JPH0419713A - Waveguide type optical switch - Google Patents

Waveguide type optical switch

Info

Publication number
JPH0419713A
JPH0419713A JP12473090A JP12473090A JPH0419713A JP H0419713 A JPH0419713 A JP H0419713A JP 12473090 A JP12473090 A JP 12473090A JP 12473090 A JP12473090 A JP 12473090A JP H0419713 A JPH0419713 A JP H0419713A
Authority
JP
Japan
Prior art keywords
waveguide
waveguides
region
area
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12473090A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Hiroki Yaegashi
浩樹 八重樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP12473090A priority Critical patent/JPH0419713A/en
Publication of JPH0419713A publication Critical patent/JPH0419713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce an operating voltage required for output control over light by making the refractive index difference between waveguides larger at a center part (area I) in an area nearby the waveguides than in an area (II) except the area I, and providing control electrodes in both the areas I and II. CONSTITUTION:The waveguide type optical switch 10 which is a directional coupler type equipped with 1st and 2nd waveguides 12 and 14 put close so as to cause mutual light operation in an area III nearby the waveguides and the control electrodes 16 and 18 provided for the waveguides is so constituted that the refractive index between the waveguides is made larger at the center part I in the area nearby the waveguides than in the area II except the area I. The control electrodes 16 and 18 are provided on both the 1st area I and the area II except the center part. Consequently, light which is guided in the 1st waveguide 12 and light which is guided in the 2nd waveguide 14 are coupled relatively weakly in the area I and relatively strongly in the area II to reduce the operating voltage required for the output control over the light.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は導波型光スイッチ、特に方向T!:結合器型
の光スィッチに間する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a waveguide type optical switch, particularly in the direction T! : Connected to a coupler type optical switch.

(従来の技術) 従来より、導波型光スイッチとして、例えば文献工・西
原浩、春名正光、楠原敏明 共著 光集積回路 オーム
社 昭和60年 p304〜308に開示されるような
方向性結合器型のものかある。この光スィッチは、2本
の光導波路を近接配置しこれら導波路に対して制aii
極を設けた構造を有し、制御電極に印加される動作電圧
VOを半波長電圧V1とするときバー状態で光を出力し
、動作電圧V。I V o =Oとするときクロス状態
で光を出力する。
(Prior art) Conventionally, as a waveguide type optical switch, for example, a directional coupler type as disclosed in Optical Integrated Circuits co-authored by Hiroshi Nishihara, Masamitsu Haruna, and Toshiaki Kusuhara, Ohmsha, 1985, p. 304-308. Is there something like that? This optical switch arranges two optical waveguides close to each other and controls the waveguides.
It has a structure in which a pole is provided, and when the operating voltage VO applied to the control electrode is a half-wavelength voltage V1, it outputs light in a bar state, and the operating voltage V. When I V o =O, light is output in a cross state.

(発明が解決しようとする課題) しかしながら上述した従来スイッチは、半波長電圧v1
が大きく従って光の出力制御に要する最大の動作電圧V
。の値が大きくなるという問題点があった。
(Problem to be Solved by the Invention) However, the above-mentioned conventional switch has a half-wavelength voltage v1
is large, so the maximum operating voltage V required for controlling the light output
. There was a problem that the value of .

ここで、動作原理は異なるがマツハツエンダ−型(分岐
干渉型)の光変調器と素子長を同一として比較すれば、
マツハツエンダ−型の場合Vo”■、では(2本の導波
路間の伝搬定数差)X(素子長)=T[どなるが、上述
した従来スイッチの場合Vo=V+では(2本の導波路
間の伝搬定数とした場合、動作電圧V。=V、は導波路
間の伝搬定数差に比例して大きくなり、従って従来スイ
ッチの場合の最大の動作電圧VO=v、はマツハツエン
ダ−型での最大の動作電圧VO=V、のほぼ2倍となる
Although the operating principle is different, if we compare it with a Matsuhatsu Ender type (branching interference type) optical modulator assuming the same element length,
In the case of the Matsuhatsu Ender type switch, Vo"■, then (propagation constant difference between the two waveguides) When the propagation constant of This is approximately twice the operating voltage VO=V.

この発明の目的は上述した従来の問題点を解決するため
、導波路近接領域の中央部における導波路間の光の結合
を小ざくした導波型光スイッチを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a waveguide type optical switch in which the coupling of light between waveguides in the center of a region adjacent to the waveguides is reduced in order to solve the above-mentioned conventional problems.

(課題を解決するための手段) この目的の達成を図るため、この発明の導波型光スイッ
チは、 導波路近接領域において光の相互作用を生ずるように近
接させた第一及び第二の導波路と、導波路に対して設け
た制御電極とを備えて成る方向性結合器型の導波型光ス
イッチにおいて、導波路近接領域の中央部における導波
路間の屈折率差を、導波路近接領域の中央部を除く領域
における導波路間の屈折率差よりも大きくし、制御電極
を、導波路近接領域の中央部及び該中央部を除く領域の
双方に設けることを特徴とする。
(Means for Solving the Problems) In order to achieve this object, the waveguide type optical switch of the present invention includes first and second guides placed close to each other so as to cause light interaction in a region near the waveguide. In a directional coupler-type waveguide optical switch comprising a waveguide and a control electrode provided for the waveguide, the difference in refractive index between the waveguides at the center of the region adjacent to the waveguide is It is characterized in that the refractive index difference between the waveguides is greater than the difference in refractive index between the waveguides in the region excluding the central portion of the region, and the control electrode is provided both in the central portion of the region near the waveguide and in the region excluding the central portion.

(作用) このような構成の導波型光スイッチによれば、導波路近
接領域の中央部(以下、領域工)における導波路間の屈
折率差を、導波路近接領域の中央部を除く領域(以下、
領域II )における導波路間の屈折率差よりも大きく
する。
(Function) According to the waveguide type optical switch having such a configuration, the refractive index difference between the waveguides in the central part of the waveguide-proximal region (hereinafter referred to as "region") can be reduced to a region other than the central part of the waveguide-proximal region. (below,
The difference in refractive index between the waveguides in region II) is made larger than that in region II).

このように領域工及びHにおいて屈折率差を形成するこ
とによって、動作電圧V。−〇の状態で第一及び第二の
導波路間に伝搬定数差Δβ、を生しさせ、かつ伝搬定数
差Δβ、を第一及び第二の導波路の結合係数よりも大き
くすることができる。この結果、第一の導波路を導波す
る光と第二の導波路を導波する光とは、領域工において
は相対的に弱く結合すると共に領域Hにおいては相対的
に強く結合し、これがため光の出力制御のために要する
動作電圧V。”V+(V+は半波長電圧)を低減できる
。尚、領域工及び■において第一及び第二導波路を導波
する光は光の相互作用を生ずるように結合する。
By forming a refractive index difference in the regions H and H in this way, the operating voltage V. − It is possible to generate a propagation constant difference Δβ between the first and second waveguides in the state of 〇, and to make the propagation constant difference Δβ larger than the coupling coefficient between the first and second waveguides. . As a result, the light guided through the first waveguide and the light guided through the second waveguide are relatively weakly coupled in the region H and relatively strongly coupled in the region H. Therefore, the operating voltage V required for controlling the light output. ``V+ (V+ is a half-wavelength voltage) can be reduced.In addition, in the area processing and (1), the light guided through the first and second waveguides is coupled so as to cause optical interaction.

さらにこの発明の導波型光スイッチによれば、制御電極
を、領域■及び領域■の双方に設ける。
Further, according to the waveguide optical switch of the present invention, control electrodes are provided in both region (1) and region (2).

領域Hにおいて導波路に沿って制御電極か占める領域の
長さを大きくするに従い、動作電圧V。=v1の低減量
を増加させることができる。動作電圧V。の低減のため
には、制御電極を導波路近接領域の始端から終端まで設
けるのが最も好ましい。
As the length of the region occupied by the control electrode along the waveguide in region H increases, the operating voltage V increases. = v1 reduction amount can be increased. Operating voltage V. In order to reduce this, it is most preferable to provide the control electrode from the beginning to the end of the region near the waveguide.

(実施例) 以下、図面%9照し、この発明の実施例につき説明する
。尚、図面はこの発明が理解できる程度に概略的に示し
であるにすぎず、従ってこの発明を図示例に限定するも
のではない。
(Examples) Examples of the present invention will be described below with reference to the drawings. It should be noted that the drawings are only schematic representations to the extent that the invention can be understood, and therefore the invention is not limited to the illustrated examples.

第1図はこの発明の第一実施例の構成を概略的に示す平
面図である。
FIG. 1 is a plan view schematically showing the configuration of a first embodiment of the present invention.

同図にも示すように、この実施例の導波型光スイッチ1
0は方向性結合器型の光スィッチであって、導波路近接
領域■において光の相互作用そ生ずるように近接させた
第一及び第二の導波路12及び14と、光の出力制御の
ため導波路12.14に対して設けた制御電極16、]
8とを備えて成る。第1図中、これら電極16.18に
ハツチングを付して示した。
As shown in the same figure, the waveguide type optical switch 1 of this embodiment
0 is a directional coupler type optical switch, which includes first and second waveguides 12 and 14 that are placed close to each other so as to cause light interaction in the waveguide adjacent region (2), and a light switch for controlling the light output. Control electrode 16, provided for waveguide 12.14]
8. In FIG. 1, these electrodes 16 and 18 are shown with hatching.

そして、導波路近接領域■の中央部■における導波路1
2.14間の屈折率差α(I)を、導波路近接領域mの
中央部工を除く領域■における導波路12.14間の屈
折率差α(n)よりも大きくし、制御電極16.18を
領域工及び領域nの双方に設ける。
Then, the waveguide 1 in the center part ■ of the waveguide adjacent region ■
The refractive index difference α(I) between the waveguides 12 and 14 is made larger than the refractive index difference α(n) between the waveguides 12 and 14 in the area (2) excluding the central part of the waveguide adjacent area m, and the control electrode 16 .18 is provided in both area engineering and area n.

第1図及び第2図を参照しより詳細に説明する。第2図
は第−実施例の導波路の説明に供する平面図であり、第
一実施例の導波型光スイ・ンチ10の構成を制御電極1
6.18を省略して示した図である。
This will be explained in more detail with reference to FIGS. 1 and 2. FIG. 2 is a plan view for explaining the waveguide of the first embodiment.
6.18 is a diagram omitted.

この実施例では、電気光学効果を有する基板20例えば
LiNbO3基板を用意し、この基板2oに導波路12
.14v!設ける。第2図にも示すように、近接領域■
においては導波路延在方向Hにおける領域■の中心位M
を通る対称線Sに関し導波路12.14の形状特に平面
形状及び又は立体的な形状がほぼ線対称となるようにな
し、かつ近接領域mにおいては導波路12.14を直線
状となしてこれらを互いに平行に配置する。
In this embodiment, a substrate 20 having an electro-optic effect, for example a LiNbO3 substrate, is prepared, and a waveguide 12 is formed on this substrate 2o.
.. 14v! establish. As shown in Figure 2, the adjacent area ■
In , the center position M of region ■ in the waveguide extending direction H
The shape of the waveguide 12.14, particularly the planar shape and/or three-dimensional shape, is made to be approximately line symmetrical with respect to the line of symmetry S passing through the line, and in the adjacent region m, the waveguide 12.14 is linearly shaped. are placed parallel to each other.

そして領域工及びHにおける導波路間の屈折率差α(I
)及びα(H)を導波路幅によって制御する。ここで第
2図にも示すように、領域Iにおける導波路12の導波
路幅をd (I)及び導波路14の導波路幅をD (I
) 、また第2図の左側の領域■における導波路]2の
導波路幅をd(Ill)及び導波路14の導波路幅tD
 (Ill)、ざらに藁2図の右側の領域■における導
波路12の導波路幅をd(Ur)及び導波路14の導波
路幅tD (II r)と表せば、次式(1)〜(2)
を満足させるように各導波路幅を設定すればα(1)〉
α(II)とすることができる。
Then, the refractive index difference α(I
) and α(H) are controlled by the waveguide width. Here, as shown in FIG. 2, the waveguide width of the waveguide 12 in region I is d (I), and the waveguide width of the waveguide 14 is D (I
), and the waveguide width of the waveguide]2 in the region (■) on the left side of FIG. 2 is d(Ill), and the waveguide width of the waveguide 14 is tD
(Ill), if the waveguide width of the waveguide 12 in the region (■) on the right side of Figure 2 is expressed as d (Ur) and the waveguide width tD (II r) of the waveguide 14, the following equation (1) ~ (2)
If the width of each waveguide is set to satisfy α(1)〉
α(II).

d(1) −DCIN > 1d(III)−D(Il
l)l・・・(1)d(I) −〇(I)l > 1d
(Ilr)−D(Ilrl ・−・(2)この実施例で
は領域Hにおける導波路間の屈折率差α(n)を、ほぼ
零とするべく、d(IIr)−D(IIr)= d(I
II) −D(III)=○となるようにする。
d(1) −DCIN > 1d(III) −D(Il
l)l...(1)d(I) -〇(I)l>1d
(Ilr)-D(Ilrl...(2) In this example, in order to make the refractive index difference α(n) between the waveguides in region H almost zero, d(IIr)-D(IIr)=d (I
II) -D(III)=○.

このようにα(、II )ξ○とすることによって、動
作電圧V。=0のとき光を領域Hにおいて導波路12か
ら14或は14から12へ移行させてクロス状態を得る
ことかできる。
By setting α(,II)ξ○ in this way, the operating voltage V. When =0, the light can be transferred from the waveguide 12 to 14 or from 14 to 12 in region H to obtain a cross state.

そしてこの実施例では第1図にも示すように、制御電極
16.18を、近接領域■の始端Xから終端Yまて延在
させて設ける。尚、図中の符号12a及び12bは導波
路12の光の入力端及び出力端、また14a及び14b
は導波路14の光の入力端及び出力端を示す。
In this embodiment, as shown in FIG. 1, control electrodes 16, 18 are provided extending from the starting end X to the ending end Y of the adjacent region (2). Note that the symbols 12a and 12b in the figure are the optical input end and output end of the waveguide 12, and 14a and 14b.
denotes the light input end and output end of the waveguide 14.

次にこの実施例の導波型光スイッチ10に閉して、光が
近接領域■の始端位置Xにおいて導波路12に入射した
場合に、近接領域■の終端位置Yにおいて導波路14で
得られる光の出力パワーPにつき結合方程式を用いて考
えれば、この場合の出力パワーPは次頁に示す(3)式
で表せる。
Next, when the waveguide type optical switch 10 of this embodiment is closed and light is incident on the waveguide 12 at the starting end position If we consider the optical output power P using a coupling equation, the output power P in this case can be expressed by equation (3) shown on the next page.

(3)式中pcは結合長を表しAc = (T[/2)
/K (Kは結合係数)、またΔB、は制御電極に電圧
(VO≠0)を印加したことにより電圧VDの大きさに
応じて導波路12.1411ffiに生ずる伝搬定数差
及びΔ83は制御電極に電圧(V。
(3) In the formula, pc represents the bond length Ac = (T[/2)
/K (K is the coupling coefficient), ΔB is the propagation constant difference that occurs in the waveguide 12.1411ffi according to the magnitude of the voltage VD by applying a voltage (VO≠0) to the control electrode, and Δ83 is the difference in the propagation constant that occurs in the waveguide 12.1411ffi when a voltage (VO≠0) is applied to the control electrode. voltage (V.

=O)を印加しない状態において領域工の導波路Mの屈
折率差に起因して生じる伝搬定数差を表す、ΔB、の悌
は動作電圧V。に比例して変化する。尚、Δβ、及びΔ
β、は互いに独立な変数である。
The value of ΔB, which represents the propagation constant difference caused by the refractive index difference of the waveguide M in the region when no voltage is applied, is the operating voltage V. changes in proportion to. In addition, Δβ and Δ
β, are mutually independent variables.

(3)式を用いた解析によれば、β/L1j!、成る特
定の値γとしたときに、Δβ、・L/■=o′¥なわち
動作電圧V。=○でこの実施例の導波型光スイッチ10
をクロス状態で動作させるには、次式(4)及び(5)
を満足するようにL / 1 c及びΔβ8・L/n%
設定すればよいことがわかった。
According to the analysis using equation (3), β/L1j! , Δβ, ·L/■=o′\, that is, the operating voltage V. =○ indicates the waveguide type optical switch 10 of this embodiment.
To operate in a crossed state, use the following equations (4) and (5).
L/1 c and Δβ8・L/n% to satisfy
I found out that I need to set it.

菓3図に解析結果の一例を示す。第3図は8カバワーP
を縦軸に及びΔβ、・L/vl−横軸に取り、A/L=
1/3、L/I2.、=1.5及びΔβ、・L/T[=
5.8とした場合の、ΔB。
Figure 3 shows an example of the analysis results. Figure 3 shows 8 cover P.
is taken on the vertical axis and Δβ, ·L/vl-on the horizontal axis, A/L=
1/3, L/I2. ,=1.5 and Δβ,・L/T[=
ΔB when set to 5.8.

L/7+の変化に対する出力パワーPの変化を示す。It shows the change in output power P with respect to the change in L/7+.

式(3)を用いた解析によれば、(1/L−173とし
たとき動作電圧v0=0で導波型光スイッチ]Oをクロ
ス状態で動作させて入力端12aから入射した光を出力
端14bから出力させるためには、L/I2c: =1
.5及び△β3 ・L/T′[=5.8とすればよい、
一方、このように!/L=1/3、L#c=1.s及び
Δβ、・L/T[=5.8とした場合、M3図からも理
解できるように、動作電圧V。そ調整して八〇、・L/
T[=1.3(図中、矢印へで示す値)となるようにし
たとき出力パワーPは(まぼ零となつ従っで導波型光ス
イッチ10をバー状態で動作させて入力端12aから入
射した光を出力端12bから出力させることかできる。
According to the analysis using equation (3), (when 1/L-173, the operating voltage v0 = 0, the waveguide optical switch) is operated in a crossed state, and the light incident from the input end 12a is output. In order to output from the end 14b, L/I2c: =1
.. 5 and △β3 ・L/T'[=5.8,
On the other hand, like this! /L=1/3, L#c=1. s and Δβ, ·L/T[=5.8, as can be understood from diagram M3, the operating voltage V. Adjust that to 80,・L/
When T[=1.3 (the value indicated by the arrow in the figure), the output power P becomes (nearly zero). Therefore, the waveguide optical switch 10 is operated in the bar state and the input terminal 12a is It is possible to output the light incident from the output end 12b.

従来の方向性結合器型のものでは、Δβ、・L/yr=
1.7(図中、矢印Bで示す値)となるように動作電圧
V。を調整したときバー状態で動作するので、光の出力
制御に必要な動作電圧V。−V+  (V+は半波長電
圧)はこの実施例のほうが低くなる。この実施例によれ
ばバー状態を得るため必要なΔB、・L/T[を20%
以上従来よりも低くすることができる。
In the conventional directional coupler type, Δβ,・L/yr=
1.7 (value indicated by arrow B in the figure). Since it operates in the bar state when adjusting the operating voltage V required for controlling the light output. -V+ (V+ is a half-wave voltage) is lower in this embodiment. According to this example, ΔB,・L/T [necessary to obtain the bar state] is 20%
This can be lowered than in the past.

以下に解析結果の他の例■〜■7i!挙げる。Below are other examples of analysis results■~■7i! List.

■A/L=0.5としたとき動作電圧V。=Oでクロス
状態とするには、 L/β。=2及び△β、・L/TT=3.4とすればよ
い。このようにしたとき動作電圧V。を調整して△β、
・L/TI=1.4となるようにすればバー状態か得ら
れる。
■Operating voltage V when A/L=0.5. To create a cross state at =O, L/β. =2 and Δβ, L/TT=3.4. When this is done, the operating voltage V. Adjust △β,
・If L/TI=1.4, a bar state can be obtained.

或はし/β。=2及び△β、・し/TI=7.8とすれ
ばよい。このようにしたとき動作電圧V。を調整してΔ
β、・L/T[=1.25となるようにすればバー状態
か得られる。
Orashi/β. =2 and Δβ, ./TI=7.8. When this is done, the operating voltage V. Adjust Δ
By setting β,·L/T[=1.25, a bar state can be obtained.

■ρ/L=0.7としたとき動作電圧V。−〇でクロス
状態とするには、 L、#c=3.5及び八β、 ・L/n=4.4とすれ
ばよい。このようにしたとき動作電圧V。を調整してΔ
β、・L/T[=1.4となるようにすればバー状態が
得られる。
■ Operating voltage V when ρ/L=0.7. - To create a cross state with 〇, L, #c = 3.5 and 8β, L/n = 4.4. When this is done, the operating voltage V. Adjust Δ
By setting β,·L/T[=1.4, a bar state can be obtained.

尚、上述の解析では動作電圧V0=○でクロス状態を得
るようにA/L、L/β0及びΔB。
In the above analysis, A/L, L/β0 and ΔB are set so as to obtain a cross state when the operating voltage V0=○.

し/T[を設計するようにしたが、動作電圧v0≠OT
−リロス状態を得るようにρ/L、L/β。
/T[, but the operating voltage v0≠OT
- ρ/L, L/β so as to obtain a reloss condition.

及びΔ3.・L/TTを設計することも可能である。and Δ3. - It is also possible to design L/TT.

さらに固有モードの解析により、この実施例の導波型光
スイッチ10でバー状態を得るための条件を求めればこ
の条件は次式(6)のように表せ領域■における屈折率
差α(1)を領域Hにおける屈折率差α(I’l)より
も大きくしているのでΔβ、〉〉Kとすれば、(4)式
を満足する条件のもとて式(6)から次頁に示す(7)
式を得ることができる。
Furthermore, by analyzing the eigenmodes, the conditions for obtaining a bar state in the waveguide optical switch 10 of this embodiment can be found. This condition can be expressed as the following equation (6). is larger than the refractive index difference α(I'l) in region H, so if Δβ,〉〉K, then under the condition that formula (4) is satisfied, from formula (6), the following is shown in the next page. (7)
We can obtain the formula.

(7)式においでA−+Lとすれば△β、・し/■→1
となり、従って領域■の長さβを近接領域■の長さしに
近づけるに従って動作電圧。=■、を減少古せでゆくこ
とができる。
In equation (7), if A−+L, then △β, ・shi/■ → 1
Therefore, as the length β of the region ■ approaches the length of the adjacent region ■, the operating voltage increases. =■, can be decreased as it ages.

第4図は菌−実施例の変形例の構成を概略的に示す平面
図である。尚、上述した第−実施例の構成成分に対応す
る構成成分については同一の符号を付して示す。
FIG. 4 is a plan view schematically showing the structure of a modified example of the bacteria embodiment. It should be noted that constituent components corresponding to those of the above-mentioned embodiment are designated by the same reference numerals.

この変形例では導波路14に対して設けた制御電極]8
を3個の電極部材18a〜18cから構成し、電極部材
18aを第4図においで左側の領域Hに、電極部材18
bを領域工に、及び電極部材18c!第4図において右
側の領域Hに設けでいるほかは、第−実施例と同様の構
成となっている。設計の上では、例えば動作電圧V。=
=○でクロス状態か得られるようにn / L 、 L
 / Rc及びΔβ、・L/πを設計したにもかかわら
ず、作成誤差により動作電圧VO=0でクロス状態が得
られない導波型光スイ・ンチ10が完成したとしても、
各領域■、■毎に分割して設けた電極部材18a〜18
cに印加する電圧を任意好適に調整することによって、
クロス状態を得ることかできる。従って作成精度の緩和
を図れる。
In this modification, the control electrode provided for the waveguide 14]8
is composed of three electrode members 18a to 18c, and the electrode member 18a is placed in the area H on the left side in FIG.
b for area engineering, and electrode member 18c! The configuration is the same as that of the first embodiment except that it is provided in the region H on the right side in FIG. In design, for example, the operating voltage V. =
= n/L, L so that a cross state can be obtained with ○
Even if a waveguide optical switch 10 is completed in which a cross state cannot be obtained at the operating voltage VO = 0 due to manufacturing errors despite designing /Rc, Δβ, ·L/π,
Electrode members 18a to 18 provided separately for each area (■) and (■)
By arbitrarily adjusting the voltage applied to c,
It is possible to obtain a cross state. Therefore, the creation accuracy can be relaxed.

第5図はこの発明の第二実施例の構成を概略的に示す平
面図である。尚、上述した第一実施例の構成成分に対応
する構成成分については同一の符号を付して示す。
FIG. 5 is a plan view schematically showing the configuration of a second embodiment of the present invention. It should be noted that constituent components corresponding to those of the first embodiment described above are denoted by the same reference numerals.

第二実施例では、導波路間の屈折率差を、屈折率制御物
質の導波路への添加によって制御する。
In the second embodiment, the refractive index difference between the waveguides is controlled by adding a refractive index controlling substance to the waveguides.

これと共に導波路12.14の導波路幅特に領域工及び
Hにおける導波路幅を同一とする。このほかは上述した
第−実施例と同様の構成となっている。第5図中、屈折
率制御物質の添加領域22を一点鎖線で囲み点を付して
示した。
At the same time, the waveguide widths of the waveguides 12 and 14, especially the waveguide widths in the area and H, are made the same. Other than this, the configuration is the same as that of the above-described first embodiment. In FIG. 5, the region 22 to which the refractive index controlling substance is added is surrounded by a dashed line and marked with a dot.

第6図は第二実施例の導波路及び屈折率制御物質の添加
領域の説明に供する図である。
FIG. 6 is a diagram for explaining the waveguide and the region to which the refractive index controlling substance is added in the second embodiment.

第5図及び第6図にも示すように、第二実施例では屈折
率制御物質の添加領域22を平面的にみたとき領域■の
導波路12及び基板20の部分を含むように設定しこの
添加領域22に屈折率制御物質を添加する。添加領域2
2の深さは導波路]2の深さ以上とするようにする。導
波路14に対しては屈折率制御物質の添加は行なわない
。このように添加することによって、領域工における導
波路間の屈折率差α(I)を領域nにおける導波路間の
屈折率差α(11)よりも大きくすることかできる。
As shown in FIGS. 5 and 6, in the second embodiment, the region 22 doped with the refractive index controlling substance is set to include the waveguide 12 and the substrate 20 in region (2) when viewed in plan. A refractive index controlling substance is added to the doped region 22 . Addition area 2
The depth of waveguide 2 should be greater than or equal to the depth of waveguide 2. No refractive index controlling substance is added to the waveguide 14. By adding in this manner, the refractive index difference α(I) between the waveguides in the area can be made larger than the refractive index difference α(11) between the waveguides in the area n.

基板20 ’: L I N b 03基板或はLiT
aO3基板とした場合には、屈折率制御物質に例えばT
iやプロトンを用いればよい。
Substrate 20': L I N b 03 substrate or LiT
In the case of an aO3 substrate, the refractive index controlling substance is, for example, T.
i or proton may be used.

図示例では添加領域22を平面的にみたとき領域Hの導
波路]2及び基板20の部分を含むように設定したが、
平面的にみたとき領域■の導波路]2のみを含むように
設定しでもよい、、領域■の導波路12及び基板20の
部分を含むように設定した場合には添加領域22の屈折
率を導波路12の屈折率よりも大きくしてもよいし小す
くシてもよいしまたこれら22及び]2の屈折率を等し
くしてもよい。領域■1の導波路12のみを含むように
した場合には添加領域22の屈折率を導波路12の屈折
率よりも大きくするか小さくする。
In the illustrated example, when the doped region 22 is viewed in plan, it is set to include the waveguide] 2 of the region H and the substrate 20, but
When viewed from above, the refractive index of the doped region 22 may be set to include only the waveguide 12 and the substrate 20 of the region (2). The refractive index of the waveguide 12 may be larger or smaller than that of the waveguide 12, or the refractive indices of these 22 and ]2 may be made equal. When only the waveguide 12 in region (1) is included, the refractive index of the doped region 22 is made larger or smaller than the refractive index of the waveguide 12.

また図示例では導波路14に対しては屈折率制御物質を
添加しなかったが、導波路12.14の双方に対して屈
折率制御物質を添加して領域Iの屈折率差α(I)を領
域■の屈折率差α(II)よりも大きくするようにして
もよい。
Further, in the illustrated example, the refractive index control substance was not added to the waveguide 14, but the refractive index control substance was added to both the waveguides 12 and 14 to increase the refractive index difference α(I) in the region I. may be made larger than the refractive index difference α(II) in region (2).

この発明は上述した実施例にのみ限定されるものではな
く、従って各構成成分の形状、配設値1、寸法、形成方
法、形成材料、数懐的条件およびそのほかを任意好適に
変更することができる。
This invention is not limited to the above-described embodiments, and therefore, the shape, arrangement value 1, dimensions, forming method, forming material, numerical conditions, and others of each component may be changed as desired. can.

例えば上述した実施例では近接領域■における導波路の
平面形状を直線状の形状としたが、近接領域■にあける
導波路の平面形状を曲線状としてもよい。曲線状とする
場合、近接する第一及び第二の導波路が領域工において
は遠ざかり領域Hにおいては近づくような円弧状とする
のがよい。
For example, in the above-described embodiment, the planar shape of the waveguide in the proximate region (2) is a linear shape, but the planar shape of the waveguide in the proximal region (2) may be curved. In the case of a curved shape, it is preferable that the first and second waveguides that are close to each other have an arcuate shape such that they move away from each other in the region H and approach each other in the region H.

また(1)及び(2)式を満足するのであれば、必ずし
もd(IIr) −D(IIr)= d(III) −
D(III)=Oとしなくともよい。
Also, if formulas (1) and (2) are satisfied, d(IIr) −D(IIr)= d(III) −
It is not necessary to set D(III)=O.

(発明の効果) 上述した説明からも明らかなように、この発明の導波型
光スイッチによれば、導波路近接領域の中央部(領域工
)における導波路間の屈折率差を、導波路近接領域の中
央部を除く領域(領域■)における導波路間の屈折率差
よりも大きくするので、動作電圧VO=○の状態で第一
及び第二の導波路間に伝搬定数差△β、1生じさせ、か
つ伝搬定数差△β、を第一及び第二の導波路の結合係数
よりも大きくすることができる。この結果、第一の導波
路を導波する光と第二の導波路を導波する光とは、領域
工においては相対的に弱く結合すると共に領域■におい
ては相対的に強く結合し、これがため光の出力制御のた
めに要する動作電圧V。=V+(V+は半波長電圧)を
低減できる。
(Effects of the Invention) As is clear from the above description, according to the waveguide optical switch of the present invention, the difference in refractive index between the waveguides in the central part (region area) of the area adjacent to the waveguide can be reduced by changing the refractive index difference between the waveguides. Since it is made larger than the refractive index difference between the waveguides in the region excluding the central part of the adjacent region (region ■), the propagation constant difference Δβ, 1, and the propagation constant difference Δβ can be made larger than the coupling coefficient between the first and second waveguides. As a result, the light guided through the first waveguide and the light guided through the second waveguide are relatively weakly coupled in the region and relatively strongly coupled in the region Therefore, the operating voltage V required for controlling the light output. =V+ (V+ is a half-wave voltage) can be reduced.

ざらにこの発明の導波型光スイッチによれば、制御電極
を、領域工及び領域■の双方に設ける。
Roughly speaking, according to the waveguide type optical switch of the present invention, control electrodes are provided in both the area 1 and the area (2).

領域■において導波路に沿って制御電極が占める領域の
広さ或は長さを大きくするに従い、最大の動作電圧V0
の低減量を増加きせることができる。
As the width or length of the area occupied by the control electrode along the waveguide in region (■) increases, the maximum operating voltage V0 increases.
The amount of reduction can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例の構成を概略的に示す平
面図、 第2図はこの発明の篤−実施例の導波路の説明に供する
平面図、 菓3図はこの発明の第一実施例の解析結果の一例を示す
図、 菓4図はこの発明の菓−実施例の変形例の構成を概略的
に示す平面図、 第5図はこの発明の第二実施例の構成を概略的に示す平
面図、 第6図はこの発明の第二実施例の導波路及び屈折率制御
物質の添加領域の説明に供する平面図である。 10・・・導波型光スイッチ 12.14・・・導波路 16.18・・・制御電極2
2・・・屈折率制御物質の添加領域 ■・・・導波路近接領域の中央部 ■・・・導波路近接領域の中央部を除く領域■・・・導
波路近接領域。 10導波型光スイ・ンチ 2.14導波路 2a、14a入力端 2b、14b出力端 16.18制御電極 20基板 第−実施例の平面図 第1図 ■ 第 寅施例の導波路の説明図 ΔB、L/TT 第−寅施例の解析結果の一例 第3図 8a +8b 8c 第−寅施例の変形例 第4 図 菟二英施例の平面図 第5図
FIG. 1 is a plan view schematically showing the configuration of a first embodiment of the present invention, FIG. 2 is a plan view illustrating a waveguide according to an advanced embodiment of the present invention, and FIG. FIG. 4 is a plan view schematically showing the configuration of a modified example of the embodiment of the present invention, and FIG. 5 is a diagram showing an example of the configuration of the second embodiment of the present invention. FIG. 6 is a plan view schematically showing a waveguide and a region to which a refractive index controlling substance is added according to a second embodiment of the present invention. 10... Waveguide type optical switch 12.14... Waveguide 16.18... Control electrode 2
2...Refractive index controlling substance doped region■...Central part of the region near the waveguide■...A region other than the center part of the region near the waveguide■...Region near the waveguide. 10 Waveguide type optical switch 2.14 Waveguide 2a, 14a Input end 2b, 14b Output end 16.18 Control electrode 20 Substrate Plan view of the first embodiment Figure 1 ■ Description of the waveguide of the third embodiment Figure ΔB, L/TT An example of the analysis result of the 1st Tora Example. 3. 8a + 8b 8c. Modification of the 1st Tora Example. 4. A plan view of the 2nd Example.

Claims (5)

【特許請求の範囲】[Claims] (1)導波路近接領域において光の相互作用を生ずるよ
うに近接させた第一及び第二の導波路と、導波路に対し
て設けた制御電極とを備えて成る方向性結合器型の導波
型光スイッチにおいて、 導波路近接領域の中央部における導波路間の屈折率差を
、前記導波路近接領域の中央部を除く領域における導波
路間の屈折率差よりも大きくし、 前記制御電極を、前記導波路近接領域の中央部及び該中
央部を除く領域の双方に設けることを特徴とする導波型
光スイッチ。
(1) A directional coupler type guide comprising first and second waveguides placed close to each other so as to cause light interaction in a region near the waveguide, and a control electrode provided for the waveguide. In the wave-type optical switch, the refractive index difference between the waveguides in the central part of the waveguide-proximal region is made larger than the refractive index difference between the waveguides in the region other than the central part of the waveguide-proximate region, and the control electrode is provided in both a central portion of the waveguide proximate region and a region excluding the central portion.
(2)前記導波路間の屈折率差を、導波路幅によって制
御することを特徴とする請求項1に記載の導波型光スイ
ッチ。
(2) The waveguide optical switch according to claim 1, wherein the refractive index difference between the waveguides is controlled by the waveguide width.
(3)前記導波路間の屈折率差を、屈折率制御物質の導
波路への添加によって制御することを特徴とする請求項
1に記載の導波型光スイッチ。
(3) The waveguide optical switch according to claim 1, wherein the refractive index difference between the waveguides is controlled by adding a refractive index controlling substance to the waveguides.
(4)前記導波路近接領域の中央部を除く領域における
導波路間の屈折率差を、ほぼ零とすることを特徴とする
請求項1〜3のいずれか一項に記載の導波型光スイッチ
(4) The waveguide type light according to any one of claims 1 to 3, wherein the refractive index difference between the waveguides in a region other than a central portion of the waveguide-proximate region is approximately zero. switch.
(5)前記制御電極を、前記導波路近接領域の始端から
終端まで設けたことを特徴とする請求項1〜4のいずれ
か一項に記載の導波型光スイッチ。
(5) The waveguide optical switch according to any one of claims 1 to 4, wherein the control electrode is provided from a starting end to a terminal end of the waveguide adjacent region.
JP12473090A 1990-05-15 1990-05-15 Waveguide type optical switch Pending JPH0419713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12473090A JPH0419713A (en) 1990-05-15 1990-05-15 Waveguide type optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12473090A JPH0419713A (en) 1990-05-15 1990-05-15 Waveguide type optical switch

Publications (1)

Publication Number Publication Date
JPH0419713A true JPH0419713A (en) 1992-01-23

Family

ID=14892690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12473090A Pending JPH0419713A (en) 1990-05-15 1990-05-15 Waveguide type optical switch

Country Status (1)

Country Link
JP (1) JPH0419713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019389A1 (en) * 1992-03-18 1993-09-30 The Furukawa Electric Co., Ltd. Waveguide type optical part
US7308745B2 (en) 2002-11-25 2007-12-18 Satisloh Gmbh Method and device for edge-machining of a plastic optical lens and a combination tool therefor
JP2008516785A (en) * 2004-10-14 2008-05-22 ナショナル オプトロニクス インコーポレイテッド Multi-blade router tool, lens processing machine equipped with multi-blade router tool, and method for cutting edge of spectacle lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993019389A1 (en) * 1992-03-18 1993-09-30 The Furukawa Electric Co., Ltd. Waveguide type optical part
US5440656A (en) * 1992-03-18 1995-08-08 The Furukawa Electric Co., Ltd. Waveguide type optical component having optical coupling sections with different coupling efficiencies
US7308745B2 (en) 2002-11-25 2007-12-18 Satisloh Gmbh Method and device for edge-machining of a plastic optical lens and a combination tool therefor
JP2008516785A (en) * 2004-10-14 2008-05-22 ナショナル オプトロニクス インコーポレイテッド Multi-blade router tool, lens processing machine equipped with multi-blade router tool, and method for cutting edge of spectacle lens

Similar Documents

Publication Publication Date Title
US11681168B2 (en) Silicon-based modulator with optimized doping profile
US5499308A (en) Guided-wave optical multi/demultiplexer
Levy et al. A new design for ultracompact multimode interference-based 2 x 2 couplers
US7860358B2 (en) Multimode interference waveguide type optical switch
US10551719B2 (en) Integrated quantum information processing controlled phase gate
EP3314321B1 (en) A multi-mode interference coupler
EP0335672A2 (en) Polarization-independent optical waveguide switch
US20050054199A1 (en) Optical waveguide devices having adjustable waveguide cladding
JPH0419713A (en) Waveguide type optical switch
Varshney et al. A simple and accurate model analysis of strip-loaded optical waveguides with various index profiles
JPS597335A (en) Optically integrated modulation device independent of polarized state of incident light
Goel et al. Design considerations for low switching voltage crossing channel switches
DE3322508A1 (en) Optical single-mode strip waveguide junction
JP5467414B2 (en) Optical functional waveguide
Jörg et al. Experimental observation of Aharonov-Bohm caging using orbital angular momentum modes in optical waveguides
Osgood jr et al. Three-Dimensional Waveguide
DE69628422T2 (en) POLARIZATION-INDEPENDENT ELECTROOPTICALLY SWITCHED DIRECTOR
Jovanović et al. Asymmetric defects in one-dimensional photonic lattices
Truong et al. Power splitting ratio couplers based on MMI structures with high bandwidth and large tolerance using silicon waveguides
GB2438222A (en) Multimode interference waveguide coupler
JPH03200937A (en) Waveguide type optical switch
JPH0785152B2 (en) Waveguide optical switch
JPH0820653B2 (en) Waveguide type optical switch
JPS63142333A (en) Waveguide type optical switch
JPH0254930B2 (en)