JPH0419398A - Turbo compressor for heat recovery - Google Patents

Turbo compressor for heat recovery

Info

Publication number
JPH0419398A
JPH0419398A JP12346990A JP12346990A JPH0419398A JP H0419398 A JPH0419398 A JP H0419398A JP 12346990 A JP12346990 A JP 12346990A JP 12346990 A JP12346990 A JP 12346990A JP H0419398 A JPH0419398 A JP H0419398A
Authority
JP
Japan
Prior art keywords
diffuser
compression chamber
turbo compressor
efficiency
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12346990A
Other languages
Japanese (ja)
Other versions
JP2504285B2 (en
Inventor
Yasunori Adachi
足立 安功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12346990A priority Critical patent/JP2504285B2/en
Publication of JPH0419398A publication Critical patent/JPH0419398A/en
Application granted granted Critical
Publication of JP2504285B2 publication Critical patent/JP2504285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To carry out a low head operation effectively at the time of extracting cold water by providing a second compression chamber like a snail shell on a radially inward part of a first compression chamber like a snail shell communicated with a diffuser, and providing a switch means for changing ove the diffuser to eigher of the compression chambers. CONSTITUTION:In a turbo compressor main body l, an impeller 6 is rotatably supported to a center of a housing 2 through a gear mount assembling body 4 interlocking with a motor 3, while a duffuser 7 is faced to the outlet side of the impeller 6. A first compression chamber 9 like a snail shell which is communicated with the duffuser 7 is provided on a radially outer part of the diffuser 7. At the time of lowering a head, a second compression chamber 25 like a snail shel is provided on a radially inward part of the first compression chamber 9 so as to shift iso-efficiency line distribution of the turbo compressor main body l itself to the lower head side by shortening the length of the diffuser 7. The second compression chamber 25 is communicated with the diffuser 7 at its intermediate part, while a switch means 26 for changing over the diffuser 7 to either of the compression chambers 9, 25.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷水及び温水取出しを可能にしたヒートリカ
バリー用ターボ圧縮機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a turbo compressor for heat recovery that allows extraction of cold water and hot water.

(従来の技術) 従来、冷水及び温水取出しを可能にしたヒートリカバリ
ー用ターボ冷凍機は、例えばカタログ(ダイキン工業、
技術資料、昭和63年6月発行)に記載されているよう
に既に知られている。
(Prior Art) Conventionally, heat recovery centrifugal chillers that enable extraction of cold water and hot water have been described, for example, in catalogs (Daikin Industries, Ltd.,
This is already known as described in the technical data published in June 1988).

このカタログに記載の冷凍機は、第9図に示したごとく
、ターボ圧縮機(A)の吐出側に接続する凝縮器(B)
と熱交換し、該凝縮器(B)から温水を取出し暖房用空
気調和機(C)へ供給する温水配管(D)及び蒸発器(
E)と熱交換して、該蒸発器(E)から冷水を取出し冷
房用空気調和機(F)へ供給する冷水配管(G)を設け
、冷水や温水を取出しできるようにしている。尚、(H
)はクーリングタワーである。
The refrigerator described in this catalog has a condenser (B) connected to the discharge side of the turbo compressor (A), as shown in Figure 9.
A hot water pipe (D) and an evaporator (
A cold water pipe (G) is provided to exchange heat with the evaporator (E), take out cold water from the evaporator (E), and supply it to the cooling air conditioner (F), so that cold water and hot water can be taken out. Furthermore, (H
) is a cooling tower.

(発明が解決しようとする課題) 一般にターボ圧縮機(A)の等効率線分布は、例えば、
断熱ヘッドH(iffl/kg)を縦軸に、また、風量
(吐出量)Q(+//−m)を横軸にして表すと、第6
図に実線で示したようになり、概略的に見ると、風量Q
と断熱ヘッドHが共に減少するに伴い効率が悪くなる傾
向を示している。尚、同図において、等効率線に付記し
た数値は割合(%)を示し、最大効率を発揮する範囲を
100で表しており、又、(I)は温水取出し時、(■
)は冷水取出し時におけるサージングラインをそれぞれ
示している。
(Problems to be Solved by the Invention) Generally, the iso-efficiency line distribution of the turbo compressor (A) is, for example,
If the insulating head H (iffl/kg) is expressed on the vertical axis and the air volume (discharge amount) Q (+//-m) is expressed on the horizontal axis, the sixth
As shown by the solid line in the figure, if you look at it schematically, the air volume Q
The efficiency tends to deteriorate as the heat insulating head and the heat insulating head H both decrease. In addition, in the same figure, the numerical values attached to the iso-efficiency lines indicate percentages (%), and the range in which the maximum efficiency is exhibited is expressed as 100.
) indicate the surging lines when cold water is taken out.

ところで、冷水及び温水取出しを可能にしたヒートリカ
バリー運転を行う圧縮機(A)にあっては、一般に温水
取出し時には高ヘツド、冷水取出し時には低ヘッドで運
転されるのであって、温水取出し時の断熱ヘッドH2を
、第6図に示したように高効率範囲付近で運転ができる
ように設計しているのである。又、上記等効率線分布は
、例えばターボ圧縮機(A)のディフューザーやインペ
ラのサイズや形状等により決まるのであって、圧縮機(
A)固有のものである。
By the way, the compressor (A) that performs heat recovery operation that enables cold water and hot water to be taken out is generally operated at high head when hot water is taken out and at low head when cold water is taken out. The head H2 is designed so that it can be operated near the high efficiency range as shown in FIG. Further, the above-mentioned iso-efficiency line distribution is determined by, for example, the size and shape of the diffuser and impeller of the turbo compressor (A), and the
A) It is unique.

従って、以上の如く温水取出し時に高ヘットH2で高効
率運転ができるように設計した場合、冷水取出し時には
低ヘッド運転、即ち第6図における低ヘッドH1で運転
されることになることから、高ヘツドH2での運転時の
効率に比較してその効率が低下する問題が生じていたの
である。
Therefore, if the design is such that high efficiency operation can be achieved with a high head H2 when taking out hot water as described above, when taking out cold water, it will be operated at a low head operation, that is, a low head H1 in Fig. 6. There was a problem that the efficiency was lower than that when operating at H2.

本発明は、以上の問題を解決するために、ターボ圧縮機
のディフューザーの長さを短くしてターボ圧縮機の等効
率線分布を低ヘッド側に移行させることにより、温水取
出し時における高ヘツド運転を最高効率範囲付近で効率
よく行いながら、冷水取出し時における低ヘッド運転も
最高効率範囲付近で効率よく行えることのできるヒート
リカバリー用ターボ圧縮機を提供しようとすることを目
的とするものである。
In order to solve the above problems, the present invention shortens the length of the diffuser of the turbo compressor to shift the isoefficiency line distribution of the turbo compressor to the low head side, thereby achieving high head operation during hot water extraction. An object of the present invention is to provide a turbo compressor for heat recovery that is capable of efficiently performing low-head operation near the maximum efficiency range when cold water is taken out while efficiently performing the same operation near the maximum efficiency range.

(課題を解決するための手段) 上記目的を達成するため、ディフューザー部(7)に連
通ずる第1蝸牛状圧縮室(9)の径方向内方に、第2餡
生状圧縮室(25)を設けて、該第2M中状圧縮室(2
5)を前記ディフューザー部(9)の途中に連通させる
と共に、前記ディフューザー部(9)を第1及び第2M
中状圧縮室(9)(25)の一方に切換える切換手段(
26)を設けたことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, a second bean-like compression chamber (25) is provided inward in the radial direction of the first cochlear-like compression chamber (9) communicating with the diffuser part (7). is provided, and the second M medium compression chamber (2
5) is communicated with the middle of the diffuser part (9), and the diffuser part (9) is connected to the first and second M
Switching means for switching to one of the medium compression chambers (9) and (25)
26).

(作用) 温水取出し時、前記切換手段(26)により前記ディフ
ューザー部(7)を前記第1娼牛状圧縮室(9)のみに
連通させて、前記ディフューザー部(7)の全長を用い
る運転により、第6図に実線で示した等効率分布を得て
、高ヘツドで最高効率範囲付近で運転できる。
(Function) When taking out hot water, the switching means (26) causes the diffuser section (7) to communicate only with the first cow-shaped compression chamber (9), and the entire length of the diffuser section (7) is used. , an equal efficiency distribution is obtained as shown by the solid line in FIG. 6, and operation can be performed near the maximum efficiency range at high heads.

又、冷水取出し時、前記切換手段(26)により前記デ
ィフューザー部(7)を前記第2輪生状圧縮室(25)
のみに連通ずるように切換え、前記ディフューザー部(
7)の長さを短くすることにより、最大効率範囲を第6
図に実線で示した位置から点線で示した位置に、つまり
、低ヘッド側に移行させることができ、低ヘッドであり
ながら最高効率範囲付近で運転できる。しかも、後記す
るように前記ディフューザー部(7)の長さを短くした
場合、ディフューザー効率が向上するから、低ヘッド時
デイフユーザー効率を低下させることなく、むしろ逆に
ディフューザー効率を向上しながら、最大効率範囲で運
転することができる。
Further, when taking out cold water, the switching means (26) switches the diffuser section (7) into the second annular compression chamber (25).
Switch so that it communicates only with the diffuser section (
7) By shortening the length, the maximum efficiency range can be reduced to the 6th
It is possible to shift from the position shown by the solid line in the figure to the position shown by the dotted line, that is, to the low head side, and it is possible to operate near the maximum efficiency range even with a low head. Moreover, as will be described later, when the length of the diffuser section (7) is shortened, the diffuser efficiency is improved, so the diffuser efficiency is not reduced at low head, but on the contrary, while improving the diffuser efficiency, Able to operate in maximum efficiency range.

(実施例) 第1図に示したターボ圧縮機本体(1)の基本構造は既
知の通りで、ハウジング(2)の中心部に、モータ(3
)に連動するギヤマウント組付体(4)を介してハブ(
5)を備えたインペラー(6)を回転可能に支持すると
共に、このインペラー(6)の出口側にディフューザー
部(7)を臨ませている。また、該ディフューザー部(
7)の半径方向外方側には該ディフューザー部(7)と
吐出管(8)とに連通ずる第1蝸牛状圧縮室(9)を設
けると共に、前記インペラー(6)の入口(61)側に
はガイドベーン(10)を配設して、該ベーン(10)
の開度を調整することにより、前記ディフューザー部(
7)を通過する風量を調整し前記圧縮機本体(1)の容
量制御運転を可能としている。尚、同図において、(1
1)はりングギャカップリング、(12)はオイルポン
プ、(13)はオイル配管、(14)は前記ガイドベー
ン(10)調節用のモータである。
(Example) The basic structure of the turbo compressor main body (1) shown in FIG.
) via the gear mount assembly (4) linked to the hub (
5) is rotatably supported, and a diffuser part (7) is made to face the outlet side of this impeller (6). In addition, the diffuser part (
A first cochlear compression chamber (9) communicating with the diffuser section (7) and the discharge pipe (8) is provided on the radially outer side of the impeller (6), and a first cochlear compression chamber (9) is provided on the radially outer side of the impeller (6). A guide vane (10) is disposed in the vane (10).
By adjusting the opening degree of the diffuser section (
7) to enable capacity controlled operation of the compressor main body (1). In addition, in the same figure, (1
1) A ring gear coupling, (12) an oil pump, (13) an oil pipe, and (14) a motor for adjusting the guide vane (10).

また、前記ターボ圧縮機本体(1)には、第2図に示し
たように、凝縮器(15)と蒸発器(16)とを付設し
て、前記吐出管(8)から吐出する冷媒を、点線矢印で
示したように循環させて、前記凝縮器(15)で凝縮さ
せると共に、前記蒸発器(16)で蒸発させるような冷
凍サイクルを形成し、ヒートリカバリー冷凍機を構成す
るのである。
Further, as shown in FIG. 2, the turbo compressor main body (1) is equipped with a condenser (15) and an evaporator (16) to control the refrigerant discharged from the discharge pipe (8). , as shown by the dotted arrows, condensing in the condenser (15) and evaporating in the evaporator (16) to form a refrigeration cycle, thereby forming a heat recovery refrigerator.

即ち、前記吐出管(8)に接続した前記凝縮器(15)
には、クーリングタワー(17)をもち、この凝縮器(
15)に冷却水を供給する冷却水循環系(18)と、こ
の凝縮器(15)から温水を取出し暖房用空気調和機(
19)へ供給する温水循環系(20)とを接続すると共
に、前記蒸発器(16)には、この蒸発器(16)から
冷水を取出し冷房用空気調和機(21)へ供給する冷水
循環系(22)を接続し、冷水や温水を取出しできるよ
うにしている。尚、(23)は前記暖房用空気調和機(
19)へ供給する温水の温度に応して前記クーリングタ
ワー(17)に供給する水量を調節する三方弁であり、
(24)は各循環系(18)(20)(22)に介装し
たポンプで、各水を実線矢印方向に流すものである。
That is, the condenser (15) connected to the discharge pipe (8)
has a cooling tower (17), and this condenser (
A cooling water circulation system (18) that supplies cooling water to a heating air conditioner (15) and a heating air conditioner (
The evaporator (16) is connected to a hot water circulation system (20) that supplies the water to the evaporator (19), and a cold water circulation system that extracts cold water from the evaporator (16) and supplies it to the cooling air conditioner (21). (22) is connected so that cold or hot water can be taken out. In addition, (23) is the heating air conditioner (
19) is a three-way valve that adjusts the amount of water supplied to the cooling tower (17) according to the temperature of the hot water supplied to the cooling tower (17);
(24) is a pump installed in each circulation system (18), (20), and (22), which flows each water in the direction of the solid line arrow.

しかして、本発明では、低ヘッド時前記ディフューザー
部(7)の長さを短くすることにより、ターボ圧縮機本
体(1)本来の等効率線分布を低ヘッド側へ移行させる
ために、前記ディフューザー部(7)に連通ずる第1蟻
牛状圧縮室(9)の径方向内方に、第2蟻牛状圧縮室(
25)を設けて、該第2蝸牛状圧縮室(25)を前記デ
ィフューザー部(7)の途中に連通させると共に、前記
ディフューザー部(7)を第1及び第2蝸牛状圧縮室(
7)(25)の一方に切換える切換手段(26)を設け
るのである。
Therefore, in the present invention, by shortening the length of the diffuser section (7) at the time of low head, in order to shift the original iso-efficiency line distribution of the turbo compressor body (1) to the low head side, A second dovetail compression chamber (
25) to connect the second cochlear compression chamber (25) to the middle of the diffuser section (7), and connect the diffuser section (7) to the first and second cochlear compression chambers (
7) A switching means (26) for switching to one of (25) is provided.

即ち、第3及び第4図に拡大して示すように、前記第1
蝸牛状圧縮室(9)の径方向内方に隔壁(27)により
区画した第2蝸牛吠圧縮室(25)を設け、環状の開口
部(28)を介して前記ディフューザー部(7)の途中
とを連通させる。また、前記隔壁(27)に環状溝(2
9)と、該環状溝(29)の底に開口する複数の貫通孔
(30)を設ける。更に、前記貫通孔(30)には、例
えば、ステップモータに連動するピニオン及びラック(
図示しない)の駆動装置や油圧/リンダ等を介して軸方
向に摺動可能にした複数の口・ノド(31)を挿通させ
ると共に、各ロッド(31)の前記ディフューザー部(
7)側端部を、後記する環状切換弁(34)の筒状部(
32)に接続する。この環状切換弁(34)は第5図に
示すように、第1蝸牛状圧縮室(9)へのディフューザ
ー部(7)の途中部を閉鎖する筒状部(32)と、前記
開口部(28)を閉鎖する蓋部(33)とから断面り7
杖に形成するのであって、この環状切換弁(34)とこ
の切換弁(34)に連結する複数のロツ)’(31)及
びその駆動源とにより前記切換手段(26)を構成する
のである。
That is, as shown enlarged in FIGS. 3 and 4, the first
A second cochlear compression chamber (25) is provided radially inward of the cochlear compression chamber (9) by a partition wall (27), and a second cochlear compression chamber (25) is provided in the middle of the diffuser section (7) through an annular opening (28). communicate with. Further, an annular groove (2) is provided in the partition wall (27).
9) and a plurality of through holes (30) opening at the bottom of the annular groove (29). Further, in the through hole (30), for example, a pinion and a rack (
The diffuser portion (31) of each rod (31) is inserted through a plurality of openings/nodes (31) that are slidable in the axial direction via a drive device (not shown), hydraulic pressure/cylinder, etc.
7) Connect the side end to the cylindrical part (
32). This annular switching valve (34), as shown in FIG. Section 7 from the lid part (33) that closes 28)
The annular switching valve (34), a plurality of rods (31) connected to the switching valve (34), and a driving source thereof constitute the switching means (26). .

尚、前記蓋部(33)の先端部にはテーバ部(35)を
設けて、前記蓋部(33)の前記開口部(28)周辺部
への密着性を高めるようにしている。
A tapered portion (35) is provided at the tip of the lid (33) to enhance the adhesion of the lid (33) to the periphery of the opening (28).

次に、以上のように構成したヒートリカバリー用ターボ
圧縮機の作用を説明する。
Next, the operation of the heat recovery turbo compressor configured as above will be explained.

前記温水循環系(20)に介装した前記暖房用空気調和
機(19)へ温水を供給する温水取出し時には、第3図
に示したように、前記環状切換弁(34)の筒状部(3
2)を前記環状溝(29)に収納させると共に、前記蓋
部(33)により前記開口部(28)を閉鎖し、前記デ
ィフューザー部(7)を前記第1蟻牛状圧縮室(9)の
みに連通させる。このときは、第6図に実線で示した示
したような圧縮機本体(1)本来の等効率分布が得られ
、高ヘツドH2で最高効率付近での運転ができる。
When taking out hot water to supply hot water to the heating air conditioner (19) installed in the hot water circulation system (20), as shown in FIG. 3
2) is accommodated in the annular groove (29), the opening (28) is closed by the lid (33), and the diffuser part (7) is placed only in the first dovetail compression chamber (9). communicate with. At this time, the original uniform efficiency distribution of the compressor main body (1) as shown by the solid line in FIG. 6 is obtained, and the compressor can be operated near the maximum efficiency at the high head H2.

一方、冷水取出し時には、前記ロッド(31)を介して
前記切換弁(34)を第3,4図において右方に移動さ
せ、第4図に示したように、前記第2蟻牛状圧縮室(2
5)の前記開口部(28)を開放すると共に、前記筒状
部(32)にて前記ディフューザー部(7)の前記第1
蝸牛状圧縮室(9)への連通を遮断し、前記ディフュー
ザー部(7)を前記第2蝸牛状圧縮室(25)のみに連
通させる。このときには、前記インペラ(6)から送ら
れるガスは、前記開口部(28)を経て前記ディフュー
ザー部(7)から前記第2蝸牛状圧縮室(25)に入る
ことになる。従って前記ディフューザー部(7)におけ
る流路の長さは、第3図に示した状態に比較して短くな
り、第6図に点線で示したような等効率分布が得られる
。この分布は実線の等効率分布より低ヘッド側に移行し
ているから、低ヘッドH2において最高効率範囲付近で
の運転ができる。
On the other hand, when taking out cold water, the switching valve (34) is moved to the right in FIGS. 3 and 4 via the rod (31), and as shown in FIG. (2
5), and the first opening (28) of the diffuser part (7) is opened in the cylindrical part (32).
Communication to the cochlear compression chamber (9) is cut off, and the diffuser portion (7) is communicated only to the second cochlear compression chamber (25). At this time, the gas sent from the impeller (6) enters the second cochlear compression chamber (25) from the diffuser section (7) via the opening (28). Therefore, the length of the flow path in the diffuser section (7) is shorter than that shown in FIG. 3, and an equal efficiency distribution as shown by the dotted line in FIG. 6 is obtained. Since this distribution shifts to the low head side from the constant efficiency distribution shown by the solid line, operation near the maximum efficiency range is possible in the low head H2.

次に、前記ディフューザー部(7)を前記第1蝸牛状圧
縮室(9)に連通させた場合と、前記第2嫡牛状圧縮室
(25)に連通させた場合、即ち、前記切換弁(34)
が第3図に示した位置の場合と、第4図に示した位置の
場合における運転ヘッドに対するディフューザー効率の
変化は、例えばベーン開度を80%としたものにおいて
実測し、縦軸にディフューザー効率を、横軸にヘッドを
とった第7及び第8図に示した通りである。尚、第7図
におけるディフューザー効率(CR,)は、p、−pイ CR,= ρ・■2/2 により、また、第8図におけるディフューザー効率(C
R2)は、 P、、−Pイ て、Pイはディフューザー部(7)における入口側の圧
力であり、P、、は前記ディフューザー部(7)を前記
第1絹牛状圧縮室(9)に連通した場合の前記圧縮室(
9)への入口側圧力であり、また、P7、は前記ディフ
ューザー部(7)を前記第2絹牛状圧縮室(25)に連
通した場合の前記圧縮室(25)への入口側圧力である
。また、■は速度、ρは密度を示している。
Next, when the diffuser part (7) is communicated with the first cochlear compression chamber (9) and when it is communicated with the second cochlear compression chamber (25), that is, the switching valve ( 34)
The change in diffuser efficiency with respect to the operating head when the position is shown in Figure 3 and the position shown in Figure 4 is measured by setting the vane opening to 80%, for example, and the diffuser efficiency is plotted on the vertical axis. is shown in FIGS. 7 and 8, in which the horizontal axis represents the head. The diffuser efficiency (CR,) in Fig. 7 is determined by p, -pCR, = ρ・■2/2, and the diffuser efficiency (C
R2) is the pressure on the inlet side of the diffuser section (7), and P is the pressure on the inlet side of the diffuser section (7). The compression chamber (
9), and P7 is the pressure at the entrance to the compression chamber (25) when the diffuser part (7) is communicated with the second cow-shaped compression chamber (25). be. Further, ■ indicates speed, and ρ indicates density.

第7及び第8図を比較すると、前記ディフューザー部(
7)の長さが短い場合、即ち、前記切換弁(34)が第
4図に示した位置の場合におけるディフューザー効率曲
線は、前記ディフューザー部(7)の長さが長い場合、
即ち、前記切換弁(34)が第3図に示した位置の場合
に比較して変化が大きいが、ディフューザー効率の最大
値を示すヘッドは第7図よりも低(なり、しかも、その
最大値は第7図における最大値大きくなっている。
Comparing Figures 7 and 8, the diffuser section (
7) When the length is short, that is, when the switching valve (34) is in the position shown in FIG. 4, the diffuser efficiency curve is as follows: When the length of the diffuser part (7) is long,
That is, although the change is large compared to when the switching valve (34) is in the position shown in FIG. 3, the head showing the maximum value of the diffuser efficiency is lower than that in FIG. The maximum value in FIG. 7 is large.

従って、前記切換弁(34)を切換えて、前記ディフュ
ーザー部(7)を前記第2蝸牛状圧縮室(25)のみに
連通させ、前記ディフューザー部(7)の長さを短くす
ることにより、冷水取出しの低ヘッド時において、最大
効率線分布を第6図に実線で示した位置から点線で示し
た位置に、つまり、低ヘッド側に移行させることができ
るのであって、低ヘッド時デイフユーザー効率を低下さ
せることなく、むしろ逆にディフューザー効率を向上し
ながら、最大効率範囲で運転することができるのである
Therefore, by switching the switching valve (34) to make the diffuser part (7) communicate only with the second cochlear compression chamber (25) and shortening the length of the diffuser part (7), the cold water When the head of take-out is low, the maximum efficiency line distribution can be shifted from the position shown by the solid line in Fig. 6 to the position shown by the dotted line, that is, to the low head side, and the differential user This allows the diffuser to operate in its maximum efficiency range without reducing efficiency, or even increasing diffuser efficiency.

尚、以上の実施例では、前記切換手段(26)には断面
り字状の環状切換弁(34)と軸方向に移動可能とした
複数のロッド(31)とを用いたが、前記環状切換弁(
34)やロッ)’(31)等に限定するものではない。
In the above embodiment, the annular switching valve (34) having an angular cross section and a plurality of rods (31) movable in the axial direction are used as the switching means (26). valve(
It is not limited to 34) and ro)' (31).

(発明の効果) 以上説明したように、本発明は、ディフューザー部(7
)に連通ずる第1蝙牛状圧縮室(9)の径方向内方に、
第2絹牛状圧縮室(25)を設けて、該第2絹牛状圧縮
室(25)を前記ディフューザー部(7)の途中に連通
させると共に、前記ディフューザー部(7)を第1及び
第1絹牛状圧縮室(9)(25)の一方に切換える切換
手段(26)を設けたから、冷水取出し時、前記切換手
段(26)による前記ディフューザー部(7)の前記第
2輪生状圧縮室(25)のみへの連通により、前記ディ
フューザー部(7)の長さを短くした運転ができる。従
って、最大効率分布を第6図に実線で示した位置から点
線で示した位置に、つまり、低ヘッド側に移行させるこ
とができ、低ヘッドでありながら最高効率範囲付近で運
転できる。
(Effects of the Invention) As explained above, the present invention provides a diffuser section (7
) radially inwardly of the first bull-shaped compression chamber (9) communicating with the
A second silk cow-shaped compression chamber (25) is provided, and the second silk cow-shaped compression chamber (25) is communicated with the middle of the diffuser section (7), and the diffuser section (7) is connected to the first and second silk cow-shaped compression chambers (25). Since a switching means (26) is provided for switching to one of the first silk cow-shaped compression chambers (9) and (25), the second annular compression of the diffuser part (7) is performed by the switching means (26) when cold water is taken out. By communicating only with the chamber (25), it is possible to operate with a shortened length of the diffuser section (7). Therefore, the maximum efficiency distribution can be shifted from the position shown by the solid line in FIG. 6 to the position shown by the dotted line, that is, toward the low head side, and operation can be performed near the maximum efficiency range even with a low head.

しかも、前記ディフューザー部(7)の長さを短(した
場合、ディフューザー効率が向上するから、低ヘッド時
デイフユーザー効率を低下させることなく、むしろ逆に
ディフューザー効率を向上しながら、最大効率範囲で運
転することができるのである。
Moreover, if the length of the diffuser section (7) is shortened, the diffuser efficiency will be improved, so the diffuser efficiency will not be reduced at low head, but on the contrary, the diffuser efficiency will be improved and the maximum efficiency range will be achieved. It is possible to drive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のヒートリカバリー用ターボ圧縮機本体
を示す断面図、第2図は同圧縮機を用い斜視図、第6図
は等効率線分右図、第7図及び第8図はそれぞれディフ
ューザー効率とヘッドとの関係を示す特性図、第9図は
従来例を説明するヒートリカバリー冷凍機の配管系統図
面である。 (7)・・・・ディフューザー部 (9)Φ・・・第1蝸牛状圧縮室 (25)・・・第2絹牛状圧縮室 (26)・・・切換手段 第3 図 第4 図 第5 図 第6 図 第 図 第8 図 第9 図
Fig. 1 is a sectional view showing the main body of the turbo compressor for heat recovery of the present invention, Fig. 2 is a perspective view of the same compressor, Fig. 6 is a right view of equal efficiency lines, and Figs. 7 and 8 are FIG. 9 is a characteristic diagram showing the relationship between the diffuser efficiency and the head, and FIG. 9 is a piping system diagram of a heat recovery refrigerator illustrating a conventional example. (7) Diffuser part (9) Φ First cochlear compression chamber (25) Second cochlear compression chamber (26) Switching means 3 Figure 4 Figure 4 5 Figure 6 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1)冷水及び温水取出しを可能にしたヒートリカバリー
用ターボ圧縮機であって、ディフューザー部(7)に連
通する第1蝸牛状圧縮室(9)の径方向内方に、第2蝸
牛状圧縮室(25)を設けて、該第2蝸牛状圧縮室(2
5)を前記ディフューザー部(9)の途中に連通させる
と共に、前記ディフューザー部(9)を第1及び第2蝸
牛状圧縮室(9)(25)の一方に切換える切換手段(
26)を設けたことを特徴とするヒートリカバリー用タ
ーボ圧縮機。
1) A turbo compressor for heat recovery that enables extraction of cold water and hot water, with a second cochlear compression chamber radially inward of the first cochlear compression chamber (9) communicating with the diffuser part (7). (25), and the second cochlear compression chamber (25) is provided.
switching means (5) communicating with the middle of the diffuser section (9) and switching the diffuser section (9) to one of the first and second cochlear compression chambers (9) and (25);
26) A turbo compressor for heat recovery, characterized in that it is provided with:
JP12346990A 1990-05-14 1990-05-14 Turbo recovery compressor for heat recovery Expired - Fee Related JP2504285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12346990A JP2504285B2 (en) 1990-05-14 1990-05-14 Turbo recovery compressor for heat recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12346990A JP2504285B2 (en) 1990-05-14 1990-05-14 Turbo recovery compressor for heat recovery

Publications (2)

Publication Number Publication Date
JPH0419398A true JPH0419398A (en) 1992-01-23
JP2504285B2 JP2504285B2 (en) 1996-06-05

Family

ID=14861402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12346990A Expired - Fee Related JP2504285B2 (en) 1990-05-14 1990-05-14 Turbo recovery compressor for heat recovery

Country Status (1)

Country Link
JP (1) JP2504285B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144615A (en) * 2006-12-07 2008-06-26 Toyota Industries Corp Centrifugal compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144615A (en) * 2006-12-07 2008-06-26 Toyota Industries Corp Centrifugal compressor
EP1930602A3 (en) * 2006-12-07 2012-04-25 Kabushiki Kaisha Toyota Jidoshokki Centrifugal compressor

Also Published As

Publication number Publication date
JP2504285B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US6273691B1 (en) Scroll gas compressor having asymmetric bypass holes
US9587867B2 (en) Chiller system and control method thereof
AU2012277201B2 (en) Refrigerant passage change-over valve and air conditioner using the same
CN105546906A (en) Refrigerator
CN203756524U (en) Double-level rotating compressor and refrigerating cycling device with same
CN105605858A (en) Refrigerator and temperature control method for thermostatic chamber in refrigerator
CN101886628B (en) Scroll compressor
CN206488508U (en) Head phase-transition heat-storage frost removal type low-temperature air source heat pump unit
CN102109261A (en) Refrigerating apparatus
JPH0419398A (en) Turbo compressor for heat recovery
JP2521440Y2 (en) Multi-stage regenerative pump compressor
JP4381458B2 (en) Oil separator
US6446456B2 (en) Heat pump and method for controlling operation thereof
JP2010169290A (en) Heat pump type water heater
CN215571412U (en) Oil separator, compressor, and electric appliance
KR101658223B1 (en) Cooling-Storage System
US2328824A (en) Refrigerating apparatus
CN109681432A (en) A kind of aeration valve and screw compressor of screw compressor
WO2002050481A1 (en) Refrigerating system with an integrated turbocompressor
CN207123096U (en) Refrigeration system
KR100377617B1 (en) Air circulation system of Refrigerator
CN106247667A (en) Refrigeration system and control method thereof
CN103511270B (en) Vertical rotary compressor
CN207123097U (en) Refrigeration system
CN206037465U (en) Cooling systems

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees