JPH0419429A - Clutch mechanism using superconductor - Google Patents

Clutch mechanism using superconductor

Info

Publication number
JPH0419429A
JPH0419429A JP2124864A JP12486490A JPH0419429A JP H0419429 A JPH0419429 A JP H0419429A JP 2124864 A JP2124864 A JP 2124864A JP 12486490 A JP12486490 A JP 12486490A JP H0419429 A JPH0419429 A JP H0419429A
Authority
JP
Japan
Prior art keywords
magnetic field
superconductor
friction plate
cylindrical
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2124864A
Other languages
Japanese (ja)
Inventor
Hiroshi Kahata
加幡 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2124864A priority Critical patent/JPH0419429A/en
Publication of JPH0419429A publication Critical patent/JPH0419429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To change a floating stationary position of a friction plate, which is partly constituted of at least a magnetic substance and a permanent magnet or a superconductor, so as to simplify a structure by changing magnetic field distribution in a cylindrical superconductor through application of an external magnetic field and partial heating. CONSTITUTION:A cylindrical superconductor 1 is placed in a refrigerant vessel 2 filled with liquid nitrogen. When a magnetic field, having a peak in a part A, is generated by energizing an electromagnetic coil 3 in a region A, a friction plate 8, which is a magnetic substance, is closely attached to a flywheel 7 to transmit driving force because the friction plate 8 is moved to a position of the magnetic field most intensified in a contactless condition. Here, energization of the electromagnetic coil can be stopped because a residual magnetic field is provided in the superconductor. In the case of cutting off the driving force, a magnetic field is applied by first energizing an electromagnetic coil 4 in a region B. Next, a heating heater 5 in the region A is energized to break a superconductive condition in this part. Then the driving force is not transmitted by moving the friction plate 8 to a direction of the region B.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は超電導体の非接触浮上現象を利用するクラッチ
機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Field of Application) The present invention relates to a clutch mechanism that utilizes the non-contact levitation phenomenon of a superconductor.

(従来の技術) 従来のクラッチは、スプリングや油圧、電磁力により、
フライホイールに摩擦板を押し付けて動力を伝達する構
造となっている。押圧力としてスプリングや油圧を用い
る場合には、摩擦板を移動させるための動力が必要であ
り、そのための機構は必す摺動する部分を有する。電磁
クラッチは電磁力により摩擦板を移動させることにより
連結、遮断を行うものである。
(Conventional technology) Conventional clutches use springs, hydraulic pressure, and electromagnetic force to
It has a structure that transmits power by pressing a friction plate against the flywheel. When a spring or hydraulic pressure is used as the pressing force, power is required to move the friction plate, and the mechanism for this purpose necessarily has a sliding part. An electromagnetic clutch connects and disconnects by moving a friction plate using electromagnetic force.

(発明が解決しようとする問題点) スプリングや油圧によるクラッチの場合、摩擦板を移動
させるための動力が必要であり、機構の中には必ず摺動
する部分を有するので、摺動部の摩耗等の問題がある。
(Problems to be Solved by the Invention) In the case of clutches using springs or hydraulic pressure, power is required to move the friction plates, and since the mechanism always has sliding parts, the sliding parts may wear out. There are other problems.

また摺動部がある分、機構が複雑であるという問題点が
ある。
Another problem is that the mechanism is complicated due to the presence of sliding parts.

また、電磁クラッチの場合は摺動部はないが、摩擦板を
位置制御するには常時、通電していなければならない問
題点がある。
Further, although an electromagnetic clutch does not have a sliding part, there is a problem in that it must be constantly energized in order to control the position of the friction plate.

[発明の構成コ (問題点を解決するための手段) 上記問題点を解決するために本発明は、ピン止め力の強
い筒状超電導体に外部から強磁界をかけることにより、
印加された磁場に対応して内部にある分布を持つ磁場が
残留し、この円筒の内部に磁性体を挿入すると磁場強度
が最も強い位置に移動してそこに浮上静止して留まると
いう現象を利用する。
[Structure of the Invention (Means for Solving the Problems)] In order to solve the above problems, the present invention provides a structure in which a strong magnetic field is applied from the outside to a cylindrical superconductor with a strong pinning force.
Utilizes the phenomenon that a magnetic field with a certain distribution remains within the cylinder in response to the applied magnetic field, and when a magnetic material is inserted inside this cylinder, it moves to the position where the magnetic field strength is strongest and remains suspended there. do.

本発明は、筒状超電導体内の磁場分布を、外部磁場の印
加や部分的加熱により、変化させるこ七により、磁性体
、永久磁石あるいは超電導体で少なくとも一部を構成し
た摩擦板の浮上静止位置を変化させて、動力の伝達、遮
断を行うものである。
The present invention changes the magnetic field distribution inside the cylindrical superconductor by applying an external magnetic field or by partially heating the cylindrical superconductor, thereby changing the floating and resting position of a friction plate at least partially composed of a magnetic material, a permanent magnet, or a superconductor. It transmits and cuts off power by changing the

(作用) 本発明では残留磁場を形成することのできる筒状超電導
体を使用する。超電導材料としては臨界電流密度が大き
く、ピン止め効果の大きいものが望ましく、たとえば第
6図に製法を示すようなビスマス系超電導材料なとが用
いられる。もちろん、このほかの超電導材料でも要求さ
れる性能を満たせば用いることができる。超電導体を筒
状に形成する方法としては粉末焼結法、厚膜法、薄膜法
はかの公知の手段があるが、中間加圧することで臨界電
流密度、ピン止め能力などの性能向上がはかれる材料に
ついては、冷間静水圧プレスなどで適宜に加圧処理する
(Function) The present invention uses a cylindrical superconductor that can form a residual magnetic field. It is desirable that the superconducting material has a large critical current density and a large pinning effect; for example, a bismuth-based superconducting material whose manufacturing method is shown in FIG. 6 is used. Of course, other superconducting materials can also be used if they meet the required performance. Powder sintering, thick film, and thin film methods are known methods for forming a superconductor into a cylindrical shape, but by applying intermediate pressure, performance such as critical current density and pinning ability can be improved. The material is appropriately pressurized using a cold isostatic press or the like.

このような材料で作られた筒状超電導体に残留磁場を形
成するためには、外部から磁場を印加する必要がある。
In order to form a residual magnetic field in a cylindrical superconductor made of such a material, it is necessary to apply a magnetic field from the outside.

外部磁場の印加の方法としては、筒状超電導体を冷却し
て超電導状態にし、超電導体内部に侵入するほどの強い
外部磁場を印加した後に外部磁場を取り除くことにより
超電導体内に磁場をトラップさせて残留磁場を形成する
方法、常電導状態で外部磁場を印加しながら冷却するこ
とにより超電導状態とした後に外部磁場を取り除いて残
留磁場を形成させる方法などがある。
The method of applying an external magnetic field is to cool the cylindrical superconductor to a superconducting state, apply an external magnetic field strong enough to penetrate inside the superconductor, and then remove the external magnetic field to trap the magnetic field inside the superconductor. There is a method of forming a residual magnetic field, and a method of forming a residual magnetic field by removing the external magnetic field after cooling to a superconducting state by applying an external magnetic field in a normal conducting state.

外部磁場としては電磁石と永久磁石のいずれを用いても
、目的とする強さの磁場を印加できればよい。また、外
部磁場の印加は目的にあえば筒状体の内、外いずれから
でも構わない。このようにして超電導体に外部磁場を印
加することによって超電導磁石化させるためには、臨界
電流密度が大きく、かつピン止め力の強い超電導材料を
用いる。
As the external magnetic field, either an electromagnet or a permanent magnet may be used as long as it can apply a magnetic field of the desired strength. Further, the external magnetic field may be applied either from inside or outside the cylindrical body as long as it suits the purpose. In order to turn a superconductor into a superconducting magnet by applying an external magnetic field to it in this way, a superconducting material with a high critical current density and a strong pinning force is used.

ここで、筒状超電導体の断面形状としては円または多角
形のように連続する形状であればよい。
Here, the cross-sectional shape of the cylindrical superconductor may be any continuous shape such as a circle or a polygon.

また、軸方向には平行、テーパ、曲率など、目的に応じ
て筒状超電導体の形状を選定することが可能である。た
だし、これらのいずれの形状においても、外部磁場が印
加されることにより筒状超電導体内に外部磁場に直角方
向に流れる誘導電流を妨げないような形状及び構造とす
ることは必要である。そして、このような条件が満たさ
れる種々の形状の筒状超電導体が使用可能である。
Further, in the axial direction, the shape of the cylindrical superconductor can be selected depending on the purpose, such as parallel, tapered, or curvature. However, in any of these shapes, it is necessary to have a shape and structure that does not impede the induced current flowing in the cylindrical superconductor in a direction perpendicular to the external magnetic field when an external magnetic field is applied. Various shapes of cylindrical superconductors that satisfy these conditions can be used.

本発明の装置においては、上記のような筒状超電導体が
用いられるが、ここでは円筒形状のものを例にとり説明
する。第7図は円筒状超電導体を磁化する様子を示す図
である。ピン止め力の強い超電導体で作られた円筒状超
電導体11を超電導状態にした後、外側から電磁石12
により円筒状超電導体11の内部に侵入するほどの強さ
の磁場を印加する。その後、外側からの磁場を取り除く
と、円筒状超電導体11に侵入した磁場はトラップされ
、円筒状超電導体11に残留磁場が形成される。第8図
に円筒状超電導体11に形成された残留磁場を示す。
In the apparatus of the present invention, a cylindrical superconductor as described above is used, and here, a cylindrical superconductor will be explained as an example. FIG. 7 is a diagram showing how a cylindrical superconductor is magnetized. After making the cylindrical superconductor 11 made of a superconductor with a strong pinning force into a superconducting state, an electromagnet 12 is attached from the outside.
A magnetic field strong enough to penetrate into the inside of the cylindrical superconductor 11 is applied. Thereafter, when the magnetic field from the outside is removed, the magnetic field that has entered the cylindrical superconductor 11 is trapped, and a residual magnetic field is formed in the cylindrical superconductor 11. FIG. 8 shows the residual magnetic field formed in the cylindrical superconductor 11.

このようにして形成された円筒状超電導体11の内部に
磁性体13を挿入すると、磁性体は磁化され、残留磁場
か形成された円筒状超電導体11との相互作用により、
第9図に示すように、円筒状超電導体11の内部の磁場
のピーク位置付近に非接触浮上する。
When the magnetic body 13 is inserted into the cylindrical superconductor 11 formed in this way, the magnetic body is magnetized, and due to interaction with the cylindrical superconductor 11 created by a residual magnetic field,
As shown in FIG. 9, the superconductor 11 levitates in a non-contact manner near the peak position of the magnetic field inside the cylindrical superconductor 11.

また、磁性体の代わりに永久磁石あるいは超電導体を挿
入した場合も磁性体の場合と同様に非接触浮上させるこ
とができる。浮上は、円筒状超電導体内部に挿入する磁
性体の磁化率、永久磁石の強さ、超電導体のピン止め力
などに関係する。
Also, when a permanent magnet or a superconductor is inserted instead of the magnetic material, contactless levitation can be achieved in the same way as in the case of the magnetic material. Levitation is related to the magnetic susceptibility of the magnetic material inserted into the cylindrical superconductor, the strength of the permanent magnet, the pinning force of the superconductor, etc.

本発明は上記に説明した残留磁場が形成された筒状超電
導体内部における非接触浮上現象を利用して、摩擦板を
移動させるものである。以下、本発明のクラッチの作動
について図面に基づいて説明する。第1図は本発明のク
ラッチの構造の説明図である。上述したような材料で作
られた円筒状超電導体1は液体窒素の入った冷媒用容器
2に入れられている。冷媒用容器2の外側で円筒状超電
導体1の外周の三箇所の領域A(駆動軸側)、領域B(
従動軸側)に対応する位置に電磁コイルS14が配置さ
れている。円筒状超電導体1の領域A(駆動軸側)と領
域B(従動軸側)にそれぞれ加熱ヒータ5.6がつけら
れ、ヒータ用電源に接続されており、加熱ヒータスイッ
チにより切断・接続を行なう。円筒状超電導体1内には
、駆動軸からのフライホイール7、従動軸からの摩擦板
8が対向している。駆動軸側のフライホイール7は非磁
性体であり、従動軸側の摩擦板8は磁性体である。
The present invention moves a friction plate by utilizing the non-contact levitation phenomenon inside a cylindrical superconductor in which a residual magnetic field is formed as described above. Hereinafter, the operation of the clutch of the present invention will be explained based on the drawings. FIG. 1 is an explanatory diagram of the structure of the clutch of the present invention. A cylindrical superconductor 1 made of the above-mentioned material is placed in a refrigerant container 2 containing liquid nitrogen. Outside the refrigerant container 2, there are three areas on the outer periphery of the cylindrical superconductor 1: area A (drive shaft side) and area B (
An electromagnetic coil S14 is arranged at a position corresponding to the driven shaft side). Heaters 5 and 6 are attached to region A (driving shaft side) and region B (driven shaft side) of the cylindrical superconductor 1, respectively, and are connected to a power source for the heaters, and are disconnected and connected by a heater switch. . Inside the cylindrical superconductor 1, a flywheel 7 from a drive shaft and a friction plate 8 from a driven shaft are opposed to each other. The flywheel 7 on the drive shaft side is made of a non-magnetic material, and the friction plate 8 on the driven shaft side is made of a magnetic material.

第2図(a)は駆動力を伝えるときの本発明のクラッチ
装置を示す図、(b)はそのときの円筒状超電導体内の
磁場分布を示すグラフである。領域Aにある電磁コイル
Sに通電し、Aの部分にピークを持つ磁界を生じさせる
。円筒内には第2図(b)に示すような磁場分布を生じ
る。それに伴い、磁性体である摩擦板8は磁場のもっと
も強い位置に移動するため、フライホイール7に密着し
、駆動力を伝える。このとき、超電導体内には残留磁場
があるため、電磁コイルへの通電は停止することができ
る。
FIG. 2(a) is a diagram showing the clutch device of the present invention when transmitting driving force, and FIG. 2(b) is a graph showing the magnetic field distribution inside the cylindrical superconductor at that time. The electromagnetic coil S in region A is energized to generate a magnetic field having a peak in region A. A magnetic field distribution as shown in FIG. 2(b) is generated within the cylinder. Along with this, the friction plate 8, which is a magnetic material, moves to the position where the magnetic field is strongest, so it comes into close contact with the flywheel 7 and transmits the driving force. At this time, since there is a residual magnetic field within the superconductor, the energization of the electromagnetic coil can be stopped.

駆動力を断つ場合には、上記の状態から、まず領域Bの
電磁コイル4に通電し磁場を印加する。
When cutting off the driving force, from the above state, the electromagnetic coil 4 in region B is first energized to apply a magnetic field.

このときの状態を第3図に示す。円筒内の磁場分布は第
3図(b)のようになる。この状態では摩擦板8を動か
すほどの力は働きにくい。そこで次に領域Aにある加熱
用ヒータ5に通電し、この部分の超電導状態を破る。そ
うすると磁場分布は第4図(b)のようになり、この磁
場により摩擦板8は、第4図(a)に示すように、領域
Bの方に移動し、駆動力は伝達されなくなる。
The state at this time is shown in FIG. The magnetic field distribution inside the cylinder is as shown in FIG. 3(b). In this state, it is difficult to apply enough force to move the friction plate 8. Then, the heater 5 in area A is energized to break the superconducting state in this area. Then, the magnetic field distribution becomes as shown in FIG. 4(b), and this magnetic field causes the friction plate 8 to move toward region B, as shown in FIG. 4(a), and the driving force is no longer transmitted.

この状態からクラッチを接続させるためには、領域Aの
電磁コイル3に通電し、第3図(b)の磁場分布状態に
戻し、加熱用ヒータ6により領域Bの超電導体の超電導
状態を破ることにより、第2図(b)の磁場分布になり
、摩擦板8はフライホイール7に密着する。このように
して、摩擦板8を領域AB間を移動させ、駆動力の伝達
を断接することができる。なお、摩擦板8は超電導体自
身が持つ残留磁場により、位置を保持することから電磁
コイルには常時通電させる必要はない。
In order to connect the clutch from this state, the electromagnetic coil 3 in area A must be energized to return to the magnetic field distribution state shown in FIG. 3(b), and the superconducting state of the superconductor in area B must be broken using the heater 6. As a result, the magnetic field distribution becomes as shown in FIG. 2(b), and the friction plate 8 comes into close contact with the flywheel 7. In this way, the friction plate 8 can be moved between the areas AB and the transmission of the driving force can be connected or disconnected. Note that since the friction plate 8 maintains its position by the residual magnetic field of the superconductor itself, it is not necessary to constantly energize the electromagnetic coil.

(実施例) 第5図は本発明のクラッチの一実施例の構造の説明図で
ある。第1図に示した装置とほぼ同様の構造であるが、
摩擦板18が回転可能だが軸方向へは動きが規制された
従動軸20とスプライン機構により係合されている。電
磁コイル13.14と加熱ヒータ15.16を上述のよ
うに作動させることにより、摩擦板18は従動軸とは独
立に移動する。摩擦板18は円筒状超電導体11の作用
により非接触浮上するため、従動軸20との間に空間を
維持したまま移動することができるので、移動にともな
う従動軸との摩擦は軽微なものとすることができる。
(Embodiment) FIG. 5 is an explanatory diagram of the structure of an embodiment of the clutch of the present invention. It has almost the same structure as the device shown in Figure 1, but
The friction plate 18 is rotatable but is engaged with a driven shaft 20 whose movement in the axial direction is restricted by a spline mechanism. By operating the electromagnetic coils 13.14 and the heaters 15.16 as described above, the friction plate 18 moves independently of the driven shaft. Since the friction plate 18 floats in a non-contact manner due to the action of the cylindrical superconductor 11, it can move while maintaining a space between it and the driven shaft 20, so that the friction with the driven shaft caused by movement is slight. can do.

なお、上記の例では摩擦板は磁性体で構成されていると
したが、永久磁石や超電導体で構成されていてもよい。
In the above example, the friction plate is made of a magnetic material, but it may be made of a permanent magnet or a superconductor.

また、その構成も全部でなく一部だけでもよい。Furthermore, the configuration may be limited to only a part of the configuration.

[発明の効果コ 摩擦板を移動させるための動力か油圧やスプリングによ
る位置制御ではなく、通電による加熱と磁場の発生によ
るため、構造が簡素化される。また、摩擦板が非接触で
浮上されるため、摺動による摩耗によるトラブルも生じ
にくい。電磁クラッチでは、摩擦板をある位置に保持す
るために常時通電しなければならないが、本発明では一
度磁場を与えれば超電導状態を維持している限り、超電
導体に生じた磁界は消失しないため、初期に与える電力
たけで済むなどの効果がある。
[Effects of the Invention] The structure is simplified because the friction plates are heated by electricity and the generation of a magnetic field, rather than position control using power, oil pressure, or springs to move the friction plates. Furthermore, since the friction plates are floated without contact, troubles due to abrasion due to sliding are less likely to occur. In an electromagnetic clutch, electricity must be constantly applied to hold the friction plate in a certain position, but in the present invention, once a magnetic field is applied, the magnetic field generated in the superconductor does not disappear as long as the superconducting state is maintained. It has the advantage of requiring only a small amount of electricity to be supplied initially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクラッチ機構の説明、第2.3.4図
は本発明のクラッチ機構の動作の説明図、第5図は本発
明の他の実施例におけるクラッチ機構の説明図、第6図
は本発明で使用する超電導材料の製法を示す図、第7図
は本発明において用いる円筒状超電導体に残留磁場を形
成させる手段を示す説明図、第8図は円筒状超電導体の
残留磁場を示すグラフ、第9図は残留磁場が形成された
円筒状超電導体内における磁性体の浮上状態を示す図で
断面図である。 1、If、2’l・・・円筒状超電導体、2.12・・
・冷媒用容器、3,4.13,14.22・・・電磁コ
イル、5,6,15.16・・・加熱用ヒータ、7゜1
7・・・フライホイール、8.18・・・摩擦板、9゜
19・・・駆動軸、10.20・・・従動軸、23・・
・磁性体。 復代理人 弁理士 豊田正雄   ゛・\  ・ I \−レ/ 第1図 第3図 第4図 第5図 鼠6図 21円筒状超電導体 第7図 第9図 第8図
FIG. 1 is an explanation of the clutch mechanism of the present invention, FIGS. 2.3.4 are explanatory diagrams of the operation of the clutch mechanism of the present invention, and FIG. 5 is an explanatory diagram of the clutch mechanism in another embodiment of the present invention. Figure 6 is a diagram showing the method for producing the superconducting material used in the present invention, Figure 7 is an explanatory diagram showing the means for forming a residual magnetic field in the cylindrical superconductor used in the present invention, and Figure 8 is a diagram showing the method for producing the residual magnetic field in the cylindrical superconductor used in the present invention. FIG. 9, a graph showing the magnetic field, is a cross-sectional view showing the floating state of a magnetic body in a cylindrical superconductor in which a residual magnetic field is formed. 1, If, 2'l... Cylindrical superconductor, 2.12...
・Refrigerant container, 3, 4.13, 14.22... Electromagnetic coil, 5, 6, 15.16... Heating heater, 7゜1
7... Flywheel, 8.18... Friction plate, 9゜19... Drive shaft, 10.20... Driven shaft, 23...
・Magnetic material. Sub-Agent Patent Attorney Masao Toyoda ゛・\・I\-Re/ Figure 1 Figure 3 Figure 4 Figure 5 Mouse 6 Figure 21 Cylindrical superconductor Figure 7 Figure 9 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)フライホイールと摩擦板の接触により駆動力を伝
達するクラッチ機構において、摩擦板の一部ないし全部
を磁性体、永久磁石あるいは超電導体で構成し、ピン止
め力の強い超電導材料で形成された筒状超電導体内に配
置し、該筒状超電導体に対して、外部磁場印加手段およ
び筒状超電導体の一部を常電状態へ変化させる加熱手段
により、該筒状超電導体に生じる磁場分布を変化させ、
該筒状超電導体内部にある磁性体からなる摩擦板の位置
を移動させる手段を備えたことを特徴とするクラッチ機
構。
(1) In a clutch mechanism that transmits driving force through contact between a flywheel and a friction plate, part or all of the friction plate is made of a magnetic material, a permanent magnet, or a superconductor, and is made of a superconducting material with a strong pinning force. A magnetic field distribution generated in the cylindrical superconductor by an external magnetic field applying means and a heating means for changing a part of the cylindrical superconductor to a normal current state. change the
A clutch mechanism comprising means for moving a friction plate made of a magnetic material inside the cylindrical superconductor.
(2)前記摩擦板を軸方向の動きが固定された回転軸と
スプライン機構を介して係合させる動力伝達手段を備え
たことを特徴とする請求項1記載のクラッチ機構。
(2) The clutch mechanism according to claim 1, further comprising power transmission means for engaging the friction plate with a rotating shaft whose axial movement is fixed via a spline mechanism.
JP2124864A 1990-05-15 1990-05-15 Clutch mechanism using superconductor Pending JPH0419429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2124864A JPH0419429A (en) 1990-05-15 1990-05-15 Clutch mechanism using superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2124864A JPH0419429A (en) 1990-05-15 1990-05-15 Clutch mechanism using superconductor

Publications (1)

Publication Number Publication Date
JPH0419429A true JPH0419429A (en) 1992-01-23

Family

ID=14895989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2124864A Pending JPH0419429A (en) 1990-05-15 1990-05-15 Clutch mechanism using superconductor

Country Status (1)

Country Link
JP (1) JPH0419429A (en)

Similar Documents

Publication Publication Date Title
CA2055043C (en) Magnetic refrigerator
US3460081A (en) Electromagnetic actuator with permanent magnets
US2886149A (en) Magnetic friction brake or clutch
GB973229A (en) Improvements in or relating to electro-magnetically operated disc clutches or brakes
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
US20040183382A1 (en) Mobile magnet actuator
CA2039524A1 (en) Electromagnetic clutch
JPH0419429A (en) Clutch mechanism using superconductor
CN109519433B (en) Driving device of high-speed hydraulic valve and high-speed hydraulic valve
EP0922526A2 (en) Method of joining a member of soft magnetic material to a member of hardened material using a friction weld
EP0641064B1 (en) Magnetic hysteresis clutch
CN211039462U (en) Liquid cooling magneto-rheological double clutch with adjustable interval
JPH08296648A (en) Bearing device and its starting method
CA1253637A (en) Electromagnetic control bar drive device, with reduced heat losses
JPS56138528A (en) Electromagnetic clutch brake
DE19938079C1 (en) Superconducting magnetic bearing, e.g. for a flywheel energy storage unit, has a rotor disk of coaxial radially clamped permanent magnet rings forming gaps with high temperature superconductor stator rings
CN115045924B (en) Electromagnetic clutch and nuclear reactor
JPH0530328Y2 (en)
CN110864055A (en) Disc type magneto-rheological double clutch
JPH0421344A (en) Electromagnetic actuator
RU2693756C1 (en) Electromagnetic friction multiple-disk brake
JPH0663675B2 (en) Magnetic refrigerator
JPS58134235A (en) Mechanical electromagnetic clutch
JPS62147949A (en) Clutch mechanism
JPS6335180A (en) Magnetic fluid driving device