JPH0419479Y2 - - Google Patents
Info
- Publication number
- JPH0419479Y2 JPH0419479Y2 JP17846287U JP17846287U JPH0419479Y2 JP H0419479 Y2 JPH0419479 Y2 JP H0419479Y2 JP 17846287 U JP17846287 U JP 17846287U JP 17846287 U JP17846287 U JP 17846287U JP H0419479 Y2 JPH0419479 Y2 JP H0419479Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature sensor
- liquid level
- level detector
- convection
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 claims description 48
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 13
- 239000007789 gas Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
【考案の詳細な説明】
[産業上の利用分野]
本考案は、例えば水と油のような2種類の性質
の異なる液体の一方が所定位置に存在するかどう
かを検出する熱式液位検出器に関するものであ
る。[Detailed description of the invention] [Industrial application field] The present invention is a thermal liquid level detection system that detects whether one of two liquids with different properties, such as water and oil, is present at a predetermined position. It is related to vessels.
[従来の技術]
熱式液位検出器はフロート式や電極式に比べて
広範囲の液体に対して使用可能で、かつ電気信号
に変換して外部へ取り出すことも容易なので近年
注目されている方式である。[Prior art] Thermal liquid level detectors are a method that has been attracting attention in recent years because they can be used for a wider range of liquids than float or electrode types, and they are also easier to convert into electrical signals and take out to the outside. It is.
第4図は従来から知られている熱式液位検出器
の構成図であり、取付用ねじ1には下方に向けて
傍熱型温度センサ2と補正用温度センサ3が設置
されている。傍熱型温度センサ2は第5図の断面
図に示すように先端が封止されているセラミツク
等の保護管4の先端部管壁内にヒータ5、管内に
サーミスタ6を備えていて、ヒータ5はヒータリ
ード線7を介して図示しない制御部から電流の供
給を受けて発熱し、サーミスタ6の出力はサーミ
スタリード線8によつて制御部に転送される。そ
の際に、制御部は例えばサーミスタ6からの出力
値が常に一定、即ち先端部の温度が一定になるよ
うにヒータ5への電流供給量の制御を行つてい
る。従つて、ヒータ5からの外部への放熱量の変
化に拘わらず、サーミスタ6の出力を一定とする
ためにはヒータ5への電流供給量を調節すること
になり、放熱量の変化はヒータ5への電流供給量
の変化として検出することができる。なお、この
場合にヒータ5への供給電流は一定とし、サーミ
スタ6の出力変化を取り出す方法もある。 FIG. 4 is a configuration diagram of a conventionally known thermal liquid level detector, in which an indirect heating type temperature sensor 2 and a correction temperature sensor 3 are installed on a mounting screw 1 facing downward. As shown in the cross-sectional view of FIG. 5, the indirect heating type temperature sensor 2 is equipped with a heater 5 in the wall of the distal end of a protective tube 4 made of ceramic or the like whose distal end is sealed, and a thermistor 6 inside the tube. 5 receives current from a control section (not shown) through a heater lead wire 7 to generate heat, and the output of the thermistor 6 is transferred to the control section through a thermistor lead wire 8 . At this time, the control section controls the amount of current supplied to the heater 5 so that, for example, the output value from the thermistor 6 is always constant, that is, the temperature at the tip is constant. Therefore, in order to keep the output of the thermistor 6 constant regardless of changes in the amount of heat radiated from the heater 5 to the outside, the amount of current supplied to the heater 5 must be adjusted. It can be detected as a change in the amount of current supplied to the In this case, there is also a method in which the current supplied to the heater 5 is kept constant and changes in the output of the thermistor 6 are taken out.
ところで、一般に液体と気体ではそれぞれヒー
タ5からの放熱量も異なるので、このことを用い
てヒータ5への電流供給量の変化を知れば、液体
が存在するか否かの検出を行うことができる。し
かし、実際にはヒータ5からの放熱量は液体や気
体の温度によつても変化するので、補正用温度セ
ンサ3はこれらの温度を検出し放熱量の補正を行
つている。なお、この補正用温度センサ3はサー
ミスタ等の測温素子を先端部の封止されている保
護管中に挿入したものである。 By the way, the amount of heat radiated from the heater 5 is generally different for liquids and gases, so if this is used to know the change in the amount of current supplied to the heater 5, it is possible to detect whether or not a liquid is present. . However, in reality, the amount of heat radiated from the heater 5 changes depending on the temperature of the liquid or gas, so the correction temperature sensor 3 detects these temperatures and corrects the amount of heat radiated. The correction temperature sensor 3 has a temperature measuring element such as a thermistor inserted into a protective tube whose tip is sealed.
このような2個の温度センサ2,3の出力を基
に得られる放熱係数は、液体と気体との関係にお
いては第6図のグラフ図に示すような出力曲線を
描くことになり、液体と気体の境界面付近で放熱
係数が大きく変化していることが判る。従つて、
実際に気体に対する液面の検出を行う場合には、
基準出力点Lを液体の時と気体の時との出力レベ
ルの中間点に定め、基準出力点Lよりも放熱係数
が高い場合は所定レベルまで液体が存在すること
を示す信号を発し、低い場合には所定レベルまで
液体が達していないことを示す信号を発するよう
にしてある。 The heat radiation coefficient obtained based on the outputs of these two temperature sensors 2 and 3 will draw an output curve as shown in the graph of Figure 6 in the relationship between liquid and gas. It can be seen that the heat radiation coefficient changes significantly near the gas interface. Therefore,
When actually detecting the liquid level relative to gas,
The reference output point L is set at the midpoint between the output levels for liquid and gas, and if the heat radiation coefficient is higher than the reference output point L, a signal indicating that liquid is present up to a predetermined level is emitted, and if it is low, a signal is issued. is adapted to emit a signal indicating that the liquid has not reached a predetermined level.
[考案が解決しようとする問題点]
しかし、液体同志の境界面を検知する場合に
は、これらの放熱係数には大きな差がないため、
出力曲線の変化は微小である。従つて、2つの液
体の放熱係数の中間値の基準出力点Lを決定する
ことが難しくなり、安定して正確な液面の検出を
行うことが困難である。[Problem that the invention aims to solve] However, when detecting the interface between liquids, there is no large difference in their heat dissipation coefficients, so
Changes in the output curve are minute. Therefore, it becomes difficult to determine the reference output point L of the intermediate value of the heat radiation coefficients of the two liquids, and it is difficult to perform stable and accurate liquid level detection.
[考案の目的]
本考案の目的は、例えば2種類の液体のうちの
一方が所定のレベルにあるかどうかを安定して検
出することができる熱式液位検出器を提供するこ
とにある。[Object of the invention] An object of the invention is to provide a thermal liquid level detector that can stably detect, for example, whether one of two types of liquid is at a predetermined level.
[考案の概要]
上述の目的を達成するための本考案の要旨は、
熱を放散しその情熱量の変化により生ずる温度変
化を検出する管体状の加熱型温度センサと、該加
熱型温度センサの近傍に配置して周囲温度を検出
する管体状の補正用温度センサとから構成する熱
式液位検出器において、前記加熱型温度センサの
管体部に液体の対流を前記加熱型温度センサ側か
ら補正用温度センサに生じさせる対流プレートを
設けたことを特徴とする熱式液位検出器である。[Summary of the invention] The gist of the invention to achieve the above objectives is as follows:
A tubular heated temperature sensor that dissipates heat and detects temperature changes caused by changes in the amount of heat, and a tubular correction temperature sensor that is placed near the heated temperature sensor to detect ambient temperature. A thermal liquid level detector comprising: a convection plate for causing liquid convection from the heating type temperature sensor side to the correction temperature sensor in the tube body of the heating type temperature sensor. It is a thermal liquid level detector.
[考案の実施例]
本考案を第1図〜第3図に図示の実施例に基づ
いて詳細に説明する。[Embodiments of the invention] The invention will be explained in detail based on the embodiments shown in FIGS. 1 to 3.
第1a,bは本考案に係る熱式液位検出器の構
成を示し、aは側面図、bはaのB−B断面図で
ある。第4図の従来例の傍熱型温度センサ2の先
端部付近に対流プレート10が斜めに設置されて
いる。この対流プレート10は傍熱型温度センサ
2内のヒータ5の上部に設け、材質は断熱性を有
する薄板状のものが好適である。 1a and 1b show the configuration of a thermal liquid level detector according to the present invention, where a is a side view and b is a sectional view taken along line B-B of a. A convection plate 10 is installed obliquely near the tip of the conventional indirectly heated temperature sensor 2 shown in FIG. This convection plate 10 is provided above the heater 5 in the indirectly heated temperature sensor 2, and is preferably made of a thin plate-like material having heat insulating properties.
このように対流プレート10を設置すると、第
2図に示すように傍熱型温度センサ2内のヒータ
5からの加熱によつて液体に対流が生じ、液体
A,Bの境界面に当たると水平方向に熱が伝達さ
れてゆく。第3図はその時の放熱係数の変化を出
力として検出した様子を示すグラフ図である。 When the convection plate 10 is installed in this way, convection is generated in the liquid by heating from the heater 5 in the indirectly heated temperature sensor 2, as shown in FIG. Heat is transferred to. FIG. 3 is a graph showing how the change in the heat radiation coefficient at that time is detected as an output.
例えば、第2図aでは液体A,Bの境界面が対
流プレート10の下方にあり、傍熱型温度センサ
2で加熱された液体Aはそのまま上昇し、補正用
温度センサ3により検出される温度はヒータ5の
影響を殆ど受けないため、液体Aの温度そのもの
である。従つて、第3図のaの領域では従来例と
同様に液体A固有の放熱係数が出力として得られ
る。 For example, in FIG. 2a, the boundary surface between liquids A and B is below the convection plate 10, and liquid A heated by the indirectly heated temperature sensor 2 rises as it is to the temperature detected by the correction temperature sensor 3. is almost not affected by the heater 5, so it is the temperature of the liquid A itself. Therefore, in the region a of FIG. 3, the heat radiation coefficient specific to the liquid A is obtained as an output, as in the conventional example.
次に、第2図bでは液体A,Bの境界面と対流
プレート10が接しており、加熱された液体は液
体Bは矢印に示すように対流ブレート10によつ
て補正用温度センサ2側に方向を変換され、境界
面に沿つて流れるので、補正用温度センサ3によ
り検出される温度はヒータ5の影響を受け、実際
の液体Bの温度よりも高くなる。従つて、補正放
熱量が増加するために見掛け上の放熱係数は、第
3図のbに示すように増大し大きなピークが形成
される。 Next, in FIG. 2b, the boundary surface between liquids A and B is in contact with the convection plate 10, and the heated liquid B is transferred to the correction temperature sensor 2 side by the convection plate 10 as shown by the arrow. Since the direction is changed and the liquid B flows along the boundary surface, the temperature detected by the correction temperature sensor 3 is influenced by the heater 5 and becomes higher than the actual temperature of the liquid B. Therefore, as the corrected heat radiation amount increases, the apparent heat radiation coefficient increases and a large peak is formed as shown in b in FIG. 3.
第2図cでは境界面が対流プレート10よりも
かなり上方に位置しており、液体Bは矢印のよう
に上方向に流れるので、補正用温度センサ3より
検出される温度はヒータ5の影響を殆ど受けず、
液体Bの温度そのものを検出する。第3図のcの
領域では従来例と同様に液体B固有の放熱係数が
出力として得られる。このように、境界面付近で
の放熱係数の変化が見掛け上大きくなつたため、
液面検出のための基準出力点を決定することが容
易となり、安定した液位の検出を行うことが可能
となる。 In FIG. 2c, the boundary surface is located considerably above the convection plate 10, and the liquid B flows upward as shown by the arrow, so the temperature detected by the correction temperature sensor 3 is influenced by the heater 5. I hardly received it,
The temperature of liquid B itself is detected. In the region c of FIG. 3, the heat radiation coefficient specific to the liquid B is obtained as an output, as in the conventional example. In this way, the change in the heat dissipation coefficient near the interface appears to be large, so
It becomes easy to determine a reference output point for liquid level detection, and stable liquid level detection becomes possible.
なお、実施例においては加熱型温度センサとし
て傍熱型温度センサを用いたが、別個にセンサを
持たず測定素子を加熱素子として併用する自己加
熱型温度センサとしてもよい。 In the embodiment, an indirect heating type temperature sensor is used as the heating type temperature sensor, but a self heating type temperature sensor may also be used, which does not have a separate sensor and uses a measuring element as a heating element.
[考案の効果]
以上説明したように本考案に係る熱式液位検出
器は、加熱型温度センサに対流プレートを取り付
けることによつて見掛け上の放熱係数の差を拡大
することが可能となり、従来では困難であつた放
熱係数の差が殆どない液体同志の境界面をも検出
することが可能となる。[Effects of the invention] As explained above, in the thermal liquid level detector according to the invention, by attaching a convection plate to the heating type temperature sensor, it is possible to enlarge the difference in the apparent heat radiation coefficient, It is now possible to detect boundaries between liquids with almost no difference in heat radiation coefficient, which was difficult in the past.
図面第1図〜第3図は本考案に係る熱式液位検
出器の実施例を示し、第1図aは側面図、bはa
のB−B断面図、第2図a,b,cは熱による対
流の様子の説明図、第3図は放熱係数特性のグラ
フ図であり、第4図は従来の熱式液位検出器の構
成図、第5図は傍熱型温度センサ2の断面図、第
6図は液体と気体との放熱特性のグラフ図であ
る。
符号2は傍熱型温度センサ、3は補正用温度セ
ンサ、4は保護管、5はヒータ、6はサーミス
タ、10は対流プレートである。
Figures 1 to 3 show an embodiment of the thermal liquid level detector according to the present invention, where Figure 1a is a side view and Figure 1b is a side view.
Figure 2 a, b, and c are explanatory diagrams of convection due to heat, Figure 3 is a graph of heat radiation coefficient characteristics, and Figure 4 is a conventional thermal liquid level detector. FIG. 5 is a cross-sectional view of the indirectly heated temperature sensor 2, and FIG. 6 is a graph of heat radiation characteristics between liquid and gas. Reference numeral 2 is an indirect heating type temperature sensor, 3 is a correction temperature sensor, 4 is a protection tube, 5 is a heater, 6 is a thermistor, and 10 is a convection plate.
Claims (1)
度変化を検出する管体状の加熱型温度センサ
と、該加熱型温度センサの近傍に配置して周囲
温度を検出する管体状の補正用温度センサとか
ら構成する熱式液位検出器において、前記加熱
型温度センサの管体部に液体の対流を前記加熱
型温度センサ側から補正用温度センサに生じさ
せる対流プレートを設けたことを特徴とする熱
式液位検出器。 2 前記対流プレートは前記加熱型温度センサの
先端より稍々上方に設けた実用新案登録請求の
範囲第1項に記載の熱式液位検出器。 3 前記対流プレートは液体の境界面に対して所
定の角度で前記補正用温度センサ側に向けて斜
めに立ち上るように設けた実用新案登録請求の
範囲第1項に記載の熱式液位検出器。 4 前記対流プレートは断熱性を有する板状部材
とした実用新案登録請求の範囲第1項に記載の
熱式液位検出器。[Claims for Utility Model Registration] 1. A tubular heated temperature sensor that radiates heat and detects temperature changes caused by changes in the amount of heat radiated, and a tubular heated temperature sensor that is placed near the heated temperature sensor to detect ambient temperature. In a thermal liquid level detector comprising a tubular correction temperature sensor, the convection causes liquid convection in the tubular portion of the heating temperature sensor from the heating temperature sensor side to the correction temperature sensor. A thermal liquid level detector characterized by being equipped with a plate. 2. The thermal liquid level detector according to claim 1, wherein the convection plate is provided slightly above the tip of the heating type temperature sensor. 3. The thermal liquid level detector according to claim 1, wherein the convection plate is provided so as to rise obliquely toward the correction temperature sensor at a predetermined angle with respect to the boundary surface of the liquid. . 4. The thermal liquid level detector according to claim 1, wherein the convection plate is a plate-like member having heat insulation properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17846287U JPH0419479Y2 (en) | 1987-11-24 | 1987-11-24 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17846287U JPH0419479Y2 (en) | 1987-11-24 | 1987-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0181529U JPH0181529U (en) | 1989-05-31 |
JPH0419479Y2 true JPH0419479Y2 (en) | 1992-05-01 |
Family
ID=31470077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17846287U Expired JPH0419479Y2 (en) | 1987-11-24 | 1987-11-24 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0419479Y2 (en) |
-
1987
- 1987-11-24 JP JP17846287U patent/JPH0419479Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPH0181529U (en) | 1989-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6694174B2 (en) | Infrared thermometer with heatable probe tip and protective cover | |
US20170363474A1 (en) | Infrared sensor and method for electrical monitoring | |
US20040101026A1 (en) | Inspired air temperature measuring device in respiratory circuit | |
BR112018015154B1 (en) | PROCESS FLUID TEMPERATURE CALCULATION SYSTEM, AND METHOD FOR CALCULATING AN ESTIMATE OF A PROCESS FLUID TEMPERATURE INSIDE A PROCESS FLUID DUCT | |
US20080148841A1 (en) | Thermal mass flowmeter | |
US5247185A (en) | Regulated infrared source | |
US7836761B2 (en) | Immersion thermowell for temperature and water level sensing | |
JPH0419479Y2 (en) | ||
US20220334003A1 (en) | Noninvasive thermometer | |
EP0062936B1 (en) | Temperature sensor | |
US6369386B1 (en) | IR sensor with reflective calibration | |
KR20190027713A (en) | Measuring sensor for calculating humidity | |
US6265712B1 (en) | IR sensor with reflective calibration | |
US3529473A (en) | Non-contact temperature measuring device | |
JPS6145463Y2 (en) | ||
EP0957348A1 (en) | Sensor | |
JPH0521008Y2 (en) | ||
JP2010002268A (en) | Microwave-type densitometer and liquid temperature correcting method thereof | |
EP0857956A1 (en) | Device for measuring a temperature | |
CN219870037U (en) | Armoured thermal resistor and temperature detection device with same | |
KR100507606B1 (en) | A Calibration Device Of A Contact Type Surface Temperature Indicator | |
US20220341794A1 (en) | Thermometer | |
JP3239739B2 (en) | Liquid temperature and liquid level detection sensor | |
JPH0738836Y2 (en) | Indirect heat type temperature sensor | |
KR101213580B1 (en) | Heating device used in water |