JPH04194554A - Induction heating-type heater - Google Patents

Induction heating-type heater

Info

Publication number
JPH04194554A
JPH04194554A JP2323215A JP32321590A JPH04194554A JP H04194554 A JPH04194554 A JP H04194554A JP 2323215 A JP2323215 A JP 2323215A JP 32321590 A JP32321590 A JP 32321590A JP H04194554 A JPH04194554 A JP H04194554A
Authority
JP
Japan
Prior art keywords
induction heating
conductive disk
conductive
disk
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2323215A
Other languages
Japanese (ja)
Other versions
JPH0820121B2 (en
Inventor
Michiko Takahashi
道子 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2323215A priority Critical patent/JPH0820121B2/en
Publication of JPH04194554A publication Critical patent/JPH04194554A/en
Publication of JPH0820121B2 publication Critical patent/JPH0820121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

PURPOSE:To obtain a heater with a simple structure, by a method wherein the heater has a plurality of heating coils and a conductive disk heated by eddy currents which are generated by the lines of magnetic force induced by a high-frequency current in each of the heating coils, and air-sending slits and air-sending fans are formed on the conductive disk, and thus the functions of a rotor, the generation of heat, and ventilation are given on the conductive disk. CONSTITUTION:When the output of a high-frequency current from a control device 10 is inputted to an induction heating-coil 1 including a resonance circuit, eddy currents are generated in the vicinity of a conductive disk and heat is generated on the conductive disk by the lines of magnetic force and the eddy currents. After that, the output of another high-frequency current having the phase lag of 90 deg. is supplied to an induction heating-coil 2 and on the conductive disk, the heat is also generated by the lines of the magnetic force and the eddy currents. In the same manner, the output of the high--frequency current is progressively supplied to each of the induction heating--coils, and the heat is generated on the conductive disk as a heater. Since the lines of the magnetic force progressively changed by the induction heating--coils rotates circumferentially to the conductive disk, rotary driving-force is produced like a disk-type induction motor. The induction heating-coil 1 to 4 are fixedly mounted on a casing, and a clearance is formed between the casing and the conductive disk. By the rotation of the conductive disk, hot-air around the conductive disk 5 on which the heat is generated by the eddy currents by the induction heating coils 1 to 4, is sucked forward at the rear of the heater, by air-sending fans 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 高周波誘導加熱方式による暖房器に関する。[Detailed description of the invention] (Industrial application field) This article relates to a heater using a high-frequency induction heating method.

(従来の技術) 20KHz〜50 K Hzの高周波を用いて高周波誘
導加熱する調理器などが知られている。第5図に高周波
誘導加熱調理器のブロック図である。
(Prior Art) Cookers that perform high-frequency induction heating using high-frequency waves of 20 KHz to 50 KHz are known. FIG. 5 is a block diagram of the high frequency induction heating cooker.

商用電源49はスイッチ50を介して全波整流器5Iに
入力されている。この全波整流器51の出力端子には平
滑コンデンサ43と、チョウクコイル44およびフィル
ターコンデンサ45からなるフィルター回路をそれぞれ
並列に接続されている。
Commercial power source 49 is input to full-wave rectifier 5I via switch 50. A smoothing capacitor 43 and a filter circuit consisting of a choke coil 44 and a filter capacitor 45 are connected in parallel to the output terminal of the full-wave rectifier 51, respectively.

また、加熱コイル41および共振回路と、ダイオード4
7とトランジスタ48の逆並列回路の直列回路がフィル
ターコンデンサ45に並列接続され□ ている。制御装
置42は全波整流器51およびトランジスタ48のベー
スにそれぞれ接続されている。なお、この回路にはトラ
ンジスタを用いた直列共振型インバータの構成を示しで
あるが、サイリスタによる並列共振型インバータの場合
もあり制御装置42からの周期パルスにより作動して加
熱コイル41を励振して、近接した位置の鉄、ステンレ
ス、アルミニューム、銅等の金属板に渦電流を発生させ
てその渦電流によって発熱させるものである。
In addition, the heating coil 41, the resonant circuit, and the diode 4
A series circuit of an anti-parallel circuit of 7 and a transistor 48 is connected in parallel to the filter capacitor 45. The control device 42 is connected to the full-wave rectifier 51 and the base of the transistor 48, respectively. Although this circuit shows the configuration of a series resonant inverter using transistors, a parallel resonant inverter using thyristors may also be used, which is activated by periodic pulses from the control device 42 to excite the heating coil 41. This method generates eddy currents in nearby metal plates such as iron, stainless steel, aluminum, copper, etc., and generates heat due to the eddy currents.

このような渦電流を発生させて利用するものに誘導電動
機がある。第3図はディスク形誘導電動機の断面図を示
す図である。図において、31はディスク形誘導回転子
、32は3相固定子巻線、33はベアリング、34はシ
ャフトを示す。第4図はディスク形誘導回転子31であ
る。導電性の材質で銅、アルミニウム、鉄などを用いる
。ディスク形回転子の円盤にスリット35を多数設けて
形成したものである。この誘導電動機の動作を説明する
。まず、3相固定子巻線32に3相電流が供給して自転
磁界を発生させると、対向したディスク形誘導回転子3
1にはその磁界の発生に応して渦電流による磁界を発生
して電磁力が生じてディスク形回転子31に回転トルク
を生じさせて回転する。以上に説明した誘導加熱調理器
と誘導電動機はいずれも渦電流の応用例である。
There is an induction motor that generates and utilizes such eddy currents. FIG. 3 is a diagram showing a cross-sectional view of the disk-type induction motor. In the figure, 31 is a disk-shaped induction rotor, 32 is a three-phase stator winding, 33 is a bearing, and 34 is a shaft. FIG. 4 shows a disk-shaped induction rotor 31. Conductive materials such as copper, aluminum, and iron are used. It is formed by providing a large number of slits 35 in the disk of a disk-shaped rotor. The operation of this induction motor will be explained. First, when a three-phase current is supplied to the three-phase stator winding 32 to generate a rotating magnetic field, the opposing disk-shaped induction rotor 3
In response to the generation of the magnetic field, a magnetic field is generated by eddy currents, an electromagnetic force is generated, and a rotational torque is generated in the disk-shaped rotor 31, causing it to rotate. Both the induction cooking device and the induction motor described above are examples of applications of eddy current.

(発明が解決しようとする課題) 本発明はヒートポンプ方式や抵抗線を用いた暖房器とは
異なる方式によって、導電性円板を誘導コイルによる電
磁誘導で渦電流を発生させて発熱および回転トルクに変
換して導電性円板が送風する暖房器の提供を目的とする
(Problems to be Solved by the Invention) The present invention uses a method different from a heat pump method or a heater using a resistance wire to generate eddy current in a conductive disk by electromagnetic induction by an induction coil to generate heat and generate rotational torque. The purpose of this invention is to provide a heater in which air is blown by a conductive disk.

(課題を解決するための手段) 高周波電流を通電する複数の加熱コイルと該加熱コイル
の高周波磁力線で渦電流を発生して加熱される導電性円
板とを有し、該導電性円板には中心から放射状に複数の
通風用スリットと送風羽根とを設けた構造とし、加熱コ
イルと導電性円板の配置をディスク形誘導電動機の固定
子巻線と回転子と対応するように、導電性円板を回転可
能になるようベアリングを介して軸支して回転子とし、
複数の加熱コイルを導電性円板に近接して導電性円盤の
円周方向に配設装備して固定子、巻線として働くように
構成し、加熱コイルの供給電源は商用電源を整流し、出
力の一部を制御装置で高周波を発生した出力を位相の異
なる2相高周波に変換し、その2相高周波出力を各加熱
コイルに供給する複数の共振回路にそれぞれの制御信号
として供給して複数の加熱コイルの高周波電流を生成し
て位相の順に加熱コイルに順次供給して回転導電性円板
を加熱1回転および送風をする誘導電磁波暖房器である
。 “ (実施例) 第1図は本発明の詳細な説明する為の概略斜視図である
。I、2,3.4は2相高周波による加熱コイルで、暖
房器に固定装着する。5は導電性替板であり暖房器の誘
導加熱コイル1,2,3.4に近接して回転自在に軸支
する。導電性円板の6は通風用のスリット、7は送風用
羽根である。
(Means for Solving the Problems) The conductive disk includes a plurality of heating coils through which high-frequency current is applied, and a conductive disk that is heated by generating eddy currents with high-frequency magnetic lines of force of the heating coil. has a structure with multiple ventilation slits and blowing blades radiating from the center, and the arrangement of the heating coil and conductive disk corresponds to the stator winding and rotor of a disk-shaped induction motor. The disk is rotatably supported via a bearing to form a rotor.
A plurality of heating coils are arranged and equipped in the circumferential direction of the conductive disk in close proximity to the conductive disk to function as a stator and a winding, and the power supplied to the heating coils is obtained by rectifying commercial power. A part of the output is generated by a control device, which converts the output into two-phase high-frequency waves with different phases, and supplies the two-phase high-frequency outputs as respective control signals to multiple resonant circuits that supply each heating coil. This is an induction electromagnetic wave heater that generates a high-frequency current in the heating coil and sequentially supplies it to the heating coil in order of phase to heat a rotating conductive disk once and blow air. (Example) Fig. 1 is a schematic perspective view for explaining the present invention in detail. I, 2, 3. 4 are two-phase high frequency heating coils, which are fixedly attached to the heater. 5 is a conductive It is a changing plate and is rotatably supported in the vicinity of the induction heating coils 1, 2, 3.4 of the heater.The conductive disk has slits 6 for ventilation, and 7 is blades for blowing air.

暖房器の動作を説明する。誘導加熱コイルl。Explain the operation of the heater. Induction heating coil l.

2.3.4には第2図に示す制御装置10とその出力を
各誘導加熱コイルと共振する共振回路とで構成されてい
る。まず制御装置lOの高周波の出力が共振回路を−含
む誘導加熱コイルlに人力し、導電性円板の近接した部
分に渦電流を発生し磁力線と渦電流により発熱をする。
2.3.4 consists of the control device 10 shown in FIG. 2 and a resonant circuit that resonates its output with each induction heating coil. First, the high-frequency output of the control device 10 is applied to the induction heating coil 1 including a resonant circuit, and eddy current is generated in the vicinity of the conductive disk, generating heat due to the magnetic lines of force and the eddy current.

次に90度位相の遅れた高周波出力を誘導加熱コイル2
に供給する誘導加熱コイル1の時と同様に導電性円板に
磁力線と渦電流による発熱する。同様に誘導加熱コイル
3にも更に90度位相の遅れた高周波出力が供給される
。それから更に90度位相の遅れた高周波出力・が誘導
加熱コイル4に供給される。このように順次高周波出力
が各誘導加熱コイルに供給されることで暖房器として導
電性円板は発熱する。
Next, the high frequency output with a phase delay of 90 degrees is applied to the induction heating coil 2.
As in the case of the induction heating coil 1 supplied to the conductive disk, heat is generated by magnetic lines of force and eddy currents in the conductive disk. Similarly, the induction heating coil 3 is also supplied with a high frequency output whose phase is further delayed by 90 degrees. Then, a high frequency output with a phase delay of 90 degrees is further supplied to the induction heating coil 4. By sequentially supplying high frequency output to each induction heating coil in this way, the conductive disk generates heat as a heater.

また、この誘導加熱コイルによる順次切り替わる磁力線
が導電性円板に対して円周方向に回転することによって
、ディスク型誘導電動機と同様の回転駆動力を発揮する
ものである。この暖房器とディスク型誘導電動機との相
異点はディスク型誘導電動機には周波数50Hzの低周
波数と暖房器の・誘導加熱コイルに供給する高周波20
KHzの違いおよび、誘導電動機による扇風機なら50
W程度で回転するが誘導加熱暖房器の場合は発熱させる
ためにIKW位電力を供給する違いがある。
In addition, the magnetic lines of force that are sequentially switched by the induction heating coil rotate in the circumferential direction with respect to the conductive disk, thereby exerting a rotational driving force similar to that of a disk-type induction motor. The difference between this heater and a disk-type induction motor is that the disk-type induction motor has a low frequency of 50Hz and a high frequency of 20Hz that is supplied to the induction heating coil of the heater.
KHz difference and 50 for electric fans using induction motors.
It rotates at about W, but in the case of an induction heater, there is a difference in that it supplies about IKW of power to generate heat.

第1図では構造的なことは記載してないが誘導加熱コイ
ル1〜4は筐体に固着装備するが空隙を設けて導電性円
板の回転によって送風羽根で暖房器の背後から誘導加熱
コイルによる渦電流で発熱した導電性円板の周囲の温風
を前方に吸い出すものである。また発熱回転体のため誘
導加熱コイル1〜4の後部や導電性円板の前面に通風性
の保護具を配設することは勿論必要である。
Although the structure is not shown in Fig. 1, the induction heating coils 1 to 4 are fixedly installed in the housing, but with a gap provided, the induction heating coils are installed from behind the heater using a blower blade by rotating a conductive disk. The device sucks out the hot air around the conductive disk, which is generated by eddy currents, forward. Furthermore, since the heating rotary body is a heat generating body, it is of course necessary to provide ventilating protectors at the rear of the induction heating coils 1 to 4 and at the front of the conductive disk.

第2図の制御装置10と誘導加熱コイル1.2゜3.4
の各共振回路誘導加熱部以外の場所例えば脚部や別のケ
ースに装備する。
Control device 10 and induction heating coil 1.2゜3.4 in Fig. 2
Equip each resonant circuit in a place other than the induction heating part, for example on the leg or in another case.

次に第2図の高周波発生回路について説明する。Next, the high frequency generation circuit shown in FIG. 2 will be explained.

商用電源8を全波整流器9で整流した出力をチョークコ
イルLおよび共振用コンデンサ25介して誘導加熱コイ
ル1に駆動信号として供給される。
The output obtained by rectifying the commercial power supply 8 with a full-wave rectifier 9 is supplied to the induction heating coil 1 as a drive signal via a choke coil L and a resonance capacitor 25.

誘導加熱コイルlには並列にスイッチング素子としてサ
イリスタ5CR(以下SCRと称す)17が接続されて
いる。このスイッチング素子の5CR17には制御信号
が供給されて誘導加熱コイルを共振する。制御信号は、
高周波発生回路lOの発振回路11で40 K Hz 
= J 00 K Hz範囲から所望の周波数の矩形波
を発振させる。この出力は第6図に示す信号波形のaの
信号である。この出力をダイオード12を介してフリッ
プフロップ15と、直列接続のダイオードI3、インバ
ータ14を介して180度位相の遅れた信号をフリップ
フロップ】6に供給する、入力された信号はそれぞれの
フリップフロップで1/2分周して180度位相差のあ
る2つの信号を第6図に示すb信号とC信号として出力
する。これによってフリップフロップ15.16の出力
の4信号は90度づつ位相がずれて出力される。まずフ
リップフロップ15から5CR17に供給して加熱誘導
コイルを共振させる。この共振信号は第6図のfの信号
である。次にフリップフロップ16から5CR21に9
0度位相の遅れた信号すなわち第6図のdの信号が供給
され加熱誘導コイル2を第6図のh信号のように共振さ
せる。次にフリップフロップ15から5CR19に更に
90度位相の遅れた信号が第6図のC信号が供給され加
熱誘導コイル3を第6図のg信号のように共振させる。
A thyristor 5CR (hereinafter referred to as SCR) 17 is connected in parallel to the induction heating coil l as a switching element. A control signal is supplied to this switching element 5CR17 to cause the induction heating coil to resonate. The control signal is
40 KHz in the oscillation circuit 11 of the high frequency generation circuit IO
= J 00 A square wave of a desired frequency is oscillated from the kHz range. This output is a signal with a signal waveform shown in FIG. This output is supplied to a flip-flop 15 via a diode 12, and a signal with a 180 degree phase delay is supplied to a flip-flop 6 via a series-connected diode I3 and an inverter 14. The frequency is divided by 1/2 and two signals having a phase difference of 180 degrees are output as the b signal and the C signal shown in FIG. As a result, the four output signals of the flip-flops 15 and 16 are output with a phase shift of 90 degrees. First, it is supplied from the flip-flop 15 to the 5CR17 to cause the heating induction coil to resonate. This resonance signal is the signal f in FIG. Next, flip-flop 16 to 5CR21 to 9
A signal with a phase delay of 0 degrees, that is, a signal d in FIG. 6 is supplied, and the heating induction coil 2 is caused to resonate like a signal h in FIG. 6. Next, a signal whose phase is further delayed by 90 degrees is supplied from the flip-flop 15 to the 5CR19, which is the signal C shown in FIG. 6, causing the heating induction coil 3 to resonate like the signal g shown in FIG.

次にフリップフロップ16から更に90度位相の遅れた
信号第6図のC信号を5CR23に供給され加熱誘導コ
イル4を第6図のi信号のように共振させる。
Next, the signal C shown in FIG. 6, which is a signal whose phase is further delayed by 90 degrees, is supplied from the flip-flop 16 to the 5CR 23, causing the heating induction coil 4 to resonate like the i signal shown in FIG.

以上に説明したように高周波信号が回転方向に並んだ順
の誘導加熱コイルに供給されて導電性円板5に渦電流を
生じ発熱および磁力線を発生させる。
As explained above, a high frequency signal is supplied to the induction heating coils arranged in the rotational direction to generate eddy currents in the conductive disk 5, generating heat and lines of magnetic force.

誘導加熱コイルの磁力線と導電性円板の渦電流による磁
力線とでトルクを発生し導電性円板が回転する。この導
電性円板通風用のスリットと送風羽根によって導電性円
板周辺の熱風を送出する。
Torque is generated by the magnetic lines of force of the induction heating coil and the magnetic lines of force caused by eddy currents of the conductive disk, and the conductive disk rotates. Hot air around the conductive disk is sent out by the conductive disk ventilation slits and the blower blades.

次に特許請求の第2項に付いて説明する。誘導加熱コイ
ルと導電性円板との間隔が小さい程渦電流の発生が大き
くなるものであるかが、固定された誘導加熱コイルと回
転する導電性円板は量産する場合ある程度間隔があるほ
うが製作しやすいものである。その結果として渦電流の
一少をきたす。
Next, item 2 of the patent claim will be explained. The smaller the distance between the induction heating coil and the conductive disk, the greater the eddy current generation, but when mass producing a fixed induction heating coil and a rotating conductive disk, it is better to have a certain distance between them. It's easy to do. As a result, some eddy currents occur.

それを補うために誘導加熱コイルの前後に2枚の導電性
円板を回転自在に軸支して表側の導電性円板は送風構造
とし、裏側の導電性円板は吸気構造とすればよい。この
場合2枚の導電性円板の間が狭過ぎると誘導加熱コイル
による磁界と渦電流による磁界が相殺しあうので効果が
なくなる。
To compensate for this, two conductive disks can be rotatably supported before and after the induction heating coil, with the front conductive disk having a ventilation structure and the back conductive disk having an air intake structure. . In this case, if the distance between the two conductive disks is too narrow, the magnetic field caused by the induction heating coil and the magnetic field caused by the eddy current cancel each other out, resulting in no effect.

特許請求の範囲第3項について説明する。本発明の誘導
加熱暖房方式では600w=1200W程度の電力で加
熱するものであり回転は単に送風羽根を回転させるだけ
のトルクがあればよい。扇風機などでは通常50W程度
の電力で充分である。
Claim 3 will be explained. In the induction heating heating method of the present invention, heating is performed with a power of about 600W=1200W, and the rotation only requires torque sufficient to simply rotate the blower blades. For electric fans, etc., power of about 50W is usually sufficient.

そこで本発明ではは渦電流による発熱分と渦電流による
磁界とは同時に存在するものであり、当然発熱と磁界の
強さは比例するものである。したがって回転トルクを有
効利用する為に導電性円板の回転軸に発電機を接続して
発生した電力を2相高周波に変換して誘導加熱コイルに
供給して還元利用するものである。
Therefore, in the present invention, the heat generated by the eddy current and the magnetic field due to the eddy current exist simultaneously, and naturally the strength of the heat and the magnetic field are proportional. Therefore, in order to make effective use of the rotational torque, a generator is connected to the rotating shaft of the conductive disk, and the generated electric power is converted into two-phase high frequency and supplied to the induction heating coil for reduction use.

〔発明の効果〕〔Effect of the invention〕

本発明による暖房方式は2相高周波信号を複数の誘導加
熱コイルに回転方向順に供給して回転磁界を発生させ、
近接した導電性円板に順次渦電流を発生し、発熱と回転
力を得る。この導電性環る板には通風用のスリットと送
風羽根を設けであるので、温風を吹き出す機能も備えて
導電性円板に回転子と発熱と送風の3つの機能を持たせ
であるので簡単な構造であり量産に適している。また、
導電性円板に遠赤外線セラミックをコラティングして遠
赤外線も付加することも可能であり、実用上の効果があ
る。
The heating method according to the present invention supplies a two-phase high-frequency signal to a plurality of induction heating coils in order of rotational direction to generate a rotating magnetic field,
Eddy currents are sequentially generated in adjacent conductive disks to generate heat and rotational force. This conductive circular plate is equipped with ventilation slits and blowing blades, so it also has the function of blowing out hot air, and the conductive circular plate has three functions: rotor, heat generation, and air blowing. It has a simple structure and is suitable for mass production. Also,
It is also possible to add far-infrared rays by collating far-infrared ceramics on a conductive disk, which has a practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の誘導加熱コイルと導電性円板の構造を
説明する概略斜視図、第2図は誘導加熱コイルと誘導加
熱コイルに供給する高周波信号発生回路、第3図はディ
スク型電動機の断面図、第4図はディスク型電動機の回
転子、第5図は誘導加熱調理器の回路図。第6図は第2
図の制御装置と共振回路の各部の信号を示す図である。 1.2,3.4・・・誘導加熱コイル、5,31導電性
円板、6・・・通風用スリット、7・・送風用羽根、8
.49・・・商用電源、9,51 ・全波整流器、10
.42・・制御装置、【l・・・高周波発振器、12、
.13.18,20,22,24.47・・・ダイオー
ド、14・・・インバータ、15.16・・フリツプフ
ロツプ、17,19.21.23・・サイリスタSCR
,25,26,27,28,43,45゜46、C・・
・コンデンサ、32・・・3相固定子巻線、33・・・
ベアリング、34・・・シャフト、35・・スリット、
41・・・加熱コイル、43・・・コンデンサ、44゜
し・・・チぢラフコイル、48・・・トランジスタ、5
0・・・スイッチ、
Figure 1 is a schematic perspective view illustrating the structure of the induction heating coil and conductive disk of the present invention, Figure 2 is the induction heating coil and a high frequency signal generation circuit that supplies the induction heating coil, and Figure 3 is the disk type electric motor. 4 is a rotor of a disk-type motor, and FIG. 5 is a circuit diagram of an induction heating cooker. Figure 6 is the second
It is a figure which shows the signal of each part of the control apparatus of a figure, and a resonance circuit. 1.2, 3.4... Induction heating coil, 5, 31 Conductive disk, 6... Ventilation slit, 7... Air blower, 8
.. 49... Commercial power supply, 9, 51 ・Full wave rectifier, 10
.. 42...control device, [l...high frequency oscillator, 12,
.. 13.18,20,22,24.47...Diode, 14...Inverter, 15.16...Flip-flop, 17,19.21.23...Thyristor SCR
, 25, 26, 27, 28, 43, 45° 46, C...
・Capacitor, 32...3-phase stator winding, 33...
Bearing, 34...shaft, 35...slit,
41...Heating coil, 43...Capacitor, 44°...Third rough coil, 48...Transistor, 5
0...Switch,

Claims (1)

【特許請求の範囲】 1、導電性円板に複数の通風用スリットと送風用羽根を
中央部から外周に設け、回転によって導電性円板の後部
からの空気を吸い出し送風するように回転自在になるよ
う軸支した導電性円板と、該導電性円板の回転方向に沿
って複数の偏平状誘導加熱コイルを前記導電性円板から
微少間隔を介して向き合わせて装着し、該誘導加熱コイ
ルには位相の異なる周波数の等しい2相高周波信号の正
電圧の位相順に前記複数の誘導加熱コイルの回転方向順
に供給し、該誘導加熱コイルの磁力線が円周方向に順次
発生して回転磁界となり、その磁力線で導電性円板に誘
起される渦電流による磁界と、誘導加熱コイルの磁界と
で発生するトルクによって導電性円板を回転させ、渦電
流によって発熱した導電性円板周辺の熱風を送風するこ
とを特徴とする誘導加熱型暖房方式。 2、第一項の誘導加熱型暖房方式で誘導加熱コイルと導
電性円板の間隔が広く渦電流の発生が弱い場合、前記導
電性円板2枚を誘導加熱コイルの前後に回転自在になる
よう軸支し、かつ、後部導電性円板は吸気羽根とするこ
とで、渦電流の誘導発熱の効率をよくすることを特徴と
する誘導加熱型暖房方式。 3、第一項および第二項の誘導加熱型暖房方式の導電性
円板の回転軸で発電機が回転するよう発電機を装備し、
該発電機で発生した電力を2相高周波に変換して誘導加
熱コイル還元させて省電力化することを特徴とする誘導
加熱型暖房方式。
[Scope of Claims] 1. A plurality of ventilation slits and ventilation blades are provided in the conductive disk from the center to the outer periphery, and the conductive disk is rotatable so as to suck out and blow air from the rear of the conductive disk. A conductive disk is pivotally supported so that the conductive disk is rotated, and a plurality of flat induction heating coils are mounted facing each other with a small distance from the conductive disk along the rotational direction of the conductive disk. Two-phase high-frequency signals with different phases and equal frequencies are supplied to the coils in the order of the phases of the positive voltages of the plurality of induction heating coils, and the lines of magnetic force of the induction heating coils are sequentially generated in the circumferential direction to form a rotating magnetic field. The conductive disk is rotated by the magnetic field caused by the eddy current induced in the conductive disk by the magnetic field lines and the torque generated by the magnetic field of the induction heating coil, and the hot air around the conductive disk generated by the eddy current is heated. An induction heating type heating system characterized by blowing air. 2. In the induction heating type heating method described in item 1, if the distance between the induction heating coil and the conductive disk is wide and the generation of eddy current is weak, the two conductive disks can be freely rotated in front and behind the induction heating coil. This induction heating type heating system is characterized by improving the efficiency of eddy current induced heat generation by supporting the shaft and using the rear conductive disc as an intake vane. 3. Equipped with a generator so that the generator rotates on the rotating shaft of the conductive disk of the induction heating type heating method in Items 1 and 2,
An induction heating type heating system characterized by converting the electric power generated by the generator into two-phase high frequency and returning it to an induction heating coil to save power.
JP2323215A 1990-11-28 1990-11-28 Induction heating type heating system Expired - Lifetime JPH0820121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323215A JPH0820121B2 (en) 1990-11-28 1990-11-28 Induction heating type heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323215A JPH0820121B2 (en) 1990-11-28 1990-11-28 Induction heating type heating system

Publications (2)

Publication Number Publication Date
JPH04194554A true JPH04194554A (en) 1992-07-14
JPH0820121B2 JPH0820121B2 (en) 1996-03-04

Family

ID=18152321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323215A Expired - Lifetime JPH0820121B2 (en) 1990-11-28 1990-11-28 Induction heating type heating system

Country Status (1)

Country Link
JP (1) JPH0820121B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735355B2 (en) * 2006-07-07 2010-06-15 Mettler-Toledo Ag Gravimetric moisture measurement instrument
US20110215089A1 (en) * 2010-09-08 2011-09-08 Bernardo Alberto Garza Electromagnetic Induction Air Heater System with Moving Heating Element And Methods
WO2012164894A1 (en) * 2011-05-27 2012-12-06 株式会社Tbk Electrical heating device, and electric vehicle
CN105275878A (en) * 2015-11-13 2016-01-27 珠海格力电器股份有限公司 Heating assembly and electric fan adopting same
CN110530017A (en) * 2019-08-13 2019-12-03 合肥托卡拉图科技有限公司 A kind of heating component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090148802A1 (en) * 2007-12-05 2009-06-11 Jan Ihle Process for heating a fluid and an injection molded molding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7735355B2 (en) * 2006-07-07 2010-06-15 Mettler-Toledo Ag Gravimetric moisture measurement instrument
US20110215089A1 (en) * 2010-09-08 2011-09-08 Bernardo Alberto Garza Electromagnetic Induction Air Heater System with Moving Heating Element And Methods
WO2012164894A1 (en) * 2011-05-27 2012-12-06 株式会社Tbk Electrical heating device, and electric vehicle
JP2012245871A (en) * 2011-05-27 2012-12-13 Tbk:Kk Electrical heating device and electric vehicle
CN105275878A (en) * 2015-11-13 2016-01-27 珠海格力电器股份有限公司 Heating assembly and electric fan adopting same
CN110530017A (en) * 2019-08-13 2019-12-03 合肥托卡拉图科技有限公司 A kind of heating component

Also Published As

Publication number Publication date
JPH0820121B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US5770909A (en) Wound rotor synchronous motor-generator and field control system therefor
US6393208B1 (en) Compressor with integrated impeller and motor
JP5895753B2 (en) Blower unit for air conditioner
JPH04194554A (en) Induction heating-type heater
JPH0835664A (en) Rotary heating and cooking device
JP2897083B2 (en) Hot air heater
Bentouati et al. Permanent magnet brushless DC motors for consumer products
Welchko et al. A novel variable-frequency three-phase induction motor drive system using only three controlled switches
JP2001204623A (en) Induction heating type rice cooker
US20140079375A1 (en) Electric heating device and electric vehicle
JP2516337B2 (en) Induction motor
JP2004111090A (en) Induction heating cooker
CN105471215A (en) Six-slot three-phase outer rotor brushless fan motor for refrigerator
Binder Switched reluctance Drive and inverter-fed induction machine–a comparison of design parameters and drive performance
JP2000184963A (en) Heating cooker
JP4154133B2 (en) Air conditioner and motor with motor using drive circuit
JPH05227686A (en) Brushless motor
CN207961051U (en) Fan and micro-wave oven
JPH0713909B2 (en) High frequency heating device
JPS637157A (en) Variable speed induction motor
JP2011049130A (en) Electromagnetic induction system hot air generator and power generator
JPH0326784Y2 (en)
JPH11155299A (en) Inverter device of two-phase induction motor
JPS6271189A (en) High frequency heating gas turbine generator
JPH10210789A (en) 2-phase inverter circuit for 2-phase induction motor