JPH04196179A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH04196179A
JPH04196179A JP2323697A JP32369790A JPH04196179A JP H04196179 A JPH04196179 A JP H04196179A JP 2323697 A JP2323697 A JP 2323697A JP 32369790 A JP32369790 A JP 32369790A JP H04196179 A JPH04196179 A JP H04196179A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
semiconductor
conversion device
type
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2323697A
Other languages
Japanese (ja)
Other versions
JP3091882B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP02323697A priority Critical patent/JP3091882B2/en
Publication of JPH04196179A publication Critical patent/JPH04196179A/en
Application granted granted Critical
Publication of JP3091882B2 publication Critical patent/JP3091882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To realize a device providing a long length and diffused thin film on a substrate and having a large light absorbing coefficient by making the light irradiating plane parallel with the electric field direction formed by P-type or N-type impurity region of a photoelectric conversion device. CONSTITUTION:A mask 4 is formed on a silicon semiconductor 3 having a semi-amorphous or semi-crystal structure and boron is added to a P-type impurity region 5. Moreover, a mask 6 of photoresist is formed and an N-type impurity region 7 is formed by adding phosphorus. An interval between these N-type and P-type impurity regions is set shorter than the diffusion distance of electron hole generated by the reexcitation in a semiconductor. After annealing these regions, an insulator 8, an electrode window 9 and a lead 10 are formed. Thereby, a photoelectric conversion device having a longer diffused area and a large light absorption coefficient can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は基板上に設けられた半導体の一生表面側に十電
極となるP型の領域と一電極となるN型の領域とを選択
的に設けた光電変換装置に関する。
The present invention relates to a photoelectric conversion device in which a P-type region serving as ten electrodes and an N-type region serving as one electrode are selectively provided on the surface side of a semiconductor provided on a substrate.

【従来の技術】[Conventional technology]

従来、光電変換装置に関してはPNまたはPIN接合を
単結晶珪素半導体、多結晶珪素半導体あるいは非晶質珪
素半導体を使用しての珪素基板又は絶縁基板上に形成し
た太陽電池、またはフ第1・セルか知られている。しか
しこのPNまたはPIN接合は単結晶の珪素基板または
絶縁性基板上に積層された半導体層の表面と裏面にその
十電極または一電極を有し、その接合面は半導体層また
は基板の主面に実質的に平行に設け、この接合面に光が
多量に照射されるように工夫かなされていたにすぎなか
った。 これら従来の光電変換装置は半導体層または半導体基板
の主面に平行に接合面を設けていた為、半導体中に設け
られたPNまたはPIN接合により半導体内部に発生す
る電界のかかる方向と光照射面か垂直となり、光照射強
度が電界のかかる方向で一様ではなく、効率よく電子・
ホールを発生させ、外部に取り出すことはできなかった
。 また、単結晶基板は極めてへきかいしやすく高価であり
、加工がしにくく、光電変換装置を集積化して複数個を
直列または並列に配列させることかできない等多くの欠
点を有していた。 また、非晶質半導体を使用した光電変換装置の場合光照
射により発生したキャリアは半導体材料自身の持つ拡散
長が短い為に、光照射により発生したキャリアを有効的
に外部に取り出すことかできないと言う問題があった。 一方単結晶半導体あるいは多結晶半導体を使用した光電
変換装置は、半導体層自身の持つ光吸収係数が小さい為
に半導体層自身の厚みを厚くしなければならす作製時間
、製作コスト上の問題かあった。
Conventionally, for photoelectric conversion devices, solar cells or solar cells in which a PN or PIN junction is formed on a silicon substrate or an insulating substrate using a single crystal silicon semiconductor, a polycrystal silicon semiconductor, or an amorphous silicon semiconductor, or known. However, this PN or PIN junction has ten or one electrode on the front and back surfaces of a semiconductor layer stacked on a single crystal silicon substrate or an insulating substrate, and the bonding surface is on the main surface of the semiconductor layer or substrate. They were simply arranged so that they were substantially parallel and a large amount of light was irradiated onto this joint surface. These conventional photoelectric conversion devices have a bonding surface parallel to the main surface of the semiconductor layer or semiconductor substrate, so the direction of the electric field generated inside the semiconductor due to the PN or PIN junction provided in the semiconductor and the light irradiation surface are The light irradiation intensity is not uniform in the direction in which the electric field is applied, and the electrons and
It created a hole and could not be taken out. In addition, single crystal substrates have many drawbacks, such as being extremely easily cracked and expensive, difficult to process, and unable to integrate photoelectric conversion devices and arrange a plurality of them in series or parallel. In addition, in the case of a photoelectric conversion device using an amorphous semiconductor, carriers generated by light irradiation cannot be effectively extracted to the outside because the semiconductor material itself has a short diffusion length. There was a problem. On the other hand, photoelectric conversion devices using single-crystalline semiconductors or polycrystalline semiconductors have problems in terms of manufacturing time and manufacturing costs because the semiconductor layer itself has a small light absorption coefficient, so the thickness of the semiconductor layer itself must be increased. .

【発明の構成】[Structure of the invention]

本発明は基板上の同一の半導体膜中に選択的にP型また
はN型の不純物領域を有する光電変換装置であって、前
記P型またはN型の不純物領域によって形成される電界
方向と光照射面とを平行にしたことを特徴とする光電変
換装置てあります。 また、この半導体膜はセミアモルファスまたはセミクリ
スタル半導体より構成されることによりアモルファス半
導体では得られない、大きな拡散長を持ち、単結晶ある
いは多結晶半導体では得られない大きな光吸収係数を持
つ半導体膜であり、これにより、半導体膜厚をうずくで
きかつ、長い拡散長を持つ光電変換装置を実現するもの
てあります。 上記のような構成の光電変換装置においてはP型拡散領
域とN型拡散領域との間の光電変換領域にて発生したキ
ャリアを半導体層の持つ長い拡散長により、効率良く外
部に電力を取り出すことかできる。 さらに、同一の半
導体膜の光照射面より、P型の領域、N型の領域をその
半導体の深さ方向に形成したことにより、P型の領域と
N型の領域間での電界方向での光強度か一定となり光電
変換効率の向上を実現することかできる。 本願発明に用いられるセミアモルファスまたはセミクリ
スタル半導体について、そのメカニズムを略記する。 本発明のセミアモルファス又はセミクリスタル半導体膜
はLPCVD法、スパッタ法あるいはPCVD法等によ
り膜形成の後に熱結晶化処理を施して得られるが、以下
にはスパッタ法を例にとり説明をする。 すなわちスパッタ法において単結晶のシリコン半導体を
ターゲラ1〜とし、水素とアルゴンとの混合気体でスパ
ッタをすると、アルゴンの重い原子のスパッタ(衝撃)
によりターゲットからは原子状のシリコンも離れ、被形
成面を有する基板上に飛しょうするが、同時に数十〜数
十万個の原子が固まった塊がクラスタとしてターゲット
から離れ、被形成面に飛しょうする。 この飛しょう中は、水素がこのクラスタの外周辺の珪素
の不対結合手と結合し、被形成面上に秩序性の比較的高
い領域として作られる。 すなわち、被膜形成面上には秩序性の高い、かつ周辺に
5i−H結合を有するクラスタと純粋のアモルファス珪
素との混合物とする。これを450°C〜700°Cの
非酸化性気体中での熱処理により、クラスタの外周辺の
5i−H結合は他のSド11結合と反応し、5i−3j
結合を作る。 しかし、この結合はお互い引っばりあうと同時に、秩序
性の高いクラスタはより高い秩序性の高い状態、すなわ
ち結晶化に相を移そうとする。しかし隣合ったクラスタ
間は、互いに結合した5i−3jがそれぞれのクラスタ
間を引っばりあう。その結果は、結晶は格子歪を持ちレ
ーザラマンでの結晶ピークは単結晶の520cm ’よ
り低波数側にすれて測定される。 また、このクラスタ間の5i−3j結合は互いのクラス
タをアンカリング(連結)するため、各クラスタでのエ
ネルギバンドはこのアンカリングの個所を経て互いに電
気的に連結しあえる。そのため結晶粒界がキャリアのバ
リアとして働く多結晶シリコンとは根本的に異なり、キ
ャリア移動度も10〜200cm2/V Seeを得る
ことができる。 つまり本発明の如く、かるる定義に基づ(セミアモルフ
ァスまたはセミクリスタルは見掛は上納−6= 品性を持ちながらも、電気的には結晶粒界か実質的にな
い状態を予想できる。 もちろん、アニール温度かシリコン半導体の場合の45
0°C〜700°Cという中温アニールではなく、10
00°Cまたはそれ以上の結晶成長をともなう結晶化を
させる時はこの結晶成長により、膜中の酸素等が粒界に
析出し、バリアを作ってしまう。これは、単結晶と同じ
結晶と粒界のある材料である。 またこの半導体におけるクラスタ間のアンカリングの程
度を大きくすると、よりキャリア移動度は大きくなる。 このためにはこの膜中にある酸素量を7 X 10” 
cm−3好ましくはI X 1019cm−3以下にす
ると、さらに600°Cよりも低い温度で結晶化かでき
るに加えて、高いキャリア移動度を得ることかできる。 以下に実施例に従い本発明を説明する。 「実施例1j 第1図は本発明の製作工程を示す縦断面図である。 第1図(A)において、基板(1)は導電性または絶縁
性基板を使用することかできる。この基板は安価てあり
以降の被膜形成工程に対し機械的強度並びに対熱性を有
していることかその要件である。 この為本実施例においては、陶器、セラミック、また、
は、ガラス基板を主として用いた。 第1図において、ANガラス、パイレックスガラス等の
約600°Cの熱処理に耐え得るガラス上にマグネトロ
ンRF(高周波)スパッタ法を用いてブロッキング層と
しての酸化珪素膜(2)を1000〜3000人の厚さ
に作製した。 プロセス条件は酸素100%雰囲気、成膜温度150°
C1出力400〜800W1圧力0.5Paとした。タ
ーゲットに石英または単結晶シリコンを用いた成膜速度
は30〜100人/分であった。 さらにこの上にシリコン膜(3)をLPCVD法、スパ
ッタ法またはプラズマCVD法により形成した。 減圧気相法で形成する場合、結晶化温度よりも100〜
200°C低い450〜550°C1例えは530°C
てジシラン(Si2HG)またはトリシラン(SiJ8
)をCVD装置に供給して成膜した。反応炉内圧力は3
0〜300Paとした。成膜速度50〜250人/分で
あった。 スパッタ法で行う場合、スパッタ前の背圧をIX 10
−’Pa以下とし、単結晶シリコンをターゲットとじ、
アルゴンに水素を20〜80%に混入した雰囲気で行っ
た。例えばアルゴン20%、水素8096とした。成膜
温度は150°C1周波数は13.56MHz、スパッ
タ出力400〜800Wとした。圧力は0.5Paであ
った。 プラズマCVD法により珪素膜を作製する場合、その温
度は例えば300°Cとし、モノシラン(SiH4)ま
たはジシラン(Si□H6)を用いた。これらをPCV
D装置内に導入し、13.56MHzの高周波電力を加
えて成膜した。 これらの方法によって形成された被膜は、酸素か7 X
 10” cm−’以下、好ましくはI X 10’ 
9cm−3以下の濃度であることが好ましい。そのよう
な範囲にあった場合、珪素膜を結晶化をさせる場合、結
晶化の程度を助長させ得るからである。 例えばSIMS (二次イオン質量分析)法における不
純物濃度として酸素が8 X 10” cF”、炭素3
×10”cm−3を得、また水素は4 X 10”cm
−”であり、−9= 珪素4 X 1022crN3として比較すると1原子
%てあった。 かくして、アモルファス状態の珪素膜を2000人〜2
μm1例えば1μmの厚さに作製の後、450〜700
°Cの温度にて12〜70時間非酸化物雰囲気にて中温
の加熱処理した。例えば窒素または水素雰囲気にて60
0°Cの温度で保持した。 この珪素膜の下の基板表面にはアモルファス状態の酸化
珪素膜か形成されているため、この熱処理で珪素膜中に
特定の核が存在せず、全体が均一に加熱アニールされる
。即ち、成膜時はアモルファス構造を有し、また水素は
単に混入しているのみである。 このアニールにより、珪素膜はアモルファス構造から秩
序性の高い状態に移り、その一部は結晶状態を呈する。 特にシリコンの成膜時に比較的秩序性の高い領域は特に
結晶化をして結晶状態となろうとする。しかしこれらの
領域間に存在する珪素により互いの結合かなされるため
、珪素同志は互いにひっばりあう。結晶としてもレーザ
ラマン分光により測定すると、単結晶の珪素のピーク5
22cF’より低周波側にシフトシたピークが観察され
る。それの見掛は上の粒径は半値巾から計算すると、5
0〜500人とマイクロクリスタルのようになっている
か、実際はこの結晶性の高い領域は多数あってクラスタ
構造を有し、その各クラスタ間は互いに珪素同志で結合
(アンカリング)がされたセミアモルファス構造の被膜
を形成させることかできた。 結果として、この被膜は実質的にグレインバウンダリ(
GBという)がないといってもよい状態を呈する。キャ
リアは各クラスタ間をアンカリングされた個所を通じ互
いに容易に移動し得るため、いわゆるGBの明確に存在
する多結晶珪素よりも高いキャリア移動度となる。即ち
ホール移動度(μh) =10〜200cm2/Vse
c 、電子移動度(μe)=15〜300cm2/Vs
ecが得られる。同様にキャリアの拡散長も数μmから
十数μmと多結晶半導体と同等またはそれ以上の値が得
られる。 他方、上記の如く中温でのアニールではなく、900〜
1200°Cの温度での高温アニールにより被膜を多結
晶化すると、核からの固相成長により被膜中の不純物の
偏析がおきて、GBには酸素、炭素、窒素等の不純物が
多くなり、結晶中の移動度は大きいが、GBでのバリア
(障壁)を作ってそこでのキャリアの移動を阻害してし
まう。そして結果としては10cm+2/Vsec以」
二の移動度かなかなか得られないのが実情である。 即ち、本発明の実施例ではかくの如く、セミアモルファ
スまたはセミクリスタル構造を有するシリコン半導体(
3)を用いている。 次に第1図(B)において、フォトレジストによるマス
ク(4)をフォトマスク■を用いて形成し、P型の不純
物領域(5)に対し、ホウ素をI X 10” cF2
のドーズ量をイオン注入法により添加した。 次に第6図(C)の如く、フォトレジストのマスク(6
)をフォトマスク■を用いて形成した。そしてN型不純
物領域(7)に対して、リンをI X 1015cm−
2の量、イオン注入法により添加した。 このP型不純物領域とN型不純物領域との間隔−11= は2〜20μm特に5〜7μmと巾を狭(し、半導体中
の再励起によって発生した電子・ホールのキャリアの拡
散距離より短くその174〜1/2とするのが好ましか
った。 次に、600℃にて10〜50時間再び加熱アニールを
し、P型及びN型不純物領域を活性化した。 熱アニールは第1図(A)、 (C)で2回行った。し
かし第1図(A)のアニールは求める特性により省略し
、双方を第1図(C)のアニールにより兼ねさせて製造
時間の短縮を図ってもよい。 次に第1図(D)に示すように、絶縁物(8)を前述の
スパッタ法により酸化珪素膜の形成として行った。この
酸化珪素膜の形成はLPCVD法、光CVD法を用いて
もよい。例えば0.2〜0.4μmの厚さに形成した。 その後、フォトマスク■を用いてP型及びN型不純物領
域用の電極用の窓(9)をエツチング処理にて形成した
。 さらにこれら全体にアルミニウムをスパッタ法により形
成し、リードα0)をフォトマスク■を用いて作製し、
本実施例の光電変換装置を完成した。 かかる光電変換装置の特性は1.05cnrの面積で変
換効率が11.5%が得られ、この半導体膜のキャリア
の拡散長は10.5μmであった。 本発明の特徴として、十と−の電極が従来の装置のよう
に半導体層を挾んで半導体膜積層方向に無いため、この
両電極間が半導体膜作製時に形成されるピンホールによ
りショートすることかなく、曲線因子(FF)の値の良
い光電変換装置とすることかできた。 「実施例2」 第2図(A)のように本実施例は実施例1とほぼ似た構
造である。 但し半導体膜(3)の光照射面側にアモルファスシリコ
ン半導体膜(11)が3000人の厚さに形成されてい
る。その他の形成方法等は実施例1とほぼ同様である。 このアモルファスシリコン半導体膜(11)はその下地
の半導体膜(3)より光の吸収係数は大きいそのため本
実施例の場合は光照射によりキャリアは半導体膜(11
)で多量に発生した後、半導体膜(3)にドリフトシ半
導体層(3)を通路として移動し十電極、−電極より外
部に取り出される。また同時に半導体膜(3)において
も光照射によりキャリアは発生しているが、半導体膜の
光感度に波長依存性か存在するので、本実施例構成によ
り幅広い波長域の光を電気に変換することが可能となる
。 また、半導体膜(11)は半導体膜(3)に比べて、そ
のエネルギーバンド11が広いので、半導体膜(3)で
発生したキャリアが半導体膜01)にドリフトする事を
防止し、かつ半導体膜01)が発生したキャリアはその
エネルギーバンドの勾配にそって半導体膜(3)に移動
する、そのため発生したキャリアをより効率よく外部に
取り出すことが可能となった。 この様子を第4図(A) (B)に示す。第4図(A)
は第2図(A)のA−A’線に沿ったエネルギーバンド
図であり、第4図(B)は第2図(A)のB−B’線に
沿ったエネルギーバンド図を示している。 「実施例3」 本実施例では実施例2と同様に光照射側にアモルファス
シリコンを設けた例を示している。 第2図(B)にその断面図を示す。 実施例2とは異なり、基板側に設は光照射面を基板側に
して、その反対側に取り出し電極を設けている。 本実施例においては、実施例1と全く同じ工程にて、光
電変換装置の作製を進めて行くか、アモみを1.5μm
に形成し、熱処理温度を実施例1より下げ500°Cと
して、完全に全ての半導体膜(3)か熱結晶化されない
ような条件にて熱処理を行い、基板側にアモルファス状
態の半導体膜0りをのこすようにして形成した。その為
第2図(B)では半導体膜(3)と半導体膜(12との
間に境界(点線)を示していたか実際には明確な境界は
存在せず、基板側より、厚み方向に結晶化の程度に差が
見られる様に半導体膜を形成した。 これにより、第4図(C)に示すように第2図(B)の
c−c’線に沿ったエネルギーバンド図は半導体膜(1
カから半導体膜(3)に連続的につながっており、半導
体膜02にて発生したキャリアはその連続的なエネルギ
ーバンドの勾配に従い、半導体膜(3)に導かれ、ここ
を通路として外部取り出し電極に到る。 この連続的なエネルギーバンド構造をとらせる際に半導
体膜の基板側に積極的に炭素、窒素等を添加してワイド
ギャップとすることにより、カネルギーバンドの勾配を
より強くすることができ、キャリアをより多く半導体膜
(3)へ導くことができる。 「実施例4」 本実施例に対応する光電変換装置の概略断面図を第3図
に示す。 本実施例の作製方法は実施例1と全く同じであり、P型
またはN型領域を複数箇所設けた構成を有している。 このP型又はN型不純物領域およびそれに接続する電極
は半導体膜の1主面に形成される為、必要とされる電力
にあわせて、任意にこの十と−の電極を接続できる。 また、光照射面を基板側とすることができるので、この
電極の接続の為に光電変換領域の面積が減少することも
なく任意の電力をマスクパターンを変更するのみで行う
ことか可能となった。 「発明の効果」 本発明の様な構成をとることにより、基板上に薄膜の長
い拡散長を持ち且つ光吸収係数の大きな光電変換装置を
実現することかできた。 また光照射により発生したキャリアは半導体膜の平面方
向に拡散するので、半導体膜形成により膜厚方向にでき
る界面の影響を受けずに、効率良く外部に取り出される
。 その他の特徴としては、外部取り出し電極を基板上に形
成させたため一基板上の光電変換装置を複数個集積化し
て直、並列接続をすることができ同一基板上に逆流防止
ダイオードをも同一半導体により作製することかできる
。 十電極及び−電極が一表面にのみ形成されている為、半
導体作製の際、その熱的ストレスを考慮する必要はない
。 安価な基板特に陶器、セラミックス、ガラス等の絶縁基
板を用いており、しかもこの基板上に半導体を1〜50
μの薄さで形成させるためその材料費か安価である。
The present invention provides a photoelectric conversion device having selectively P-type or N-type impurity regions in the same semiconductor film on a substrate, and the present invention relates to a photoelectric conversion device having a P-type or N-type impurity region selectively formed in the same semiconductor film on a substrate. There is a photoelectric conversion device that is characterized by its parallel surfaces. Furthermore, since this semiconductor film is composed of a semi-amorphous or semi-crystalline semiconductor, it has a long diffusion length that cannot be obtained with an amorphous semiconductor, and a semiconductor film that has a large light absorption coefficient that cannot be obtained with a single crystal or polycrystalline semiconductor. This makes it possible to create photoelectric conversion devices that can reduce the thickness of the semiconductor film and have a long diffusion length. In the photoelectric conversion device having the above configuration, the carriers generated in the photoelectric conversion region between the P-type diffusion region and the N-type diffusion region can be efficiently extracted to the outside by using the long diffusion length of the semiconductor layer. I can do it. Furthermore, by forming a P-type region and an N-type region in the depth direction of the semiconductor from the light-irradiated surface of the same semiconductor film, the electric field between the P-type region and the N-type region is reduced. Since the light intensity remains constant, it is possible to improve photoelectric conversion efficiency. The mechanism of the semi-amorphous or semi-crystalline semiconductor used in the present invention will be briefly described. The semi-amorphous or semi-crystalline semiconductor film of the present invention can be obtained by performing a thermal crystallization treatment after film formation by an LPCVD method, a sputtering method, a PCVD method, etc., and the explanation will be given below by taking the sputtering method as an example. That is, in the sputtering method, when a single crystal silicon semiconductor is used as the target layer 1 and sputtered with a mixed gas of hydrogen and argon, heavy argon atoms are sputtered (impact).
As a result, atomic silicon also separates from the target and flies onto the substrate that has the formation surface, but at the same time, clusters of tens to hundreds of thousands of atoms separate from the target and fly onto the formation surface. I will do it. During this flight, hydrogen bonds with the dangling bonds of silicon around the outer periphery of this cluster, forming a relatively highly ordered region on the formation surface. That is, the surface on which the film is formed is a mixture of highly ordered clusters having 5i-H bonds around them and pure amorphous silicon. When this is heat-treated in a non-oxidizing gas at 450°C to 700°C, the 5i-H bonds around the outer periphery of the cluster react with other S do 11 bonds, forming 5i-3j
Make a bond. However, at the same time that these bonds are pulled together, the highly ordered clusters tend to transition to a more highly ordered state, that is, crystallization. However, between adjacent clusters, 5i-3j that are connected to each other pulls each other between each cluster. As a result, the crystal has lattice distortion, and the crystal peak in laser Raman is measured on the lower wavenumber side than 520 cm' of a single crystal. Furthermore, since the 5i-3j bonds between the clusters anchor (connect) each cluster, the energy bands in each cluster can be electrically connected to each other via this anchoring point. Therefore, it is fundamentally different from polycrystalline silicon in which grain boundaries act as carrier barriers, and carrier mobility of 10 to 200 cm2/V See can be obtained. In other words, as in the present invention, based on the definition (semi-amorphous or semi-crystalline), it can be expected that electrically there are virtually no crystal grain boundaries, although the semi-amorphous or semi-crystalline material has good quality in appearance. Of course, the annealing temperature is 45 in the case of silicon semiconductors.
Instead of medium temperature annealing of 0°C to 700°C,
When crystallization is performed with crystal growth at 00°C or higher, oxygen and the like in the film precipitate at grain boundaries due to this crystal growth, creating a barrier. This is a material with the same crystals and grain boundaries as a single crystal. Furthermore, if the degree of anchoring between clusters in this semiconductor is increased, carrier mobility will be further increased. For this purpose, the amount of oxygen in this film must be reduced to 7 x 10"
cm-3, preferably I x 1019 cm-3 or less, not only can crystallization be performed at a temperature lower than 600°C, but also high carrier mobility can be obtained. The present invention will be described below with reference to Examples. Example 1j Figure 1 is a vertical cross-sectional view showing the manufacturing process of the present invention. In Figure 1 (A), the substrate (1) can be a conductive or insulating substrate. The requirements are that it is inexpensive and has mechanical strength and heat resistance for the subsequent film forming process.For this reason, in this example, earthenware, ceramic, and
mainly used glass substrates. In Figure 1, a silicon oxide film (2) is deposited as a blocking layer on a glass such as AN glass or Pyrex glass that can withstand heat treatment at approximately 600°C using a magnetron RF (radio frequency) sputtering method. It was made thick. Process conditions are 100% oxygen atmosphere, film formation temperature 150°
C1 output was 400 to 800 W1 pressure was 0.5 Pa. The film formation rate using quartz or single crystal silicon as a target was 30 to 100 persons/min. Furthermore, a silicon film (3) was formed on this by LPCVD, sputtering, or plasma CVD. When formed by a reduced pressure vapor phase method, the temperature is 100 to
200°C lower 450-550°C1 Example is 530°C
Disilane (Si2HG) or trisilane (SiJ8
) was supplied to a CVD apparatus to form a film. The pressure inside the reactor is 3
The pressure was set at 0 to 300 Pa. The film forming rate was 50 to 250 people/min. When performing sputtering, the back pressure before sputtering is IX 10
-'Pa or less, target single crystal silicon,
The experiment was carried out in an atmosphere containing 20 to 80% hydrogen in argon. For example, 20% argon and 8096% hydrogen were used. The film forming temperature was 150° C., the frequency was 13.56 MHz, and the sputtering power was 400 to 800 W. The pressure was 0.5 Pa. When a silicon film is manufactured by plasma CVD, the temperature is, for example, 300° C., and monosilane (SiH4) or disilane (Si□H6) is used. PCV these
It was introduced into apparatus D, and a film was formed by applying high frequency power of 13.56 MHz. The coatings formed by these methods are free from oxygen or 7X
10"cm-' or less, preferably I x 10'
Preferably, the concentration is 9 cm −3 or less. This is because when the silicon film is crystallized within such a range, the degree of crystallization can be promoted. For example, the impurity concentration in SIMS (secondary ion mass spectrometry) is 8 x 10"cF" for oxygen and 3 for carbon.
x 10"cm-3, and hydrogen is 4 x 10"cm
-'', and when compared as -9 = silicon 4
μm1 For example, after manufacturing to a thickness of 1 μm, 450 to 700
Medium temperature heat treatment was carried out in a non-oxide atmosphere at a temperature of 12 to 70 hours at a temperature of °C. For example, in a nitrogen or hydrogen atmosphere
The temperature was kept at 0°C. Since an amorphous silicon oxide film is formed on the substrate surface below this silicon film, no specific nuclei are present in the silicon film during this heat treatment, and the entire silicon film is uniformly annealed. That is, when the film is formed, it has an amorphous structure, and hydrogen is simply mixed therein. By this annealing, the silicon film changes from an amorphous structure to a highly ordered state, and a part of the silicon film exhibits a crystalline state. In particular, during silicon film formation, regions with relatively high order tend to crystallize and become crystalline. However, since the silicon existing between these regions forms a bond with each other, the silicon elements attract each other. When measured by laser Raman spectroscopy as a crystal, peak 5 of single crystal silicon is observed.
A peak shifted to the lower frequency side than 22 cF' is observed. The apparent particle size above is calculated from the half-width, 5
0 to 500 microcrystals, but in reality there are many highly crystalline regions that have a cluster structure, and each cluster is a semi-amorphous region in which silicon is bonded (anchored) to each other. It was possible to form a structural film. As a result, this coating has virtually no grain boundaries (
It can be said that there is no GB). Since carriers can easily move between each cluster through the anchored locations, the carrier mobility is higher than in polycrystalline silicon where so-called GB is clearly present. That is, Hall mobility (μh) = 10 to 200 cm2/Vse
c, electron mobility (μe) = 15 to 300 cm2/Vs
ec is obtained. Similarly, the carrier diffusion length can be obtained from several μm to more than ten μm, which is equivalent to or longer than that of a polycrystalline semiconductor. On the other hand, instead of annealing at medium temperature as described above,
When the film is made polycrystalline by high-temperature annealing at a temperature of 1200°C, impurities in the film segregate due to solid phase growth from the nuclei, and impurities such as oxygen, carbon, and nitrogen increase in GB, resulting in crystallization. Although the mobility inside is high, it creates a barrier at the GB and inhibits the movement of carriers there. And the result is 10cm+2/Vsec or more.”
The reality is that it is difficult to obtain a mobility of 2. That is, in the embodiments of the present invention, as described above, a silicon semiconductor (
3) is used. Next, in FIG. 1(B), a photoresist mask (4) is formed using a photomask (■), and boron is added to the P-type impurity region (5) at I x 10" cF2.
was added by ion implantation at a dose of . Next, as shown in Figure 6(C), a photoresist mask (6
) was formed using a photomask ■. Then, for the N-type impurity region (7), phosphorus was added at I x 1015 cm-
It was added in an amount of 2 by ion implantation. The distance between the P-type impurity region and the N-type impurity region -11 is narrow (2 to 20 μm, especially 5 to 7 μm), which is shorter than the diffusion distance of electron/hole carriers generated by re-excitation in the semiconductor. 174 to 1/2 was preferable. Next, heat annealing was performed again at 600° C. for 10 to 50 hours to activate the P-type and N-type impurity regions. Thermal annealing is shown in Figure 1 ( A) and (C) were performed twice.However, the annealing shown in Fig. 1(A) may be omitted depending on the desired characteristics, and both may be combined with the annealing shown in Fig. 1(C) to shorten the manufacturing time. Next, as shown in FIG. 1(D), a silicon oxide film was formed on the insulator (8) by the above-mentioned sputtering method.The silicon oxide film was formed using the LPCVD method and the photo-CVD method. For example, it was formed to a thickness of 0.2 to 0.4 μm. Thereafter, windows (9) for electrodes for the P-type and N-type impurity regions were formed by etching using a photomask (2). Furthermore, aluminum was formed on the entire structure by sputtering, and leads α0) were formed using a photomask ■.
The photoelectric conversion device of this example was completed. As for the characteristics of such a photoelectric conversion device, a conversion efficiency of 11.5% was obtained with an area of 1.05 cnr, and the carrier diffusion length of this semiconductor film was 10.5 μm. A feature of the present invention is that unlike conventional devices, there are no electrodes sandwiching the semiconductor layer in the direction of stacking the semiconductor films, so there is no risk of short-circuiting between these two electrodes due to pinholes formed during the fabrication of the semiconductor film. Therefore, a photoelectric conversion device with a good fill factor (FF) value could be obtained. "Embodiment 2" As shown in FIG. 2(A), this embodiment has a structure almost similar to that of Embodiment 1. However, an amorphous silicon semiconductor film (11) is formed to a thickness of 3000 nm on the light irradiation surface side of the semiconductor film (3). Other forming methods and the like are almost the same as in Example 1. This amorphous silicon semiconductor film (11) has a higher light absorption coefficient than the underlying semiconductor film (3). Therefore, in this example, carriers are transferred to the semiconductor film (11) by light irradiation.
), it drifts into the semiconductor film (3), moves through the semiconductor layer (3) as a path, and is taken out from the electrodes. At the same time, carriers are generated in the semiconductor film (3) by light irradiation, but since there is wavelength dependence in the photosensitivity of the semiconductor film, it is possible to convert light in a wide wavelength range into electricity using the configuration of this embodiment. becomes possible. In addition, since the semiconductor film (11) has a wider energy band 11 than the semiconductor film (3), carriers generated in the semiconductor film (3) are prevented from drifting to the semiconductor film 01), and the semiconductor film The carriers generated by 01) move to the semiconductor film (3) along the gradient of the energy band, which makes it possible to extract the generated carriers to the outside more efficiently. This situation is shown in FIGS. 4(A) and 4(B). Figure 4 (A)
is an energy band diagram along line AA' in Figure 2(A), and Figure 4(B) is an energy band diagram along line BB' in Figure 2(A). There is. "Example 3" This example shows an example in which amorphous silicon is provided on the light irradiation side similarly to Example 2. A cross-sectional view is shown in FIG. 2(B). Unlike Example 2, the light irradiation surface is placed on the substrate side, and the extraction electrode is provided on the opposite side. In this example, we will proceed with the production of a photoelectric conversion device using the same process as in Example 1, or
The heat treatment temperature was lowered to 500°C than in Example 1, and the heat treatment was performed under conditions such that the entire semiconductor film (3) was not thermally crystallized, leaving an amorphous semiconductor film (0) on the substrate side. It was formed by leaving behind. Therefore, in FIG. 2(B), there may be a boundary (dotted line) between the semiconductor film (3) and the semiconductor film (12), but in reality there is no clear boundary, and the crystals are crystallized from the substrate side in the thickness direction. As a result, as shown in FIG. 4(C), the energy band diagram along line c-c' in FIG. (1
The carriers are continuously connected from the semiconductor film 02 to the semiconductor film (3), and the carriers generated in the semiconductor film 02 follow the gradient of the continuous energy band and are guided to the semiconductor film (3), using this as a path for the external extraction electrode. reach. When creating this continuous energy band structure, by actively adding carbon, nitrogen, etc. to the substrate side of the semiconductor film to create a wide gap, the gradient of the energy band can be made stronger, allowing carriers to form a continuous energy band structure. can be guided to the semiconductor film (3). "Example 4" FIG. 3 shows a schematic cross-sectional view of a photoelectric conversion device corresponding to this example. The manufacturing method of this example is exactly the same as that of Example 1, and has a structure in which a plurality of P-type or N-type regions are provided. Since this P-type or N-type impurity region and the electrode connected thereto are formed on one main surface of the semiconductor film, the ten and - electrodes can be arbitrarily connected according to the required power. In addition, since the light irradiation surface can be on the substrate side, the area of the photoelectric conversion region does not decrease due to connection of this electrode, and it is possible to apply any power by simply changing the mask pattern. Ta. "Effects of the Invention" By adopting the configuration of the present invention, it was possible to realize a photoelectric conversion device having a long diffusion length of a thin film on a substrate and a large light absorption coefficient. Furthermore, carriers generated by light irradiation diffuse in the plane direction of the semiconductor film, and are therefore efficiently taken out to the outside without being affected by the interface formed in the film thickness direction by forming the semiconductor film. Another feature is that the external lead-out electrode is formed on the substrate, so multiple photoelectric conversion devices can be integrated on one substrate and connected in series or parallel, and backflow prevention diodes can also be installed on the same substrate using the same semiconductor. It is possible to create one. Since the ten electrode and the minus electrode are formed only on one surface, there is no need to consider thermal stress during semiconductor manufacturing. An inexpensive substrate, especially an insulating substrate such as ceramics, glass, etc., is used, and 1 to 50 semiconductors are placed on this substrate.
Since it is formed with a thickness of μ, the material cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による構造を有する光電変換装置の作製
工程を示す縦断面図である。 第2図(A)、 (B)および第3図は本発明の他の実
施形態の縦断面図である。 第4図は第2図に対応するエネルギーバンド図である。 3・・・・・・・・・半導体膜 5・・・・・・・・・P型不純物領域 7・・・・・・・・・N型不純物領域 10・・・・・・電極
FIG. 1 is a longitudinal sectional view showing the manufacturing process of a photoelectric conversion device having a structure according to the present invention. FIGS. 2A, 2B, and 3 are longitudinal sectional views of other embodiments of the present invention. FIG. 4 is an energy band diagram corresponding to FIG. 2. 3... Semiconductor film 5... P type impurity region 7... N type impurity region 10... Electrode

Claims (1)

【特許請求の範囲】 1、基板上の同一の半導体膜中に選択的にP型またはN
型の不純物領域を有する光電変換装置であって、前記P
型またはN型の不純物領域によって形成される電界方向
と光照射面とを平行にしたことを特徴とする光電変換装
置。 2、特許請求の範囲第1項において、前記半導体膜はセ
ミアモルファスまたはセミクリスタル半導体より構成さ
れることを特徴とする光電変換装置。 3、特許請求の範囲第1項において、前記半導体膜上の
光照射面側にアモルファス半導体膜が積層されているこ
とを特徴とする光電変換装置。
[Claims] 1. Selectively P-type or N-type in the same semiconductor film on the substrate
A photoelectric conversion device having an impurity region of type P
A photoelectric conversion device characterized in that the direction of an electric field formed by a type or N type impurity region is parallel to a light irradiation surface. 2. A photoelectric conversion device according to claim 1, wherein the semiconductor film is made of a semi-amorphous or semi-crystalline semiconductor. 3. A photoelectric conversion device according to claim 1, characterized in that an amorphous semiconductor film is laminated on the light irradiation surface side of the semiconductor film.
JP02323697A 1990-11-26 1990-11-26 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3091882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02323697A JP3091882B2 (en) 1990-11-26 1990-11-26 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02323697A JP3091882B2 (en) 1990-11-26 1990-11-26 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04196179A true JPH04196179A (en) 1992-07-15
JP3091882B2 JP3091882B2 (en) 2000-09-25

Family

ID=18157593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02323697A Expired - Lifetime JP3091882B2 (en) 1990-11-26 1990-11-26 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3091882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173832A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Photodiode, organic electroluminescent display device, and electronic device
JP2007273985A (en) * 2006-03-30 2007-10-18 Samsung Sdi Co Ltd Organic light emitting display apparatus
JP2017228661A (en) * 2016-06-22 2017-12-28 株式会社アルバック Method for manufacturing hbc type crystal-based solar cell and hbc type crystal-based solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968879B1 (en) * 2008-02-28 2010-07-09 주식회사 티지솔라 Solar Cell And Method For Manufacturing The Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173832A (en) * 2005-12-21 2007-07-05 Samsung Sdi Co Ltd Photodiode, organic electroluminescent display device, and electronic device
US8477125B2 (en) 2005-12-21 2013-07-02 Samsung Display Co., Ltd. Photo sensor and organic light-emitting display using the same
JP2007273985A (en) * 2006-03-30 2007-10-18 Samsung Sdi Co Ltd Organic light emitting display apparatus
JP2017228661A (en) * 2016-06-22 2017-12-28 株式会社アルバック Method for manufacturing hbc type crystal-based solar cell and hbc type crystal-based solar cell

Also Published As

Publication number Publication date
JP3091882B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
Becker et al. Polycrystalline silicon thin-film solar cells: Status and perspectives
JP2838318B2 (en) Photosensitive device and manufacturing method thereof
US6130380A (en) Solar cell and fabrication method thereof
US5091334A (en) Semiconductor device
US4751193A (en) Method of making SOI recrystallized layers by short spatially uniform light pulses
US4152535A (en) Continuous process for fabricating solar cells and the product produced thereby
EP0025872A2 (en) Semiconductor component part for the conversion of solar rays into electrical energy
JPH1093122A (en) Method of manufacturing thin-film solar cell
JPS60154521A (en) Manufacture of silicon carbide film
JP2001007381A (en) Optoelectronic transducer film and formation thereof
US4070205A (en) Aluminum arsenide eutectic gallium arsenide solar cell
US6777714B2 (en) Crystalline silicon semiconductor device and method for fabricating same
US4116717A (en) Ion implanted eutectic gallium arsenide solar cell
US4706376A (en) Method of making semiconductor photoelectric conversion device
JPH02148831A (en) Laser annealing method
JPH04196179A (en) Photoelectric conversion device
US9450132B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH0864851A (en) Photovoltaic element and fabrication thereof
KR101050878B1 (en) Silicon thin film solar cell and manufacturing method thereof
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
JPH04340724A (en) Manufacture of thin film transistor
JP2854083B2 (en) Semiconductor thin film and method of manufacturing the same
JP2704565B2 (en) Photoelectric conversion device
JP3067821B2 (en) Solar cell and method of manufacturing the same
JPS5952872A (en) Photo-receiving device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11