JPH0419499B2 - - Google Patents

Info

Publication number
JPH0419499B2
JPH0419499B2 JP2115573A JP11557390A JPH0419499B2 JP H0419499 B2 JPH0419499 B2 JP H0419499B2 JP 2115573 A JP2115573 A JP 2115573A JP 11557390 A JP11557390 A JP 11557390A JP H0419499 B2 JPH0419499 B2 JP H0419499B2
Authority
JP
Japan
Prior art keywords
light
concentration
suspension
photodetector
suspended matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2115573A
Other languages
Japanese (ja)
Other versions
JPH02290531A (en
Inventor
Teruyuki Nagamune
Ichiro Inoe
Shin Takematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2115573A priority Critical patent/JPH02290531A/en
Publication of JPH02290531A publication Critical patent/JPH02290531A/en
Publication of JPH0419499B2 publication Critical patent/JPH0419499B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は懸濁物の濃度計に関し、詳しくは拡散
光を入射光として懸濁液の吸収によるオプテイカ
ル・デンシテイーを検出して懸濁液中の懸濁物の
濃度を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a densitometer for suspended matter, and more specifically, it detects the optical density due to absorption of a suspension by using diffused light as incident light to measure the concentration of suspended matter in a suspension. It relates to a measuring device.

一般に、培養液中の微生物などの懸濁物の濃度
や、河川、湖沼、貯水槽などの水質検査における
懸濁物の濃度の測定には、光学的計測法が多く採
用されている。この光学的計測法では、先ず懸濁
液に光を入射し、その透過光を検出してオプテイ
カル・デンシテイー(Optical Density=−log
透過光の強さ/入射光の強さ以下O.D.という) を求め、次にこのO.D.から懸濁物の濃度を測定
する。
In general, optical measurement methods are often used to measure the concentration of suspended matter such as microorganisms in a culture solution, and the concentration of suspended matter in water quality tests of rivers, lakes, reservoirs, and the like. In this optical measurement method, light is first introduced into the suspension, and the transmitted light is detected to determine the optical density (Optical Density=-log
The intensity of transmitted light/intensity of incident light (hereinafter referred to as OD) is determined, and then the concentration of the suspended matter is determined from this OD.

従来の代表的な懸濁物の濃度の測定装置として
濁度計と比色計がある。濁度計は平行光を懸濁液
に入射せしめ、レンズ、ピンホールなどを用いて
(液中の懸濁物に当つて散乱した光を検出せずに)
平行透過光のみを光検出器で検出する。懸濁物の
濃度が低い場合には、O.D.と濃度との間には直
線(比例)関係が維持され、感度特性は優れてい
るが、濃度が高くなると直線関係が崩れるという
欠点があつた。そのため、例えば、培養液中の菌
などの生育度の連続測定、つまり、低濃度から高
濃度にわたつての懸濁物の濃度の連続測定には不
向きであつた。一方、比色計は光源ランプからの
発散光あるいは平行光を懸濁液に入射せしめ、そ
の透過光を光検出器で検出する。平行透過光だけ
でなく粒子による散乱光の一部をも検出するた
め、濁度計よりも比較的高濃度域の測定に適して
いるが、低濃度域では、O.D.と懸濁物の濃度と
の間には直線関係がなく、そのため補正を必要と
した。
Typical conventional devices for measuring the concentration of suspended matter include a turbidity meter and a colorimeter. A turbidity meter makes parallel light enter a suspension and uses a lens, pinhole, etc. (without detecting the light that hits the suspended matter in the liquid and scatters)
Only parallel transmitted light is detected by a photodetector. When the concentration of suspended matter is low, a linear (proportional) relationship is maintained between OD and concentration, and the sensitivity characteristics are excellent. However, as the concentration increases, the linear relationship breaks down, which is a drawback. Therefore, for example, it was not suitable for continuous measurement of the growth rate of bacteria in a culture solution, that is, for continuous measurement of the concentration of suspended matter ranging from low concentration to high concentration. On the other hand, in a colorimeter, divergent light or parallel light from a light source lamp is made incident on a suspension, and the transmitted light is detected by a photodetector. Because it detects not only parallel transmitted light but also part of the light scattered by particles, it is more suitable for measuring relatively high concentration ranges than a turbidity meter. There was no linear relationship between them, so correction was required.

このように従来の懸濁物の濃度測定装置では、
O.D.と懸濁物の濃度との間には低濃度から高濃
度まで直線関係が保たれず、測定濃度によつて補
正を必要とするという不都合があつた。殊に発酵
工業分野では、大腸菌、枯草菌、酵母菌などの培
養の自動管理(発酵工程の管理)のために、低濃
度域から高濃度域にわたつて測定でき、しかも装
置の構成が簡単な濃度計が望まれている。
In this way, conventional suspension concentration measurement devices
There was an inconvenience that a linear relationship between OD and the concentration of suspended matter was not maintained from low to high concentrations, and correction was required depending on the measured concentration. Particularly in the field of fermentation industry, for automatic control of cultures of Escherichia coli, Bacillus subtilis, yeast, etc. (control of fermentation process), it is possible to measure from low to high concentration ranges, and the device configuration is simple. A densitometer is desired.

本発明は低濃度域から高濃度域に至る濃度と
O.D.との間の直線関係を改善した懸濁物の濃度
計を提供することを目的とする。
The present invention is applicable to concentrations ranging from low concentration range to high concentration range.
The purpose of the present invention is to provide a densitometer for suspended solids that has an improved linear relationship with OD.

この目的は、光を第1の光拡散板に入射するた
めの光源と懸濁液の収納空間の外側に配置した第
1と第2の光拡散板と、第1の光拡散板から収納
空間に入りそして第2の光拡散板から出る光を受
ける光検出器とを備えた濃度計によつて達成され
る。
The purpose of this is to provide a light source for inputting light into the first light diffusing plate, first and second light diffusing plates arranged outside the storage space for the suspension, and a light source for inputting light into the first light diffusing plate, and a first and second light diffusing plate arranged outside the storage space for the suspension. This is achieved by a densitometer having a photodetector that receives light entering the light diffuser and exiting the second light diffuser plate.

本発明のこの構成により拡散光(光の強度分布
がすべての方向に一様な光)を懸濁液に通して吸
収させ、吸収されなかつた拡散光の光量を懸濁液
の濃度の線形関係として測定することができる。
With this configuration of the present invention, diffused light (light whose intensity distribution is uniform in all directions) is absorbed through the suspension, and the amount of unabsorbed diffused light is linearly related to the concentration of the suspension. It can be measured as

以下、添付図により、先ず、本発明の原理を説
明する。第1図A及びBは、本発明の濃度計の原
理説明図である。懸濁液1の収納空間2の外側に
第1と第2の光拡散板3,4を配置し、第1の光
拡散板3から光を懸濁液に入射せしめ、第2の光
拡散板4からの透過光を光検出器5で検出するよ
うに構成している。第1図Aの場合は平行光を、
第1図Bの場合は光源ランプ6からの発散光を用
いた場合である。いずれの場合も入射光は第1の
光拡散板によつて拡散光に変えられ、この拡散光
が懸濁液に吸収されることによつて生ずるO.D.
が検出される。第2の光拡散板は、分光測定にお
ける吸収スペクトルの測定に用いられるオパール
グラスと同じように機能させて使用するものであ
る。すなわち、懸濁物に当たつて散乱した光もで
きるだけこの第2の光拡散板で集め、光検出器に
入るようにし、懸濁液の吸収のみによるO.D.を
精度よく求めることができるようにしている。
First, the principle of the present invention will be explained below with reference to the accompanying drawings. FIGS. 1A and 1B are diagrams explaining the principle of the densitometer of the present invention. First and second light diffusing plates 3 and 4 are arranged outside the storage space 2 for the suspension 1, and the light is made to enter the suspension from the first light diffusing plate 3, and the second light diffusing plate A photodetector 5 is configured to detect the transmitted light from 4. In the case of Fig. 1A, parallel light is
The case shown in FIG. 1B is a case in which diverging light from the light source lamp 6 is used. In either case, the incident light is converted into diffused light by the first light diffusing plate, and the OD generated when this diffused light is absorbed by the suspension.
is detected. The second light diffusing plate is used to function in the same way as opal glass used for measuring absorption spectra in spectroscopic measurements. In other words, as much light as possible that is scattered by the suspension is collected by this second light diffusion plate and then enters the photodetector, so that the OD due only to the absorption of the suspension can be determined with high accuracy. There is.

このように本発明では、第1の光拡散板を用い
それによつて拡散光で懸濁液を照射し、懸濁液1
を通る拡散光が懸濁物により吸収され、その残り
の拡散光を第2の光拡散板4により集めて光検出
器5に送るようにし、拡散光のみを使用して懸濁
物による吸収を利用して計測している。このため
第2図の実線で示すように、O.D.と濃度の間に
は低濃度から高濃度にわたつて直線関係が保たれ
ることになる。
In this way, in the present invention, the first light diffusing plate is used to illuminate the suspension with diffused light, and the suspension 1
The diffused light passing through is absorbed by the suspended matter, and the remaining diffused light is collected by the second light diffusion plate 4 and sent to the photodetector 5, so that only the diffused light is used to eliminate the absorption by the suspended matter. It is measured using. Therefore, as shown by the solid line in FIG. 2, a linear relationship is maintained between OD and concentration from low to high concentrations.

第1図C又はDに比較のため示すように、平行
光又は発散光を直接入射光とする場合には、第2
図の点線で示すように、低濃度域でO.D.と濃度
との間には直線関係がなく、いるれも折れ曲つた
非線形関係を示す。これは平行光又は発散光が入
射しても濃度が低いときは懸濁物による平行光又
は発散光の吸収を利用して計測しているが、濃度
がある程度高くなると平行光又は発散光は拡散光
に変えられてしまい拡散光の吸収を利用して計測
することになり、平行光又は発散光の光の吸収係
数と拡散光の光の吸収係数とが異なるからそのよ
うな非線形が生じてくるのである。本発明者はこ
の認識に立つて拡散光(強度分布がすべての方向
に一様な光)のみの吸収を利用して計測すること
により非線形を排除したものである。
As shown for comparison in Figure 1 C or D, when parallel light or diverging light is directly incident light, the second
As shown by the dotted line in the figure, there is no linear relationship between OD and concentration in the low concentration region, but a curved, nonlinear relationship. This is measured using the absorption of parallel light or diverging light by suspended matter when the concentration is low even if parallel light or diverging light is incident, but when the concentration becomes high to a certain extent, the parallel light or diverging light becomes diffused. This nonlinearity occurs because the absorption coefficient of parallel light or diverging light is different from the absorption coefficient of diffused light. It is. Based on this understanding, the inventor of the present invention eliminates nonlinearity by performing measurements using the absorption of only diffused light (light whose intensity distribution is uniform in all directions).

本発明に用いる光拡散板は光を完全に拡散する
ものが望ましく、透明ガラスの半面に薄い乳白層
を有するオパールグラス、全体が乳白物質ででき
ているオパールグラス、乳白色のプラスチツク
板、或いは硫酸紙など適宜選択して使用する。
The light diffusing plate used in the present invention is preferably one that completely diffuses light, such as opal glass with a thin opalescent layer on one half of transparent glass, opal glass entirely made of opalescent material, opalescent plastic board, or parchment paper. Select and use as appropriate.

又、光拡散板の配置は、第1図A又はBの如く
対向した配置ばかりでなく、第3図A又はBに示
すように配置してもよいが、いずれの場合も懸濁
液の収納空間の外側に光拡散板3,4を配置し、
第1の光拡散板3−懸濁液1−第2の光拡散板4
の順に光が通過するように構成する。
Furthermore, the arrangement of the light diffusing plates is not limited to the facing arrangement as shown in Fig. 1 A or B, but may also be arranged as shown in Fig. 3 A or B, but in either case, it is difficult to store the suspension. Light diffusing plates 3 and 4 are arranged outside the space,
First light diffusing plate 3 - Suspension 1 - Second light diffusing plate 4
The structure is configured so that the light passes in this order.

更に光検出器としては光電子増倍管、フオトト
ランジスターなど適宜選定して使用すればよい。
Further, as the photodetector, a photomultiplier tube, a phototransistor, etc. may be appropriately selected and used.

第4図は本発明の一実施例を一部断面で示す正
面図である。第5図は第4図の一部を断面で拡大
して示す正面図である。第6図は第5図のA−A
矢視方向の断面で示す平面図である。光源(図示
せず)からの光は、外筒7内に配したオプテイカ
ルフアイバー8を通つてミラー保持筒9内のミラ
ー10で90゜曲げられて、第1のオパールグラス
11→懸濁液収納空間12→第2のオパールグラ
ス11′→ミラー10′→オプテイカルフアイバー
8′を経て、光検出器(図示せず)で検出するよ
う構成されている。13は外筒7に着脱できるキ
ヤツプであり、懸濁液の流入口14と流出口15
が光経路と直交する側に設けられ、流入口には気
泡の流入を防ぐための細かい金網16が張られて
いる。流入口14からキヤツプ13に入つた懸濁
液の流れは、ミラー保持筒9,9′間で構成され
る狭い収納空間12で加速されて流出口15に至
るので、気泡が流入口の金網16で除去されずキ
ヤツプ内に侵入した場合でも収納空間で気泡が停
滞することはない。そのため、気泡によるO.D.
の測定への影響は殆んど回避できる。17はキヤ
ツプナツトであり、こゝで分割されるようになつ
ている。
FIG. 4 is a partially sectional front view of one embodiment of the present invention. FIG. 5 is a front view showing an enlarged section of a part of FIG. 4. Figure 6 is A-A of Figure 5.
FIG. 3 is a plan view showing a cross section in the direction of arrows. Light from a light source (not shown) passes through an optical fiber 8 disposed in an outer cylinder 7, is bent by 90 degrees by a mirror 10 in a mirror holding cylinder 9, and is directed from a first opal glass 11 to a suspension liquid. It is configured to pass through the storage space 12 -> second opal glass 11'-> mirror 10'-> optical fiber 8' and to be detected by a photodetector (not shown). 13 is a cap that can be attached to and detached from the outer cylinder 7, and has an inlet 14 and an outlet 15 for the suspension.
is provided on the side perpendicular to the optical path, and a fine wire mesh 16 is placed at the inlet to prevent air bubbles from flowing in. The flow of the suspension that entered the cap 13 from the inlet 14 is accelerated in the narrow storage space 12 formed between the mirror holding tubes 9 and 9' and reaches the outlet 15, so that air bubbles are absorbed by the wire mesh 16 at the inlet. Even if air bubbles enter the cap without being removed, they will not stagnate in the storage space. Therefore, the OD due to air bubbles
The influence on the measurement can be largely avoided. 17 is a cap nut, which is designed to be divided.

第7図はこの実施例の濃度計を用いて得られた
酵母菌の濃度とO.D.の関係を示すグラフである。
光源にヘリウムネオンレーザ(5mW.632.8nm)
とタングステンランプ(30W)を用い、光検出器
にシリコン・フオトセル(浜松テレビKK.5876)
を用いて実施した。光源の種類に関係なく、いず
れも低濃度から高濃度域にわたつて濃度とO.D.
の直線関係が保たれ、培養液中の菌の濃度を測定
でき、菌の生育度を連続して把握でき、培養の自
動管理に極めて好都合であつた。又、構成がコン
パクトであり、小型培養槽内でも支障なく用いる
ことができた。更に、培養液など懸濁液中に挿入
する外筒内には光源や光検出器などが存在しない
ので、例えば培養槽内に濃度計を挿入したままで
高圧蒸気殺菌処理することができ、雑菌汚染を容
易に回避できた。
FIG. 7 is a graph showing the relationship between yeast concentration and OD obtained using the densitometer of this example.
Helium neon laser (5mW.632.8nm) as light source
and a tungsten lamp (30W), and a silicon photocell (Hamamatsu TV KK.5876) as a photodetector.
It was carried out using Regardless of the type of light source, both the concentration and OD range from low to high concentration.
A linear relationship was maintained, the concentration of bacteria in the culture solution could be measured, and the growth rate of the bacteria could be continuously monitored, which was extremely convenient for automatic culture management. In addition, the structure is compact, and it can be used without any problems even in a small culture tank. Furthermore, since there is no light source or photodetector inside the outer tube that is inserted into the culture solution or other suspension, high-pressure steam sterilization can be carried out with the concentration meter inserted in the culture tank, and contaminants can be removed. Contamination could be easily avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は懸濁物
の濃度とO.D.の関係を示すグラフ、第3図は本
発明に用いる光拡散板の配置の別の態様を示す。
第4図は本発明の濃度計の一実施例を一部断面で
示す正面図、第5図は第4図の一部を断面で拡大
して示す正面図、第6図は第5図のA−A矢視方
向の断面で示す平面図、第7図は本発明の実施例
で得られた酵母菌の濃度とO.D.の関係を示すグ
ラフである。 図中の符号:1……懸濁液、2……懸濁液収納
空間、3,4……第1、第2の光拡散板、5……
光検出器。
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a graph showing the relationship between the concentration of suspended matter and OD, and FIG. 3 is a diagram showing another embodiment of the arrangement of the light diffusing plate used in the present invention.
FIG. 4 is a front view partially showing an embodiment of the concentration meter of the present invention in cross section, FIG. 5 is a front view showing a partially enlarged cross section of FIG. 4, and FIG. FIG. 7 is a plan view taken in the cross section taken along the line A-A, and is a graph showing the relationship between the concentration of yeast and OD obtained in Examples of the present invention. Codes in the figure: 1... Suspension liquid, 2... Suspension liquid storage space, 3, 4... First and second light diffusion plates, 5...
Photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1 懸濁液の収納空間の外側に配置した第1と第
2の光拡散板と、第1の光拡散板から前記の収納
空間に入りそして前記の第2の光拡散板から出る
光を受ける光検出器を備えたことを特徴とする懸
濁物の濃度計。
1 first and second light diffusing plates arranged outside the suspension storage space; receiving light entering the storage space from the first light diffusing plate and exiting from the second light diffusing plate; A suspension densitometer characterized by being equipped with a photodetector.
JP2115573A 1990-05-01 1990-05-01 Densitometer for suspended matter Granted JPH02290531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2115573A JPH02290531A (en) 1990-05-01 1990-05-01 Densitometer for suspended matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115573A JPH02290531A (en) 1990-05-01 1990-05-01 Densitometer for suspended matter

Publications (2)

Publication Number Publication Date
JPH02290531A JPH02290531A (en) 1990-11-30
JPH0419499B2 true JPH0419499B2 (en) 1992-03-30

Family

ID=14665916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115573A Granted JPH02290531A (en) 1990-05-01 1990-05-01 Densitometer for suspended matter

Country Status (1)

Country Link
JP (1) JPH02290531A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424878Y1 (en) * 1964-01-09 1967-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424878Y1 (en) * 1964-01-09 1967-03-14

Also Published As

Publication number Publication date
JPH02290531A (en) 1990-11-30

Similar Documents

Publication Publication Date Title
US5420432A (en) Organic pollutant monitor
US3849654A (en) Fluorescence cuvette
US4477186A (en) Photometric cuvette
US6803594B2 (en) Measuring system for optically determining concentration of turbid liquid samples
EP1228358B1 (en) Device for measuring water colour and turbidity using a single detector
US5347358A (en) Refractometer
FI73081C (en) Apparatus and photoelectric method for measuring fiber size.
US3702403A (en) Optical testing apparatus comprising means for flowing liquids in free fall condition at constant flow rate
JP2002174596A (en) Apparatus for measuring degree of water pollution
GB2312278A (en) Organic and/or biological pollution monitor
US3529896A (en) Flow cell immersed in a fluid having the same refractive index as the flow cell
US6137571A (en) Optical instrument
FI925938A0 (en) FIBERLAENGDSANALYSERARE
EP0231179A1 (en) Concentration meter
GB2355524A (en) Device for measuring colour and turbidity in a liquid sample
JPH0419499B2 (en)
GB2256043A (en) Organic pollutant monitor
US11231357B2 (en) System and method for ozone concentration in liquids having a positive scaling factor
JP2002340787A (en) Apparatus for measuring absorbance
JPH06123702A (en) Turbidimeter
JPH0533951Y2 (en)
TODA et al. Measurement of atmospheric hydrogen sulfide by continuous flow fluorometry
SU116066A1 (en) Method for photoelectric determination of turbidity of a liquid and device for its implementation
NL8600209A (en) METHOD AND APPARATUS FOR DETERMINING THE QUANTITY OF DISPERSED SOLID MATERIAL IN A LIQUID.
RU1784880C (en) Device for suspended particles content determining in fluids