JPH04194348A - Fuel characteristic detecting method of engine - Google Patents

Fuel characteristic detecting method of engine

Info

Publication number
JPH04194348A
JPH04194348A JP2327147A JP32714790A JPH04194348A JP H04194348 A JPH04194348 A JP H04194348A JP 2327147 A JP2327147 A JP 2327147A JP 32714790 A JP32714790 A JP 32714790A JP H04194348 A JPH04194348 A JP H04194348A
Authority
JP
Japan
Prior art keywords
fuel
engine
volatility
determination
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2327147A
Other languages
Japanese (ja)
Inventor
Yuji Sakata
坂田 祐二
Isao Shibata
勲 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2327147A priority Critical patent/JPH04194348A/en
Publication of JPH04194348A publication Critical patent/JPH04194348A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To improve judging accuracy of fuel volatility by detecting variation of factors in relation to a combustion result in a rapid transient condition so as to perform judgment of fuel volatility. CONSTITUTION:Engine rotational speed is detected by a crank angle from a crank angle sensor 22. It is detected whether heavy gasoline is used or not by a control unit 20 based on the condition of a drop in the speed just after starting an engine 1. In the case when the use of heavy gasoline is not confirmed, it is judged whether the heavy gasoline is used or not accurately by judging variating frequency of the rotational speed at the time of rapid acceleration. Consequently, since generation of variation in wall face adhesive quantity of fuel is utilized, judgment of the fuel volatility can be accurately performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンに使用されている燃料の揮発性を調
べるエンジンの燃料性状検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine fuel property detection method for examining the volatility of fuel used in the engine.

(従来の技術〕 エンジンに使用される燃料としては、比較的揮発性の良
い通常燃料(レギュラーガソリン)のほかに、オクタン
価を^めるための添加剤等の重質成分が含まれて通常燃
料よりも揮発性が悪くなっている燃料(重質ガソリン)
もある。そして、使用される燃料の揮発性の相違により
、吸気通路等の壁面への燃料付着量や燃料の気化、霧化
の度合等に差異が生じ、燃焼性に影響を及ぼす。例えば
、エンジン温度が低いときには揮発性の悪い燃料はど気
化が悪くなることにより実際の空燃比がり一ン化し、ま
た、加速時には揮発性の悪い燃料はど加速応答性が悪化
し墨い。
(Prior art) In addition to regular fuel (regular gasoline), which has relatively good volatility, the fuel used in engines is regular fuel, which contains heavy components such as additives to increase the octane number. Fuel with worse volatility than (heavy gasoline)
There is also. Differences in the volatility of the fuels used result in differences in the amount of fuel adhering to the walls of the intake passage and the like, as well as the degree of vaporization and atomization of the fuel, which affects combustibility. For example, when the engine temperature is low, fuel with poor volatility will cause poor vaporization and the actual air-fuel ratio will become the same, and during acceleration, fuel with poor volatility will worsen acceleration response.

従来、このような使用燃料の揮発性の影響を是正するた
めの技術として、例えば特開昭62−288335号公
報に示されるように、使用燃料の揮発性の程度を検出す
る性状検出手段を備え、この検出手段による検出に基づ
き、燃料噴射量の水温に応じた増量補正量を燃料の揮発
性に応じて調整し、さらに燃料の加速増量を燃料の揮発
性に応じて調整するようにしたものが知られている。燃
料の性状を検出する方法としては、例えば上記公報にも
示されているように、所定の定常運転状態にあるときに
、燃焼中の筒内圧力の検出等によって燃焼速度を調べ、
この燃焼速度を基準値と比較することにより揮発性を調
べるものなどが知られている。
Conventionally, as a technique for correcting the influence of the volatility of the fuel used, for example, as shown in Japanese Patent Application Laid-Open No. 62-288335, there has been a technique equipped with a property detection means for detecting the degree of volatility of the fuel used. Based on the detection by this detection means, the correction amount for increasing the fuel injection amount according to the water temperature is adjusted according to the volatility of the fuel, and the acceleration increase of the fuel is further adjusted according to the volatility of the fuel. It has been known. As a method for detecting the properties of the fuel, for example, as shown in the above publication, the combustion rate is checked by detecting the cylinder pressure during combustion during a predetermined steady state of operation, and
There are known methods that examine volatility by comparing this burning rate with a reference value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の燃料性状検出方法によると、揮発性の検出の精度
が充分なものでなかった。すなわち、定常運転状態にお
いて燃焼中の筒内圧力の検出に基づいて燃焼速度を調べ
るような方法では、例えば吸気スワール等によって1!
!燐状態が調整されているような場合に、レギュラーガ
ソリンと重質ガソリンとで燃焼速度の差が充分に生じず
に、外乱等による燃焼速−のばらつきとの混同により検
出精度が低下し易い。なお、加速運転条件下で空燃比の
応答遅れから燃料の揮発性を判別するという方法も考え
られるが、緩加速状態では、揮発性の悪い重質ガソリン
であっても吸入空気量の増加にっれて実質的な燃料供給
量が増加するので、レギュラーガソリンと重質ガソリン
とで空燃比の応答遅れに充分な差が生じない可能性があ
る。
According to conventional fuel property detection methods, the accuracy of volatile detection was not sufficient. That is, in a method of checking the combustion rate based on detection of the cylinder pressure during combustion in a steady state of operation, for example, 1!
! When the phosphorus state is adjusted, there is not a sufficient difference in combustion speed between regular gasoline and heavy gasoline, and detection accuracy tends to decrease due to confusion with variations in combustion speed due to disturbances, etc. Note that it is possible to determine the volatility of the fuel from the response delay of the air-fuel ratio under accelerated driving conditions, but under moderate acceleration, even heavy gasoline with poor volatility will not increase the amount of intake air. Therefore, there is a possibility that there will not be a sufficient difference in the response delay of the air-fuel ratio between regular gasoline and heavy gasoline.

本発明はこのような事情に鑑み、燃料の揮発性判別の精
度を^め、とくに急過渡時に燃料の壁面付着層の変化が
生じることを利用して正確に揮発性の判別を行うことが
できるエンジンの燃料性状検出方法を提供するものであ
る。
In view of these circumstances, the present invention improves the accuracy of determining the volatility of fuel, and in particular, makes it possible to accurately determine volatility by taking advantage of changes in the fuel wall adhesion layer during sudden transients. A method for detecting engine fuel properties is provided.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、燃焼結果の判定に基づいて燃料の揮発性を判
定するエンジンの燃料性状検出方法であって、エンジン
負荷が急激に変化する急過渡状態を判定し、急過渡状態
となったときに燃焼結果に関連する要素の変動を検出し
、この検出に基づいて燃料の揮発性の判定を行うもので
ある。
The present invention is an engine fuel property detection method that determines the volatility of fuel based on the determination of combustion results. Fluctuations in elements related to combustion results are detected, and fuel volatility is determined based on this detection.

この構成において、急過渡状態となったときに変動の検
出が行われる燃焼結果に関連する要素は、例えばエンジ
ン回転数である。
In this configuration, the element related to the combustion result whose fluctuation is detected when a sudden transient state occurs is, for example, the engine speed.

〔作用〕[Effect]

上記のような本発明の方法によると、急加速時や急減速
時のように燃料供給量の急変に伴って吸気通路等の壁面
への燃料相@農が変化し、がっ、この燃料付着量が燃料
の揮発性の度合によって興なる状況にある急過渡時に、
上記エンジン回転数等の燃料結果に関連する要素の変動
の検出に基づき、上記壁面への燃料付着量の着具に起因
した上記エンジン回転数等の変動の相違が調べられるこ
とにより、正確に揮発性の判定が行われる。
According to the method of the present invention as described above, the fuel phase on the wall surface of the intake passage changes with sudden changes in the fuel supply amount such as during sudden acceleration or sudden deceleration, and this fuel adhesion changes. During sudden transients where the amount depends on the degree of volatility of the fuel,
Based on the detection of fluctuations in elements related to the fuel results such as the engine speed, the differences in the fluctuations in the engine speed and other factors due to the amount of fuel adhering to the wall surface are investigated to ensure accurate volatilization. A determination of sex is made.

(実施例) 本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described based on the drawings.

第1図は本発明の方法の一実施例に用いる装置の概略を
示している。この図において、エンジン1には、各気筒
のピストン2の上方に燃焼室3が形成され、この燃焼室
3に開口する吸気ポート4および排気ポート5が形成さ
れるとともに、各ポート4.5を開閉する吸気弁6およ
び排気弁7、燃焼室5に臨む点火プラグ8等が具備され
ている。
FIG. 1 schematically shows an apparatus used in an embodiment of the method of the present invention. In this figure, an engine 1 has a combustion chamber 3 formed above the piston 2 of each cylinder, an intake port 4 and an exhaust port 5 that open into the combustion chamber 3, and each port 4.5. It is equipped with an intake valve 6 and an exhaust valve 7 that open and close, a spark plug 8 facing the combustion chamber 5, and the like.

このエンジン1に対し、上記吸気ポート4に通じる吸気
通路10および排気ポート5に通じる排気通路11が接
続されている。
An intake passage 10 communicating with the intake port 4 and an exhaust passage 11 communicating with the exhaust port 5 are connected to this engine 1.

上記吸気通路10には、吸入空気量を検出するエアフロ
ーメータ12、アクセル操作に応じて吸入空気量を調節
するスロットル弁13、燃料を噴射供給するインジェク
タ14等が設けられている。
The intake passage 10 is provided with an air flow meter 12 that detects the intake air amount, a throttle valve 13 that adjusts the intake air amount in response to accelerator operation, an injector 14 that injects fuel, and the like.

また、上記点火プラグ8にはディストリビュータ15お
よび点火コイル16が電気的に接続され、これらによっ
て点火装置が構成されている。
Further, a distributor 15 and an ignition coil 16 are electrically connected to the spark plug 8, and these constitute an ignition device.

上記インジェクタ14および点火装置は、マイクロコン
ピュータ等からなるコント0−ルユニット(EC120
により制御される。このコントロールユニット20に対
し、燃料噴射鏝や点火時期の制御および燃料性状の検出
を行うための入力要素として、スロットル弁13の開度
(スロットル開度)を検出するスロットル開度センサ2
1、ディストリビュータ15に具備されてエンジン回転
数検出用等としてクランク角を検出するクランク角セン
サ22、およびエンジン冷却水の水温を検出する水温セ
ンサ23が設けられ、これらのセンサ21〜23と上記
エアフローメータ12からの信号がコントロールユニッ
ト20に入力されている。さらに、イグニッションスイ
ッチからの信号24、自動変速機が搭載されている車両
<AT車)にあってはレンジ判別信号25、手動変速機
が搭載されている車両(MT車)にあってはクラッチオ
フもしくはニュートラル状態の検出信号26等もコント
ロールユニット20に入力されている。そして、コント
ロールユニット20から、噛、II4パルス信号がイン
ジェクタ14に対して出力されるとともに、点火信号が
点火コイル16に対して出力されるようになっている。
The injector 14 and the ignition device are connected to a control unit (EC120) consisting of a microcomputer, etc.
controlled by A throttle opening sensor 2 that detects the opening of the throttle valve 13 (throttle opening) is used as an input element for controlling the fuel injection trowel and ignition timing and detecting fuel properties for the control unit 20.
1. A crank angle sensor 22 that is installed in the distributor 15 and detects the crank angle for detecting engine rotation speed, etc., and a water temperature sensor 23 that detects the temperature of engine cooling water are provided, and these sensors 21 to 23 and the above air flow A signal from the meter 12 is input to a control unit 20. Furthermore, signal 24 from the ignition switch, range determination signal 25 for vehicles equipped with an automatic transmission <AT vehicles), and clutch off signal for vehicles equipped with a manual transmission (MT vehicles). Alternatively, a neutral state detection signal 26 or the like is also input to the control unit 20. The control unit 20 outputs a 4-pulse signal to the injector 14 and an ignition signal to the ignition coil 16.

上記コントロールユニット20は、各種信号に基づき、
運転状態に応じた燃料噴射量の制御および点火時期の制
御を行うが、さらに、燃料の揮発性を判定する燃料性状
検出を行い、これに基づいて燃料噴射量の補正等を行う
ようになっている。
The control unit 20, based on various signals,
It controls the fuel injection amount and ignition timing according to the operating conditions, but it also detects fuel properties to determine the volatility of the fuel, and corrects the fuel injection amount based on this. There is.

燃料性状検出としては、エンジン負荷が急激に変化する
急過渡状態を調べて、急過渡状態となったときに、燃焼
結果に関連する要素の変動を検出し、この検出に基づい
て燃料の揮発性の判定を行う。後述のフローチャートに
示す実施例では、燃焼結果に関連する要素としてエンジ
ン回転数を調べることとし、揮発性の判定は、先ずエン
ジン始動直後の回転数の落込み状況に基づいて重質ガソ
リンかどうかを調べ、ここで重質ガソリンであることが
確認されなかった場合に、急加速時の回転数変動度合を
調べることにより重質ガソリンであるかどうかを正確に
判定するようにしている。
Fuel property detection involves checking for sudden transient conditions in which the engine load changes rapidly, detecting fluctuations in elements related to combustion results when the sudden transient condition occurs, and based on this detection, determining the volatility of the fuel. Make a judgment. In the example shown in the flowchart described below, engine speed is examined as an element related to combustion results, and volatility is determined by first determining whether the gasoline is heavy based on the drop in engine speed immediately after starting the engine. If it is not confirmed that it is heavy gasoline, the degree of variation in rotational speed during sudden acceleration is checked to accurately determine whether it is heavy gasoline.

この実施例の方法を第2図および第3図のタイムチャー
トに基づいて概略的に説明すると、先ず始動時には、第
2図のようにエンジン回転数が一旦所定回転数No以上
に吹き上がってからアイドル回転数に落着(が、重質ガ
ソリンの場合は気化が悪いことから回転数吹き上がり後
に回転数の落込みが生じ易い。そこで、例えば予め第1
乃至第3の基準回転数N1.N2 、Nsを設定(No
 >Nl >N2 >N3 ) シておいて、N1〜N
2の範囲でエンジン回転数が急速に落込む場合(破線A
)や第3の基準回転数N3以下にまでエンジン回転数が
大きく落込む場合(破線8)は重質ガソリンと判定する
。一方、このような急速もしくは太きな回転数の落込み
がない場合(実11C)は、重質ガソリンと判定されな
いが、この場合でも、アイドル回転数のフィードバック
制御が行われているようなときに、よこの制御で回転数
の落込みが抑制されているものの燃料は重質ガソリンで
あるという可能性がある。
To roughly explain the method of this embodiment based on the time charts of FIGS. 2 and 3, first, at the time of starting, as shown in FIG. The number of revolutions settles down to idle (however, in the case of heavy gasoline, vaporization is poor, so the number of revolutions tends to drop after the number of revolutions rises. Therefore, for example,
to the third reference rotation speed N1. Set N2, Ns (No
>Nl >N2 >N3 ) Set aside, N1~N
If the engine speed drops rapidly in the range 2 (dotted line A)
) or when the engine speed significantly drops below the third reference speed N3 (broken line 8), it is determined that the gasoline is heavy gasoline. On the other hand, if there is no such rapid or large drop in engine speed (Actual 11C), it is not determined to be heavy gasoline, but even in this case, if feedback control of idle speed is being performed, Another possibility is that although the drop in rotational speed is suppressed by lateral control, the fuel is heavy gasoline.

そこで、上記の始動直模の判定で!!重質ガソリン判定
されなかった場合は、さらに正確な判定として、第3図
に示すように、スロットル開度変化率が大きい急加速状
態を調べ、急加速状態となってから一定時at中の回転
数変化量ΔNを調べる。
Therefore, with the judgment of the above starting imitation! ! If heavy gasoline is not determined, for a more accurate determination, as shown in Figure 3, check the sudden acceleration state where the rate of change in throttle opening is large, and check the rotation during AT for a certain period of time after the sudden acceleration state. Check the amount of change in number ΔN.

この場合、重質ガソリンであれば急加速時には!面付着
が増大して燃焼室への燃料供給量が少なくなることから
、レギュラーガソリン使用時(実線D)と比べて回転数
上昇率が小さくなる(破線E)。このような傾向を利用
して、レギュラーガソリンと重質ガソリンとの判別が行
われる。
In this case, if it is heavy gasoline, it will be used during sudden acceleration! Since surface adhesion increases and the amount of fuel supplied to the combustion chamber decreases, the rate of increase in rotational speed becomes smaller (broken line E) compared to when regular gasoline is used (solid line D). This tendency is used to distinguish between regular gasoline and heavy gasoline.

このような判定とそれに応じた制御を、第4図および第
5図のフローチャートによって具体的に説明する。
Such determination and corresponding control will be specifically explained with reference to the flowcharts of FIGS. 4 and 5.

第4図は燃料性状判別のルーチンを示している。FIG. 4 shows a routine for determining fuel properties.

このルーチンはエンジン始動に応じてスタートし、先ず
ステッ゛プS1で、後期重質判定フラッグFQを暫定的
に「O」とする等のイニシャライズを行うとともに、始
動後の安定状態に至るまでに要する程度の所定時111
xをタイマにセットする。次に、ステップS2でスロッ
トル開度TVO1水!!TW。
This routine starts in response to engine startup, and first, in step S1, initialization is performed, such as temporarily setting the late heavy fuel determination flag FQ to "O", and the time required to reach a stable state after startup is performed. Predetermined time 111
Set x to the timer. Next, in step S2, throttle opening TVO1 water! ! T.W.

レンジ信号、クランク角の周期の計測によって求められ
るエンジン回転数NE等を読込むとともに、ステップS
3で上記タイマをカウントダウンし、ステップS4で上
記タイマの値を調べて始動開始から所定時間X以内か否
かを判定する。
At the same time as reading the range signal and the engine rotation speed NE etc. found by measuring the period of the crank angle, step S
In step S3, the timer is counted down, and in step S4, the value of the timer is checked to determine whether or not a predetermined time has elapsed since the start of the engine.

上記所定時Ix以内である場合は、ステップS5で水温
TWが所定m度TWa (例えば50’ C>以下か否
かを調べ、その判定がYESであれば、ステップS6で
ニュートラル状態(自動変速機であればNレンジもしく
はDレンジ)か否かを講ぺる。上記ステップS5で水温
を調べているのは、エンジン低温時の方がレギュラーガ
ソリンと重質ガソリンとで気化の差が生じ易いからであ
り、またステップS6でニュートラル状態を調べている
のは、この状態の方が燃焼の良否による回転変動を調べ
易いからである。ステップ85 、Ssのいずれかで判
定がNOであれば、ステップS2に戻ってそれ以下の処
理を繰返す。
If it is within the predetermined time Ix, it is checked in step S5 whether the water temperature TW is less than or equal to a predetermined m degree TWa (for example, 50'C>), and if the determination is YES, the neutral state (automatic transmission If so, check whether it is in N range or D range).The reason why the water temperature is checked in step S5 above is because the difference in vaporization between regular gasoline and heavy gasoline is more likely to occur when the engine is low temperature. Yes, and the reason why the neutral state is checked in step S6 is that it is easier to check rotational fluctuations due to the quality of combustion in this state.If the determination is NO in either step 85 or Ss, step S2 Return to and repeat the following steps.

ステップ84〜S6の各判定がいずれもYESのときは
、ステップS7で、始動後にエンジン回転数がクランキ
ング完了判定用の所定回転数N。
When each determination in steps 84 to S6 is YES, in step S7, the engine rotation speed after starting is set to a predetermined rotation speed N for determining completion of cranking.

を−旦上回ったか否かを判定する。この判定がNOの園
はステップS2に戻るが、YESとなった後は、重質判
定処理として、ステップS8でN1〜N2のエンジン回
転低下が一定の比較的短い時l1y(秒)以内に発生し
たか否かを調べ、その判定がNoのときはステップS9
で、前記第3の基準回転数N3以下にまでエンジン回転
数低下があったか否かを調べるく第2図参照)。そして
、ステップSs 、89のいずれかで判定がYESとな
ったときは、ステップS10に移って重質判定フラッグ
Faを「1」としてからこのルーチンを終了するが、N
oであればステップS2に戻ってそれ以下の処理を繰返
す。
It is determined whether or not the value has exceeded -1. If this judgment is NO, the process returns to step S2, but after the judgment is YES, as a heavy judgment process, in step S8, the engine speed decrease of N1 to N2 occurs within a constant and relatively short time l1y (seconds). If the determination is No, step S9
Then, it is checked whether the engine speed has decreased to below the third reference speed N3 (see FIG. 2). When the determination is YES in either step Ss or 89, the routine moves to step S10 and the heavy determination flag Fa is set to "1" before ending this routine.
If o, the process returns to step S2 and the subsequent processes are repeated.

上記ステップS4で始動開始時から所定時間Xが経過し
たことを判定したときは、ステップS。
When it is determined in step S4 that the predetermined time X has elapsed since the start of the engine, step S is performed.

以降の、エンジン始動完了後において急加速時に重質判
定を行う処理に移る。真実雄側では、先ず重質判定の参
考となる条件として、点火時期のフィードバック制御に
よるアイドル回転数制御が行なわれているエンジンにお
いてアイドル時に燃焼性悪化傾向が点火時期のフィード
バック制御で補われている状況にあるかどうかを調べる
ため、ステップS11で上記点火時期のフィードバック
制御値がガード値となっているか否かを判定する。この
判定がYESのときは、−スロットル開度の変化率Δ〒
VOが設定値α以上となる急加速状態が発生したか否か
を調べる。この場合の設定値αは、レギュラーガソリン
と重質ガソリンとで壁面付着量に充分な差が生じる程度
の急加速状態を判定するように、比較的大きな値となっ
ている。ステップSt2の判定がYESとなれば、さら
にステップSt3で、上記急加速状態となってからスロ
ットル開度TVOが所定開度TVOa以上の状態が一定
時間以上持続したか否かを調べる。
After the engine start is completed, the process moves on to a process of determining whether the vehicle is heavy during sudden acceleration. On Mamio's side, first of all, as a reference condition for determining heavy weight, in engines where idle speed control is performed by feedback control of ignition timing, the tendency for combustibility to deteriorate during idling is compensated for by feedback control of ignition timing. In order to check whether this is the case, it is determined in step S11 whether or not the ignition timing feedback control value is a guard value. When this judgment is YES, - throttle opening change rate Δ〒
It is checked whether a sudden acceleration state in which VO exceeds a set value α has occurred. In this case, the set value α is set to a relatively large value so as to determine a state of rapid acceleration that causes a sufficient difference in the amount of wall surface adhesion between regular gasoline and heavy gasoline. If the determination in step St2 is YES, it is further checked in step St3 whether or not the throttle opening TVO has been at or above the predetermined opening TVOa for a predetermined period of time after the rapid acceleration described above.

上記ステップS n〜S13のいずれかで判定がNOで
あればステップS2に戻るが、ステップS n〜Soの
各判定がいずれもYESとなる重質判定条件成立時には
、一定時間を中のエンジン回転数変動量ΔN(第3図参
照)を重質判定用の基準値と比較する。この比較にあた
り、自動変速機を搭載したAT車における走行レンジの
場合と非走行レンジの場合、手動変速機を搭載したMT
Iにおけるギヤイン状態の場合とギヤオフ状態の場合で
それぞれ加速時の回転数上昇度合が相違するので、真実
雄側では、それぞれの場合に応じて重質判定用の基準値
を設定している。つまり、使用燃料および加速状況等が
同一として上記各場合について回転数1畔のし易さを比
べると、ミッションからエンジンに加わる負荷の関係で
、MT車でギヤオフにュートラルもしくはクラッチオフ
)の場合に最も回転数が上昇し易く、次にAT車の非走
行レンジ(NレンジもしくはPレンジ)、AT車の走行
レンジ(Dレンジ等)、MT車のギヤインというような
順になるので、これらに対応して、回転数上昇し易い場
合′fj基準値を高くするように、それぞれの場合の基
準値ΔN1.ΔN2.ΔN3゜ΔN4を設定している。
If the determination is NO in any of the above steps S n to S13, the process returns to step S2, but if the heavy condition is satisfied that all of the determinations in steps S n to So are YES, the engine rotation during a certain period of time is The number fluctuation amount ΔN (see FIG. 3) is compared with a reference value for weight determination. For this comparison, in the case of driving range and non-driving range in AT cars equipped with automatic transmission, MT cars equipped with manual transmission
Since the degree of increase in rotational speed during acceleration is different between the gear-in state and the gear-off state in I, Mashio sets a reference value for heavy weight determination depending on each case. In other words, if we compare the ease with which the number of revolutions is around 1 in each of the above cases, assuming that the fuel used and the acceleration conditions are the same, we can see that due to the load applied to the engine from the transmission, it is easier to do it when the gear is off (neutral or clutch off) in a manual transmission car. The rotational speed increases most easily, followed by the non-driving range of AT cars (N range or P range), the driving range of AT cars (D range, etc.), and the gear-in range of MT cars, so please take care of these. The reference value ΔN1. ΔN2. ΔN3° and ΔN4 are set.

そして、MT車か否かの判定(ステップ514)と、M
T車の場合のギヤインか否かの判定(ステップ81+)
 、AT車の場合の走行レンジか否かの判定(ステップ
516)に基づき、ステップS17.S祐、SFl、8
20のいずれかて上配エンジン回転数変動置ΔN変動量
各基準−N1〜N4のうちの一つと比較するようにして
いる。
Then, it is determined whether the vehicle is an MT vehicle (step 514), and the M
Determination of whether gear is in or not for T vehicle (step 81+)
, based on the determination of whether or not it is in the driving range for an AT vehicle (step 516), step S17. S Yu, S Fl, 8
20, the upper engine rotational speed fluctuation position ΔN fluctuation amount is compared with one of the respective standards -N1 to N4.

ステップ5v−820のいずれかでエンジン回転数変動
量ΔNが基準値以下であると判定したときは、ステップ
511)に移って重質判定フラッグFgを「1」として
からこのルーチンを終了する。−方、エンジン回転数変
動量ΔNが基準値よりも大きいと判定したときは、ステ
ップ321で重質判定フラッグFoを「0」としてから
このルーチンを終了する。
If it is determined in any step 5v-820 that the engine speed fluctuation amount ΔN is less than the reference value, the process moves to step 511), sets the heavy weight determination flag Fg to "1", and then ends this routine. - On the other hand, when it is determined that the engine speed fluctuation amount ΔN is larger than the reference value, the heavy weight determination flag Fo is set to "0" in step 321, and then this routine is ended.

第5図は燃料噴射量制御のルーチンを示している。この
ルーチンでは、スタートすると、ステップS 31で吸
入空気量Qa、エンジン回転数NE等の各種信号を読込
み、ステップS 32で基本噴射量Tpを[Tp−Kx
Qa/NE]と演算(Kは換算係数)する。続いてステ
ップS 33で重質判定フラッグFgが「1」か否かを
調べ、その判定がYESであれば、ステップS 34で
、重質補正量CQを水温等に応じた所定の値に設定し、
ステップS33の判定がNoであれば、ステップS35
で重質補正量CQを「O」とする。
FIG. 5 shows a routine for fuel injection amount control. When this routine starts, various signals such as intake air amount Qa and engine speed NE are read in step S31, and the basic injection amount Tp is set to [Tp-Kx
Qa/NE] (K is a conversion coefficient). Next, in step S33, it is checked whether the heavy weight determination flag Fg is "1" or not, and if the determination is YES, in step S34, the heavy weight correction amount CQ is set to a predetermined value depending on the water temperature, etc. death,
If the determination in step S33 is No, step S35
The weight correction amount CQ is set to "O".

次に、ステップS 36でその他の補正量(例えば暖機
増量等)Cを求め、ステップS 37で、上記基本噴射
量Tpと重質補正量Cg、その他の補正量Cおよびバッ
テリ電圧に応じた無効噴射時間TVにより、最終噴射量
Tを T−Tpx (1+CQ+C)+Tv と演算する。そしてステップS 36で、最終噴射量T
に応じた噴射パルスをインジェクタ14に出力してから
、リターンする。
Next, in step S36, other correction amounts (for example, warm-up increase, etc.) C are determined, and in step S37, the basic injection amount Tp, the heavy weight correction amount Cg, other correction amounts C, and the battery voltage are determined. Based on the invalid injection time TV, the final injection amount T is calculated as T-Tpx (1+CQ+C)+Tv. Then, in step S36, the final injection amount T
After outputting an injection pulse according to the amount to the injector 14, the process returns.

以上のような5実雄側の方法によると、先ず所定条件下
でのエンジン始動直後に回転数の落込みが調べられて、
燃焼状態の悪化により顕著な回転数の落込みが見られた
ときに重質ガソリンと判定される。そして、このような
始動直後の顕著な回転数の落込みが確冨されない場合に
、前述のように点火時期制御等で補われている場合があ
って必ずしも重質ガソリンでないとは断定できないこと
から、その後は本発明の特徴とする急加速時の判定が行
なわれる。つまり、急加速時には、重質ガソリン使用の
場合に燃料増加分の多くが壁面に付着することによりレ
ギュラーガソリン使用の場合と比べてエンジン回転数上
昇率が低くなる傾向が顕著に生じることから、前記のス
テップ811〜S口の条件が成立したときに、回転数変
動量ΔNが基準値と比較されて重質判定が行なわれるこ
とにより、正確に重質ガソリンとレギュラーガソリンと
の判別が行われる。この判定において、ステップS%〜
S20のようにAT車とMT車との相違およびミッショ
ンの状態に応じて基準値を設定しておけば、より−1正
確に重質ガソリンとレギュラーガソリンとの判別を行う
ことができる。
According to the above-mentioned method, the drop in rotational speed is first investigated immediately after starting the engine under predetermined conditions.
It is determined that the gasoline is heavy when there is a noticeable drop in rotational speed due to deterioration in combustion conditions. In addition, if such a noticeable drop in rotational speed immediately after startup is not confirmed, it may be compensated for by ignition timing control, etc. as mentioned above, and it cannot be determined that it is not necessarily heavy gasoline. After that, a determination is made regarding sudden acceleration, which is a feature of the present invention. In other words, during sudden acceleration, when heavy gasoline is used, most of the increased fuel adheres to the wall surface, and the rate of increase in engine speed tends to be lower than when regular gasoline is used. When the conditions from Steps 811 to S are satisfied, the rotational speed fluctuation amount ΔN is compared with a reference value to determine whether the gasoline is heavy, thereby accurately determining whether it is heavy gasoline or regular gasoline. In this determination, step S%~
If the reference value is set according to the difference between an AT car and an MT car and the state of the transmission as in S20, heavy gasoline and regular gasoline can be discriminated more accurately by -1.

なお、上記実施例では急加速時に揮発性の判定(重質判
定)を行っているが、スロットル開度が急速に小さくな
る急減速時にも壁面への燃料付着量が変化し、かつ、そ
の変化度合が重質ガソリンとレギュラーガソリンとで相
違し、これに起因してエンジン回転数変化等に差異が生
じるので、急減速時に揮発性の判定を行ってもよい。
In addition, in the above example, volatile determination (heavy determination) is performed during sudden acceleration, but the amount of fuel adhering to the wall changes even during sudden deceleration when the throttle opening decreases rapidly, and the amount of fuel adhering to the wall changes. Since the degree of gasoline is different between heavy gasoline and regular gasoline, and this causes a difference in changes in engine speed, etc., volatility may be determined during sudden deceleration.

また、揮発性の判定は急過渡時の判定のみによってもよ
いが、上記実施例のように始動時に判定を行った上で不
確定の場合に急過渡時の判定を行うようにすれば、可能
な範囲で早期に重質ガソリンを判別できるようにしつつ
、正確に判定することができる。
In addition, although it is possible to determine volatility only by determining when a sudden transition occurs, it is possible to do so by first making a determination at startup as in the above example, and then determining when a sudden transition occurs when it is uncertain. It is possible to identify heavy gasoline at an early stage within a certain range, and to make an accurate determination.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、エンジン負荷が急激に変化する
急過渡状態となったときに、燃焼結果に間違する要素の
変動を検出し、例えばエンジン回転数の変動を検出して
、これに基づき燃料の揮発性の判定を行うようにしてい
るため、急過渡時には揮発性の良い燃料と揮発性の悪い
燃料とで壁面への付着量に大きな差異が生じて燃焼結果
に関連する要素の変動に顕著な相違が生じることを利用
し、正確に燃料の揮発性を判定することができるもので
ある。
As described above, the present invention detects fluctuations in elements that cause erroneous combustion results when the engine load suddenly changes and enters a sudden transient state, for example, detects fluctuations in engine speed, and Because fuel volatility is judged based on this, during sudden transients, there is a large difference in the amount of fuel adhering to the wall between fuel with good volatility and fuel with poor volatility, resulting in fluctuations in factors related to combustion results. It is possible to accurately determine the volatility of a fuel by taking advantage of the fact that there is a significant difference between the two.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の方法に用いる装置の概略図
、第2図は始動時のエンジン回転数変化を示すタイムチ
ャート、第3図は急加速時のエンジン回転数変化を示す
タイムチャート、第4図および第5図は揮発性の判定お
よびその判定に基づく燃料噴射量制御の具体例を示すフ
ローチャートである。 1・・・エンジン、1o・・・吸気通路、14・・・イ
ンジェクタ、20・・・コントロールユニット、21・
・・スロットル開度センサ。 特許出願人      マ ツ ダ 株式会社代 理 
人      弁理士  小谷 悦司第  2  図 第  3   図 第  5  図
Fig. 1 is a schematic diagram of a device used in the method of one embodiment of the present invention, Fig. 2 is a time chart showing changes in engine speed during startup, and Fig. 3 is a time chart showing changes in engine speed during sudden acceleration. The charts, FIGS. 4 and 5 are flowcharts showing specific examples of volatility determination and fuel injection amount control based on the determination. DESCRIPTION OF SYMBOLS 1... Engine, 1o... Intake passage, 14... Injector, 20... Control unit, 21...
...Throttle opening sensor. Patent applicant Mazda Co., Ltd. Agent
Person Patent Attorney Etsushi Kotani Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 1、燃焼結果の判定に基づいて燃料の揮発性を判定する
エンジンの燃料性状検出方法であって、エンジン負荷が
設定変化量以上の変化量で急激に変化する急過渡状態を
判定し、急過渡状態となつたときに燃焼結果に関連する
要素の変動を検出し、この検出に基づいて燃料の揮発性
の判定を行うことを特徴とするエンジンの燃料性状検出
方法。 2、急過渡状態となつたときに変動の検出が行われる燃
焼結果に関連する要素は、エンジン回転数であることを
特徴とする請求項1記載のエンジンの燃料性状検出方法
[Claims] 1. An engine fuel property detection method that determines the volatility of fuel based on the determination of combustion results, wherein the engine load is in a sudden transient state where the engine load suddenly changes by an amount of change greater than a set amount of change. 1. A method for detecting fuel properties of an engine, the method comprising: detecting fluctuations in elements related to combustion results when a sudden transient state occurs; and determining volatility of fuel based on this detection. 2. The engine fuel property detection method according to claim 1, wherein the element related to the combustion result whose fluctuation is detected when a sudden transient state occurs is the engine rotational speed.
JP2327147A 1990-11-27 1990-11-27 Fuel characteristic detecting method of engine Pending JPH04194348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327147A JPH04194348A (en) 1990-11-27 1990-11-27 Fuel characteristic detecting method of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327147A JPH04194348A (en) 1990-11-27 1990-11-27 Fuel characteristic detecting method of engine

Publications (1)

Publication Number Publication Date
JPH04194348A true JPH04194348A (en) 1992-07-14

Family

ID=18195839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327147A Pending JPH04194348A (en) 1990-11-27 1990-11-27 Fuel characteristic detecting method of engine

Country Status (1)

Country Link
JP (1) JPH04194348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178203A2 (en) * 2000-07-31 2002-02-06 General Motors Corporation Fuel volatility detection and compensation during cold engine start
EP2034175A1 (en) * 2006-06-13 2009-03-11 Toyota Jidosha Kabushiki Kaisha Start controller of internal combustion engine
EP2037104A1 (en) * 2007-09-13 2009-03-18 Magneti Marelli Powertrain S.p.A. Fuel volatility recognition method during the postcranking step of an internal combustion engine
JP2012117388A (en) * 2010-11-29 2012-06-21 Mitsubishi Motors Corp Fuel property determining device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178203A2 (en) * 2000-07-31 2002-02-06 General Motors Corporation Fuel volatility detection and compensation during cold engine start
EP1178203A3 (en) * 2000-07-31 2004-05-12 General Motors Corporation Fuel volatility detection and compensation during cold engine start
EP2034175A1 (en) * 2006-06-13 2009-03-11 Toyota Jidosha Kabushiki Kaisha Start controller of internal combustion engine
EP2034175A4 (en) * 2006-06-13 2010-08-25 Toyota Motor Co Ltd Start controller of internal combustion engine
US7822536B2 (en) 2006-06-13 2010-10-26 Toyota Jidosha Kabushiki Kaisha Start-up control device for internal combustion engine
EP2037104A1 (en) * 2007-09-13 2009-03-18 Magneti Marelli Powertrain S.p.A. Fuel volatility recognition method during the postcranking step of an internal combustion engine
JP2012117388A (en) * 2010-11-29 2012-06-21 Mitsubishi Motors Corp Fuel property determining device

Similar Documents

Publication Publication Date Title
US5605138A (en) Method and apparatus for proportioning fuel upon the starting of an internal combustion engine
EP1178203B1 (en) Fuel volatility detection and compensation during cold engine start
KR930008512B1 (en) Fuel control apparatus for internal-combustion engine
US7603981B2 (en) Improper fuel mixing determining apparatus for internal combustion engine
JPH09158774A (en) Fuel property detecting device of internal combustion engine
US5507265A (en) Compensation method and apparatus for fuel injection amount during engine warm-up
JP2887056B2 (en) Fuel property determination device for internal combustion engine
US8275535B2 (en) Method for operating an internal combustion engine
US20030213475A1 (en) Compensation for fuel volatility for internal combustion engine start and run
US6588409B2 (en) Engine cold start fuel control method having low volatility fuel detection and compensation
US5003955A (en) Method of controlling air-fuel ratio
US7975679B2 (en) Other-type fuel contamination determination apparatus for internal combustion engine
KR101503667B1 (en) Method and device for operating an internal combustion engine
US6848421B1 (en) Engine control method and apparatus using ion sense combustion monitoring
JPH04194348A (en) Fuel characteristic detecting method of engine
KR0122459B1 (en) Air-fuel ratio control apparatus for multi cylinder engine
CN112555038A (en) Method and system for controlling inflation quantity
JPH06100148B2 (en) Control device for internal combustion engine
CN113202651B (en) Injection valve fault detection method and device
US4712522A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
CA2377640C (en) Method of gasoline assisted gaseous fuel engine starting
JP3413965B2 (en) Fuel injection control device for internal combustion engine
JP4429301B2 (en) Engine fuel injection control device
JP2956237B2 (en) Fuel property detection device for internal combustion engine
JP2000120488A (en) Misfire detecting device