量計、9 ・除菌フィルタ、
10−溶存酸素計(溶存酸素濃度検出手段)、11・・
流量調節弁、12・・圧力調節弁、13・・無菌サンプ
リング系、14・顕rR##、、15・・画像処理装置
、16・・・コンパイラ(バルブ制御手段)。 代理人 弁理士 高橋明夫 −m−ゝ 、 :・) (他2名)予判−゛′ 1・・・培養槽、2 ・III養液、3・・液面通気用
ノズル、4・1面通気用チューブ(膜体)、5・・液中
通気用フィルタ、6・・・DOコントローラ(通気制御
手段)、7 バルブ、8・・・流量針、9 除1フィル
タ、1o・・溶存M累計(溶存酸素−度検出手&)、I
B・・バルブ#御手段
FIG. 1 is a block diagram of a culture device used in the first embodiment of the present invention, FIG. 2 is a block diagram of the culture device used in the second embodiment of the present invention, and FIG. 3 is a block diagram of the culture device used in the third embodiment of the present invention. FIG. 4 is a diagram showing the configuration of the culture device used in the fourth example of the present invention. FIG. 5 is an explanation of the culture results using the stepwise aerated culture method of the present invention and the culture results of a comparative example It is a diagram. DESCRIPTION OF SYMBOLS 1...Culture tank, 2...Culture solution, 3...Nozzle for liquid surface ventilation, 4. Tube for membrane surface ventilation (membrane body), 5..Filter for submerged ventilation, 6.Do controller (ventilation) control means), 7...valve, 8.flow meter, 9. sterilization filter,
10-Dissolved oxygen meter (dissolved oxygen concentration detection means), 11...
Flow rate control valve, 12... Pressure control valve, 13... Sterile sampling system, 14... Image processing device, 16... Compiler (valve control means). Agent Patent attorney Akio Takahashi -m-ゝ, :・) (2 others) Preliminary judgment-゛' 1...Cultivation tank, 2.III nutrient solution, 3.Liquid level aeration nozzle, 4.1 side Ventilation tube (membrane body), 5... Filter for submerged ventilation, 6... DO controller (ventilation control means), 7 Valve, 8... Flow rate needle, 9 Divided by 1 filter, 1o... Cumulative total of dissolved M (Dissolved oxygen-degree detection hand &), I
B... Valve # control means

Claims (1)

【特許請求の範囲】 1、培養槽に酸素を供給する方法において、培養の段階
に応じて液面通気、膜面通気及び液中通気を順次切り換
えて酸素の供給を行うことを特徴とする段階的通気培養
方法。 2、培養槽に酸素を供給する方法において、培養の段階
に応じて液面通気の後に膜面通気を加え、その後液中通
気を加えて酸素の供給を行うことを特徴とする段階的通
気培養方法。 3、培養槽に酸素を供給する方法において、培養の段階
に応じて最初に液面通気及び膜面通気の少なくとも一つ
を行い、その後に液中通気に切り換えて酸素の供給を行
うことを特徴とする段階的通気培養方法。 4、培養槽に酸素を供給する方法において、培養の段階
に応じて最初に液面通気及び膜面通気の少なくとも一つ
を行い、その後に液中通気を加えて酸素の供給を行うこ
とを特徴とする段階的通気培養方法。 5、第1請求項ないし第4請求項のいずれか1項におい
て、前記培養槽に対する液面通気、膜面通気、液中通気
などの通気方式の段階的切り換え或いは加えは、培養液
中の溶存酸素濃度の状態をとらえて行うことを特徴とす
る段階的通気培養方法。 6、第1請求項ないし第4請求項のいずれか1項におい
て、前記培養槽に対する液面通気、膜面通気、液中通気
などの通気方式の段階的切り換え或いは加えは、培養物
の細胞の密度の状態をとらえて行うことを特徴とする段
階的通気培養方法。 7、第1請求項ないし第6請求項において、前記培養物
が動物細胞、植物細胞、微生物及びウィルスのいずれか
であることを特徴とする段階的通気培養方法。 8、培養槽に液面通気手段及び膜面通気手段の少なくと
も一つと、液中通気手段とを設け、 且つこれらの液面通気手段、膜面通気手段及び液中通気
手段を培養の段階に応じて切り換え或いは組み合わせて
作動させる手段とを備えてなることを特徴とする段階的
通気培養装置。 9、培養槽に液面通気手段及び膜面通気手段の少なくと
も一つと、液中通気手段とを設け、 且つ前記培養槽の培養液中の溶存酸素濃度を検出する手
段と、前記溶存酸素濃度の検出値を指標として前記液面
通気手段、膜面通気手段及び液中通気手段を設定のパタ
ーンに基づき切り換え或いは組み合わせて作動制御する
通気制御手段とを備えてなることを特徴とする段階的通
気培養装置。 10、培養槽に液面通気手段及び膜面通気手段の少なく
とも一つと、液中通気手段とを設け、 且つ前記培養槽内の培養物の細胞密度を検出する手段と
、前記細胞密度の検出値を指標として前記液面通気手段
、膜面通気手段及び液中通気手段を設定のパターンに基
づき切り換え或いは組み合わせて作動制御する通気制御
手段とを備えてなることを特徴とする段階的通気培養装
置。 11、第9請求項ないし第11請求項のいずれか1項に
おいて、前記培養槽の培養液内に酸素透過性の膜が浸漬
され、かつこの膜は、通気する気体の圧力を上昇させる
と膜面通気から液中通気に変わる細孔を有することを特
徴とする段階的通気培養装置。
[Claims] 1. A method for supplying oxygen to a culture tank, characterized in that oxygen is supplied by sequentially switching liquid surface ventilation, membrane surface ventilation, and submerged ventilation according to the stage of culture. Aerated culture method. 2. A method for supplying oxygen to a culture tank, which is a stepwise aerated culture characterized by adding membrane surface aeration after liquid surface aeration and then adding submerged aeration to supply oxygen depending on the stage of culture. Method. 3. The method for supplying oxygen to a culture tank is characterized in that at least one of liquid surface aeration and membrane surface aeration is performed first depending on the stage of culture, and then switching to submerged aeration to supply oxygen. A stepwise aerated culture method. 4. The method for supplying oxygen to a culture tank is characterized in that at least one of liquid surface aeration and membrane surface aeration is first performed depending on the stage of culture, and then submerged aeration is added to supply oxygen. A stepwise aerated culture method. 5. In any one of claims 1 to 4, stepwise switching or addition of ventilation methods such as liquid surface ventilation, membrane surface ventilation, and submerged ventilation to the culture tank may include A stepwise aerated culture method that is characterized by being carried out by monitoring the state of oxygen concentration. 6. In any one of claims 1 to 4, stepwise switching or addition of ventilation methods such as liquid surface ventilation, membrane surface ventilation, and submerged ventilation to the culture tank may A stepwise aerated culture method that is characterized by being carried out by monitoring the state of density. 7. The stepwise aerated culture method according to any one of claims 1 to 6, wherein the cultured material is any one of animal cells, plant cells, microorganisms, and viruses. 8. The culture tank is provided with at least one of liquid level ventilation means and membrane surface ventilation means, and submerged ventilation means, and these liquid level ventilation means, membrane surface ventilation means, and submerged ventilation means are adjusted according to the stage of culture. 1. A stepwise aerated culture device characterized by comprising: means for switching or combining the two methods. 9. The culture tank is provided with at least one of a liquid surface ventilation means and a membrane surface ventilation means, and a submerged ventilation means, and a means for detecting the dissolved oxygen concentration in the culture solution of the culture tank, and a means for detecting the dissolved oxygen concentration in the culture solution of the culture tank. A stepwise aerated culture characterized by comprising: an aeration control means for controlling the operation of the liquid level aeration means, membrane surface aeration means, and submerged aeration means based on a set pattern by switching or combining them based on a detected value as an index. Device. 10. The culture tank is provided with at least one of a liquid surface ventilation means and a membrane surface ventilation means, and a submerged ventilation means, and a means for detecting the cell density of the culture in the culture tank, and a detected value of the cell density. A stepwise aerated culture apparatus characterized by comprising: an aeration control means for controlling the operation of the liquid level aeration means, membrane surface aeration means, and submerged aeration means based on a set pattern by switching or combining them based on a set pattern. 11. In any one of claims 9 to 11, an oxygen-permeable membrane is immersed in the culture solution of the culture tank, and the membrane changes when the pressure of the gas to be aerated is increased. A stepwise aeration culture device characterized by having pores that change from surface aeration to submerged aeration.
JP33218690A 1990-11-29 1990-11-29 Stepwise aerobic culture and apparatus therefor Pending JPH04197170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33218690A JPH04197170A (en) 1990-11-29 1990-11-29 Stepwise aerobic culture and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33218690A JPH04197170A (en) 1990-11-29 1990-11-29 Stepwise aerobic culture and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH04197170A true JPH04197170A (en) 1992-07-16

Family

ID=18252133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33218690A Pending JPH04197170A (en) 1990-11-29 1990-11-29 Stepwise aerobic culture and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH04197170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160729A (en) * 2010-02-10 2011-08-25 Airtech Japan Ltd Tissue culturing apparatus for allowing arbitrary change in gas condition
WO2016110980A1 (en) * 2015-01-08 2016-07-14 オリンパス株式会社 Image acquisition apparatus and image acquisition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160729A (en) * 2010-02-10 2011-08-25 Airtech Japan Ltd Tissue culturing apparatus for allowing arbitrary change in gas condition
WO2016110980A1 (en) * 2015-01-08 2016-07-14 オリンパス株式会社 Image acquisition apparatus and image acquisition method

Similar Documents

Publication Publication Date Title
US5316905A (en) Culture medium supplying method and culture system
US5081035A (en) Bioreactor system
US7951555B2 (en) Membrane bioreactor
US5437998A (en) Gas permeable bioreactor and method of use
US20110129915A1 (en) Apparatus and method for incubating cell cultures
WO1990006991A1 (en) Process and apparatus for the bubble-free gassing of liquids, especially of culture media for propagating tissue cultures
WO2005083052B1 (en) Continuous culture apparatus with mobile vessel, allowing selection of filter cell variants
KR890004805B1 (en) Pressure incubator
JPH07506250A (en) Variable volume reactor type apparatus and method for culturing cellular material
US5032524A (en) Apparatus and process for the bubble-free gassing of liquids, especially of culture media for propagating tissue cultures
Zhang et al. A comparison of oxygenation methods fro high‐density perfusion culture of animal cells
JP2010124703A (en) Cell culture apparatus
JPH04197170A (en) Stepwise aerobic culture and apparatus therefor
JP2007222063A (en) Culture apparatus and method
JPH06261736A (en) Liquid culture unit
US4959322A (en) Culturing apparatus
JP3391835B2 (en) Gas dissolving apparatus and reaction apparatus including the same
EP0263634B1 (en) Culture medium supplying method and culture system
JPH06102014B2 (en) Apparatus for aerobic culture of cells and control method thereof
CN111040949B (en) Series perfusion bioreactor for batch production of large-section tissue engineering bone
JP4240525B2 (en) Cell culture and recovery method and apparatus
JPH04158781A (en) Culture device
JPH06133765A (en) Method for supplying oxygen and culture device used therefor
US20040132174A1 (en) Perfusion incubator
JPH022342A (en) Method for culturing biological cell having ph regulating and ammonia removing function and apparatus therefor