JPH04196684A - Coil drive circuit - Google Patents

Coil drive circuit

Info

Publication number
JPH04196684A
JPH04196684A JP2321625A JP32162590A JPH04196684A JP H04196684 A JPH04196684 A JP H04196684A JP 2321625 A JP2321625 A JP 2321625A JP 32162590 A JP32162590 A JP 32162590A JP H04196684 A JPH04196684 A JP H04196684A
Authority
JP
Japan
Prior art keywords
coil
circuit
current
negative resistance
drive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321625A
Other languages
Japanese (ja)
Inventor
Misao Furuya
操 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2321625A priority Critical patent/JPH04196684A/en
Publication of JPH04196684A publication Critical patent/JPH04196684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Television Scanning (AREA)

Abstract

PURPOSE:To correct the linearity of a deflection current over a wide range by means of a circuit able to be circuit integration by connecting a negative resistance circuit in series with a coil and setting a negative resistance to be almost cancelled with the resistance of the coil. CONSTITUTION:A negative resistance circuit 1 consists of two operational amplifiers 2, 3 connecting a positive power supply and five resistors R1-R5 is connected in series with a coil 6 and a negative resistance of the negative resistance circuit 1 is set to be a value almost cancelled by a resistance RH of the coil 6. Since the resistive component of the coil is cancelled, the deflection current is not saturated but linear. Thus, the correction range of the linearity is wide and the adjustment for each receiver is not required and the coil drive circuit is realized, in which the productivity is high, the circuit integration is attained and which is advantageous for miniaturization of the receiver with simple configuration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はコイル駆動回路に係り、特にテレビジョン受像
機の水平または垂直偏向コイルの駆動回路に使用出来る
コイル駆動回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a coil drive circuit, and more particularly to a coil drive circuit that can be used as a drive circuit for a horizontal or vertical deflection coil in a television receiver.

従来の技術 第3図はテレビジョン受像機の水平偏向コイルの駆動に
用いられている従来のコイル駆動回路の一例の回路図を
示す。同図において、Hsは水平同期信号、Vccは電
源電圧である。スイッチングトランジスタQのベースは
抵抗R11を介して水平同期信号入力端子に、コレクタ
はトランスの一次巻線L1を介してVccに、エミッタ
はグランドに夫々接続されている。Qのベース、エミッ
タには抵抗RIOが接続されている。L、にはコンデン
サCか並列に接続されている。
BACKGROUND OF THE INVENTION FIG. 3 shows a circuit diagram of an example of a conventional coil drive circuit used to drive a horizontal deflection coil of a television receiver. In the figure, Hs is a horizontal synchronizing signal, and Vcc is a power supply voltage. The base of the switching transistor Q is connected to the horizontal synchronizing signal input terminal via a resistor R11, the collector is connected to Vcc via the primary winding L1 of the transformer, and the emitter is connected to ground. A resistor RIO is connected to the base and emitter of Q. A capacitor C is connected to L in parallel.

ダンプ用ダイオードD、のカソードがQのコレクタに、
アノードかQのエミッタに夫々接続されている。トラン
ジスタQのコレクタにはまた、水平走査線の中央部の縮
み両端部の伸びを偏向コイルとの直列共振を利用して補
正するための8字補正コンデンサCsと、抵抗値R,と
インダクタンスL8を持った水平偏向コイル6と、R,
により偏向電流が飽和曲線になるのを直線に補正するた
めの永久磁石による直流磁界でバイアスされた可飽和リ
アクタLcとが夫々直列に接続されグランドに接地され
ている。
The cathode of the dump diode D is connected to the collector of Q.
They are connected to the anode or the emitter of Q, respectively. The collector of the transistor Q is also equipped with a figure-8 correction capacitor Cs, a resistance value R, and an inductance L8 for correcting the contraction in the center of the horizontal scanning line and the expansion at both ends using series resonance with the deflection coil. horizontal deflection coil 6, R,
A saturable reactor Lc biased by a direct current magnetic field from a permanent magnet is connected in series and grounded.

二次巻線り、は一端をグラウンドに接続され、L、と電
磁結合して出力電圧v0を出力し、ブラウン管のアノー
ド電源等の高圧電源を供給している。
One end of the secondary winding is connected to ground, and it is electromagnetically coupled with L to output an output voltage v0, supplying a high voltage power source such as an anode power source for a cathode ray tube.

第3図において、スイッチングトランジスタQのベース
電圧をv3.コレクタ電圧を■。、ベース電流をIB+
  コレクタ電流を1゜とする。また、ダンパダイオー
ドD、に流れる電流をID+ 水平偏向コイル6に流れ
る電流をiア、水平偏向コイル6の両端に発生する電圧
をV、とする。
In FIG. 3, the base voltage of the switching transistor Q is set to v3. ■Collector voltage. , the base current is IB+
Let the collector current be 1°. Further, the current flowing through the damper diode D is assumed to be ID+, the current flowing through the horizontal deflection coil 6 is expressed as i, and the voltage generated across the horizontal deflection coil 6 is expressed as V.

各電圧電流波形は第5図に示すとおりである。Each voltage and current waveform is as shown in FIG.

水平同期信号Hsは抵抗R,及びR3゜で分圧された後
、第5図にVBで示す電圧としてトランジスタQのベー
スに印加され、これをローレベルの帰線期間オフ、ハイ
レベルの期間オンにスイッチング制御する。またトラン
ジスタQのベース電流は第5図にIBて示したように、
Vllに対応した波形になる。
After the horizontal synchronizing signal Hs is voltage-divided by resistors R and R3°, it is applied to the base of the transistor Q as a voltage shown as VB in FIG. to control switching. Also, the base current of transistor Q is as shown by IB in FIG.
The waveform corresponds to Vll.

トランジスタQのコレクタ電圧VCは、トランジスタQ
かオンしているときはOV、トランジスタQがオフして
いるときは第5図に図示した様な電圧となる。
The collector voltage VC of transistor Q is
When the transistor Q is on, the voltage is OV, and when the transistor Q is off, the voltage is as shown in FIG.

また、トランジスタQかオンすることにより、第5図に
ICで示す如く、Qのコレクタ電流は時刻t、から直線
的に増加し、時刻t2でトランジスタQかオフすること
によりI。は急速にゼロになる。トランジスタQかオフ
している間はICは流れない。
Further, by turning on the transistor Q, the collector current of Q increases linearly from time t, as shown by IC in FIG. 5, and by turning off the transistor Q at time t2, the collector current of Q increases linearly as shown by IC in FIG. quickly becomes zero. While transistor Q is off, no current flows through IC.

ダンパダイオード電流は、第5図に■、て示す如く、時
刻t3てトランジスタQかオンすると導通し、時刻とと
もに直線的に減少する逆方向電流か流れ、時刻t4でゼ
ロになる。トランジスタQかオフしている間はIoは流
れない。
The damper diode current becomes conductive when the transistor Q is turned on at time t3, as shown by ▪ in FIG. 5, and a reverse current flows which decreases linearly with time, and becomes zero at time t4. Io does not flow while transistor Q is off.

水平偏向コイル6を流れる偏向電流12は、トランジス
タQがオンすると、時刻t1て時間とともに直線的に増
加する。時刻t2てトランジスタQかオフすると、偏向
電流i、の大きさは時間とともに減少し、やかで逆方向
に流れて時刻t3で負のピークに達する。時刻t3でト
ランジスタQかオンすると、偏向電流iアは時間ととも
に直線的に減少し、時刻t4でOになる。
The deflection current 12 flowing through the horizontal deflection coil 6 increases linearly with time from time t1 when the transistor Q is turned on. When the transistor Q is turned off at time t2, the magnitude of the deflection current i decreases with time, rapidly flows in the opposite direction, and reaches a negative peak at time t3. When the transistor Q is turned on at time t3, the deflection current ia decreases linearly with time and reaches O at time t4.

偏向コイル6の両端の電圧Vアは、トランジスタQかオ
ンしているときは電源電圧Vccと大きさの等しい負の
電圧となり、時刻t2てトランジスタQかオフすると徐
々に増加して偏向電流iyかセロの時にピークに達し、
次にしだいに減少して時刻t3で電源電圧と等しい負の
電圧となる。
The voltage Va across the deflection coil 6 becomes a negative voltage equal in magnitude to the power supply voltage Vcc when the transistor Q is on, and gradually increases when the transistor Q is turned off at time t2, resulting in a deflection current iy. It reached its peak at the time of Cero,
Next, it gradually decreases and reaches a negative voltage equal to the power supply voltage at time t3.

回路にLcか挿入されていない場合には、水平偏向電流
iアは図中破線で示した様に指数曲線状の飽和曲線とな
る。このため水平走査線は、画面右側で縮み左側で伸び
ることになる。
When Lc is not inserted in the circuit, the horizontal deflection current ia becomes an exponential saturation curve as shown by the broken line in the figure. Therefore, the horizontal scanning line shrinks on the right side of the screen and stretches on the left side.

第4図は、永久磁石による直流磁界でバイアスされた可
飽和リアクタL0に流れる電流と、自己インダクタンス
との関係を示した図である。このLcを流れる電流の飽
和度により自己インダクタンスが変化することを利用し
て、偏向電流lアの直線性の補正を行なっている。
FIG. 4 is a diagram showing the relationship between the current flowing through the saturable reactor L0 biased by a DC magnetic field generated by a permanent magnet and the self-inductance. The linearity of the deflection current lA is corrected by utilizing the fact that the self-inductance changes depending on the degree of saturation of the current flowing through Lc.

すなわち、図示したように、走査のはしめ(図中Aで示
す)では電流か小さいので可飽和リアクタLcのインダ
クタンスか大きくなり、偏向電流iアを小さくする。走
査のおわり(図中、Bで示す)では電流か大きいので可
飽和リアクタLcのインダクタンスか小さくなり、偏向
電流iアは余り小さくならない。これにより偏向電流i
、を直線的に補正している。
That is, as shown in the figure, since the current is small at the end of the scan (indicated by A in the figure), the inductance of the saturable reactor Lc becomes large, and the deflection current ia is made small. At the end of scanning (indicated by B in the figure), the current is large, so the inductance of the saturable reactor Lc becomes small, and the deflection current ia does not become very small. As a result, the deflection current i
, is corrected linearly.

発明が解決しようとする課題 上述した従来のコイル駆動回路によれば、前記水平走査
線の歪みを補正するために、永久磁石による直流磁界で
バイアスされた可飽和リアクタLcを使用していた。こ
の方法によれば、可飽和リアクタL。はフェライトコア
に巻線を巻装し永久磁石を備えているので、IC化か不
可能であったし、駆動回路も大きくなりがちであった。
Problems to be Solved by the Invention According to the conventional coil drive circuit described above, in order to correct the distortion of the horizontal scanning line, a saturable reactor Lc biased by a DC magnetic field from a permanent magnet is used. According to this method, the saturable reactor L. Since the ferrite core was wound with a wire and equipped with a permanent magnet, it was impossible to integrate it into an IC, and the drive circuit also tended to be large.

また、直線性を合わせ込むために、受像機の画面に調整
用チャートを映して見ながらバイアス磁界の調整を受像
機−台ずつについて行なう必要かあり、工程が複雑であ
った。さらに、バイアス磁界の変化により調整を行なう
ため、補正可能な範囲も狭かった。
In addition, in order to adjust the linearity, it was necessary to adjust the bias magnetic field for each receiver while viewing an adjustment chart on the screen of the receiver, making the process complicated. Furthermore, since the adjustment is performed by changing the bias magnetic field, the range that can be corrected is also narrow.

本発明は以上の欠点に鑑みてなされたもので、直線性の
補正範囲か広く、受像機側々の調整か不要で生産性が高
く、IC化可能で受像機の小型化に有利なコイル駆動回
路を簡単な構成で提供することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and has a wide linearity correction range, does not require adjustment on the receiver side, has high productivity, can be integrated into an IC, and has a coil drive that is advantageous for miniaturizing the receiver. The purpose is to provide a circuit with a simple configuration.

課題を解決するための手段 上述の問題を解決するために本発明では、同期信号によ
りコイルを電流駆動して該コイルにのこぎり波電流を流
すコイル駆動回路において、負性抵抗回路を前記コイル
に直列に接続し、該負性抵抗回路の負性抵抗値を該コイ
ルの抵抗値と略相殺される値に設定した。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, a negative resistance circuit is connected in series with the coil in a coil drive circuit that drives the coil with a synchronization signal to cause a sawtooth current to flow through the coil. The negative resistance value of the negative resistance circuit was set to a value that substantially canceled out the resistance value of the coil.

作用 負性抵抗回路の負性抵抗値により、コイルの抵抗分は打
ち消されるため、偏向電流は飽和することな(直線とな
る。
Since the resistance of the coil is canceled by the negative resistance value of the negative resistance circuit, the deflection current does not saturate (becomes a straight line).

実施例 第1図は本発明の一実施例の回路図を示す。同図中、第
3図と同一構成部分には同一符号を付し、その説明を省
略する。第1図において、lは、正電源による2つの演
算増幅器2.3と5本の抵抗器R1〜R5とからなる負
性抵抗回路である。
Embodiment FIG. 1 shows a circuit diagram of an embodiment of the present invention. In the figure, the same components as those in FIG. 3 are designated by the same reference numerals, and their explanations will be omitted. In FIG. 1, l is a negative resistance circuit consisting of two operational amplifiers 2.3 and five resistors R1 to R5 powered by a positive power supply.

演算増幅器2には、電源電圧Vcc及びグランドか接続
されており、反転入力端子には水平偏向コイル6の一端
が接続されている。また、反転入力端子と出力端子の間
には抵抗R4か、非反転入力端子と出力端子の間には抵
抗R2か夫々接続されている。非反転入力端子にはまた
、抵抗R5の一端か接続されている。
The operational amplifier 2 is connected to the power supply voltage Vcc and ground, and one end of the horizontal deflection coil 6 is connected to the inverting input terminal. Further, a resistor R4 is connected between the inverting input terminal and the output terminal, and a resistor R2 is connected between the non-inverting input terminal and the output terminal. The non-inverting input terminal is also connected to one end of a resistor R5.

前記抵抗R5の他端には、別の演算増幅器3の出力端子
が接続されている。演算増幅器3には、電源電圧Vcc
及びグランドか接続されている。反転入力端子と出力端
子は夫々接続されている。非反転入力端子と電源電圧V
ccO間には抵抗R3か、非反転入力端子とグランドの
間には抵抗R4か夫々接続されている。
The output terminal of another operational amplifier 3 is connected to the other end of the resistor R5. The operational amplifier 3 has a power supply voltage Vcc.
and ground or connected. The inverting input terminal and the output terminal are connected to each other. Non-inverting input terminal and power supply voltage V
A resistor R3 is connected between ccO and a resistor R4 is connected between the non-inverting input terminal and ground.

ここで、図示した様に負性抵抗回路1の入力インピーダ
ンスをZllとすれば、 水平偏向コイル6のインピーダンスをZ。とすると、 Z、=jωLH+RH(2) したかって、 ここて、 となるように、R,、R2,R,の値を夫々選定するこ
とにより、 Zs +Z++=jωLo           (5
)となり、抵抗分が打消されて、水平偏向コイル6はイ
ンダクタンス成分り、のみの理想コイルとなる。
Here, if the input impedance of the negative resistance circuit 1 is Zll as shown in the figure, then the impedance of the horizontal deflection coil 6 is Z. Then, Z, = jωLH + RH (2) Then, by selecting the values of R,, R2 and R, respectively, Zs + Z++ = jωLo (5
), the resistance component is canceled out, and the horizontal deflection coil 6 becomes an ideal coil with only an inductance component.

したがって、水平偏向電流iアは第5図同様に飽和する
ことなく直線性を示し、画面の左側での伸びと右側での
縮みをなくすことか出来る。
Therefore, the horizontal deflection current ia exhibits linearity without being saturated as in FIG. 5, and it is possible to eliminate expansion on the left side of the screen and contraction on the right side of the screen.

第2図は本発明の他の実施例の回路図を示す。FIG. 2 shows a circuit diagram of another embodiment of the invention.

同図中、第4図と同一構成部分には同一符号を付し、そ
の説明を省略する。第2図において、4は正負2電源に
よる1つの演算増幅器5と、3本の抵抗器R1〜R3と
からなる負性抵抗回路である。
In the figure, the same components as those in FIG. 4 are denoted by the same reference numerals, and the explanation thereof will be omitted. In FIG. 2, 4 is a negative resistance circuit consisting of one operational amplifier 5 using two positive and negative power supplies and three resistors R1 to R3.

演算増幅器5には、正の電源電圧Vcc及び負の電源電
圧Vssか接続されている。非反転入力端子には水平偏
向コイル6の一端か接続され、また、非反転入力端子と
出力端子の間には抵抗R6か、反転入力端子と出力端子
の間には抵抗R7か夫々接続されている。出力端子とグ
ランドの間には、抵抗R,か接続されている。
The operational amplifier 5 is connected to a positive power supply voltage Vcc and a negative power supply voltage Vss. One end of the horizontal deflection coil 6 is connected to the non-inverting input terminal, and a resistor R6 is connected between the non-inverting input terminal and the output terminal, and a resistor R7 is connected between the inverting input terminal and the output terminal. There is. A resistor R is connected between the output terminal and ground.

ここで、図示した様に負性抵抗回路4の入力インピーダ
ンスz12とすれば、 したかって、(2)式から、 ここで、 2丁 となるように、抵抗Ra、R7,R8の値を夫々選定す
ることにより、 Z)l +Z12= jωL+           
 (9)となり、回路の”抵抗骨は打ち消されて、水平
偏向コイルL、はインダクタンス成分のみの理想コイル
となる。したかって、水平偏向電流1.は直線性を示し
、画面の水平方向の歪みを除くことか出来る。
Here, if the input impedance of the negative resistance circuit 4 is z12 as shown in the figure, then from equation (2), the values of the resistors Ra, R7, and R8 are respectively selected so that there are two resistors. By doing so, Z)l +Z12= jωL+
(9), the resistance bones of the circuit are canceled out, and the horizontal deflection coil L becomes an ideal coil with only an inductance component.Therefore, the horizontal deflection current 1 shows linearity, and the horizontal distortion of the screen It is possible to remove

正負2電源を有する上記実施例の回路によれば、演算増
幅器1つと抵抗3本だけの非常に簡単な構成で、IC化
可能な回路によって水平偏向電流の補正か出来る。
According to the circuit of the above embodiment having two positive and negative power supplies, the horizontal deflection current can be corrected by a circuit that can be integrated into an IC with a very simple configuration of only one operational amplifier and three resistors.

以上説明したように本実施例によれば、可飽和リアクタ
を使用せずに、IC化可能な回路によりその抵抗値を変
えることによって広い範囲で偏向電流の直線性の補正が
行なえ、ビデオムービーの電子ビューファインダ等の持
手型ブラウン管の偏向コイル駆動回路に最適である。
As explained above, according to this embodiment, the linearity of the deflection current can be corrected over a wide range by changing the resistance value using an IC-compatible circuit without using a saturable reactor. It is ideal for the deflection coil drive circuit of hand-held cathode ray tubes such as electronic viewfinders.

但し実際の調整は、水平偏向コイルの抵抗骨のみならず
、その他のトランジスタQ、)ランスの一次巻線し++
  コンデンサC等の損失も含めて、抵抗値を合わせ込
む必要かある。
However, the actual adjustment involves not only the resistance of the horizontal deflection coil, but also the primary winding of the other transistors Q and lance.
Is it necessary to adjust the resistance value including the loss of capacitor C etc.?

発明の効果 上述の如く本発明によれば、可飽和リアクタを用いるこ
となく、偏向コイルをインダクタンス成分のみの構成に
できるために、IC化か可能て受像機の小型化に有利で
、また直線性の補正範囲を広くでき、更に受像機−台々
についての調整か不要で生産性を向上できる等の特長を
有する。
Effects of the Invention As described above, according to the present invention, since the deflection coil can be configured with only an inductance component without using a saturable reactor, it is possible to use an IC, which is advantageous for downsizing the receiver, and also improves linearity. It has the advantage that the correction range can be widened, and productivity can be improved because adjustments for each receiver are not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は本発明の
他の実施例の回路図、第3図は従来技術の回路図、第4
図は従来技術の補正原理を説明するための可飽和リアク
タの特性図、第5図は従来回路の動作を示す電流電圧波
形図である。 1.4・・・負性抵抗回路、2,3.5・・・演算増幅
器、6・・・水平偏向コイル。
Fig. 1 is a circuit diagram of one embodiment of the present invention, Fig. 2 is a circuit diagram of another embodiment of the invention, Fig. 3 is a circuit diagram of the prior art, and Fig. 4 is a circuit diagram of another embodiment of the present invention.
The figure is a characteristic diagram of a saturable reactor for explaining the correction principle of the prior art, and FIG. 5 is a current-voltage waveform diagram showing the operation of the conventional circuit. 1.4... Negative resistance circuit, 2, 3.5... Operational amplifier, 6... Horizontal deflection coil.

Claims (1)

【特許請求の範囲】[Claims] 同期信号によりコイルを電流駆動して該コイルにのこぎ
り波電流を流すコイル駆動回路において、負性抵抗回路
を前記コイルに直列に接続し、該負性抵抗回路の負性抵
抗値を該コイルの抵抗値と略相殺される値に設定したこ
とを特徴とするコイル駆動回路。
In a coil drive circuit that current drives a coil using a synchronization signal to flow a sawtooth current through the coil, a negative resistance circuit is connected in series with the coil, and the negative resistance value of the negative resistance circuit is set as the resistance of the coil. A coil drive circuit characterized in that the coil drive circuit is set to a value that substantially cancels out the current value.
JP2321625A 1990-11-26 1990-11-26 Coil drive circuit Pending JPH04196684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321625A JPH04196684A (en) 1990-11-26 1990-11-26 Coil drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321625A JPH04196684A (en) 1990-11-26 1990-11-26 Coil drive circuit

Publications (1)

Publication Number Publication Date
JPH04196684A true JPH04196684A (en) 1992-07-16

Family

ID=18134601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321625A Pending JPH04196684A (en) 1990-11-26 1990-11-26 Coil drive circuit

Country Status (1)

Country Link
JP (1) JPH04196684A (en)

Similar Documents

Publication Publication Date Title
US4707640A (en) Horizontal deflection output circuit
US4024432A (en) Circuit arrangement in an image display apparatus for (horizontal) line deflection
US4188567A (en) Constant-current vertical amplifier
US5420483A (en) Television deflection distortion correcting circuit
US5488272A (en) Deflection system
JPS61134182A (en) Focusing voltage generator
KR100688133B1 (en) Dynamic focus voltage amplitude controller
JPH04196684A (en) Coil drive circuit
US4272705A (en) Anti-ringing circuit for CRT deflection yoke
US4871951A (en) Picture display device including a line synchronizing circuit and a line deflection circuit
US4283663A (en) Horizontal deflection circuit in a television device
KR20000017128A (en) Multimode dynamic beam landing correction circuit
US5332953A (en) Power saving circuit for magnetic focus amplifier using switchable resonance capacitors
JP2001502868A (en) Pincushion distortion control circuit
EP0201110A1 (en) Picture display device including a line synchronizing circuit and a line deflection circuit
TW447214B (en) Dynamic focus voltage amplitude controller and high frequency compensation
JPH04274281A (en) Linearity correcting apparatus
JPS59221170A (en) Circuit for correcting distortion in horizontal deflection linearity
US6326743B1 (en) Horizontal linearity correcting circuit
KR800000328B1 (en) Television line deflection circuit
JPS61117977A (en) Vertical deflecting circuit
KR100239078B1 (en) Linearization of vertical reference ramp
US5877598A (en) Horizontal linearity control
US6268706B1 (en) Horizontal parallelogram correction combined with horizontal centering
JP2528481B2 (en) Left and right pincushion distortion correction circuit