JPH04193420A - Ultrasonic machining method - Google Patents

Ultrasonic machining method

Info

Publication number
JPH04193420A
JPH04193420A JP32652090A JP32652090A JPH04193420A JP H04193420 A JPH04193420 A JP H04193420A JP 32652090 A JP32652090 A JP 32652090A JP 32652090 A JP32652090 A JP 32652090A JP H04193420 A JPH04193420 A JP H04193420A
Authority
JP
Japan
Prior art keywords
electrolytic
tool
soft
film
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32652090A
Other languages
Japanese (ja)
Inventor
Akio Nakano
昭夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32652090A priority Critical patent/JPH04193420A/en
Priority to US07/680,314 priority patent/US5085747A/en
Publication of JPH04193420A publication Critical patent/JPH04193420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To enable ultra-precise mirror surface finishing while removing electrolytic generated film on the projecting part of work surface without mechanical force by supplying electrolytic liquid mixed with soft spherical bodies of high polymer series material between the tool of an ultrasonic machine and the work surface at a prescribed flow speed to grind generated film. CONSTITUTION:In a space for electrolytic reaction liquid between the work surface 2 of a work piece A and the tool B fitted to the oscillating horn 3 of an ultrasonic machine provided in a fixed distance between electrodes, electrolytic liquid D mixed with soft spherical bodies C is poured at a prescribed flow speed and current is supplied to the electrolytic reaction liquid space to perform electrolytic machining for removing material of the surface 2 of the work piece A by electrolytic action. Simultaneously, rotation of the body C passing through the electrolytic reaction territory while rotating by the flow of the liquid D is promoted by ultrasonic vertical oscillation of the tool B making a line square with the flow to be high speed rotation. Next, grinding action against film 4 generated on the surface 2 is given to the body C to remove it by vertical oscillation of the tool B, and mirror face finishing is performed while adsorbing remnants to the body C, and exhausting from the reaction territory.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、硬質層、比較的軟質な金属結合層の混在を特
徴とする硼化物サーメツト材、又はNi12、5− C
r 20.5圧延材等からなる被加工物表面の鏡面仕上
げ加工(研磨加工)に用いる超音波加工方法に関するも
のである。
Detailed Description of the Invention <Industrial Application Field> The present invention is directed to a boride cermet material characterized by a mixture of a hard layer and a relatively soft metal bonding layer, or a Ni12,5-C
The present invention relates to an ultrasonic processing method used for mirror finishing (polishing) the surface of a workpiece made of r20.5 rolled material or the like.

〈従来の技術背景及びその問題点〉 一般に、此種の超音波加工は超音波加工機の振動ホーン
に取付けた工具と被加工物との間にメタB4C又はCB
N等からなる硬質砥粒(遊離砥粒)を存在(介在)させ
、該硬質砥粒を振動ホーンによる工具の超音波振動によ
って被加工物に起動衝撃させその衝撃力により被加工物
の加工表面を微細に脆性破壊させながら研削、研磨加工
する方法である。
<Conventional technical background and its problems> Generally, in this type of ultrasonic machining, there is a metal B4C or CB between the tool attached to the vibration horn of the ultrasonic machine and the workpiece.
Hard abrasive grains (free abrasive grains) made of N, etc. are present (interposed), and the hard abrasive grains are activated to impact the workpiece by ultrasonic vibration of the tool using a vibrating horn, and the impact force causes the machined surface of the workpiece to be This is a method of grinding and polishing while causing fine brittle fracture.

然るに、斯る超音波加工方法はあくまで被加工物に直接
的に機械力(加工応力)を加えて材料を機械的に除去す
る機械的研磨であり、加工表面の仕上り加工精度は機械
加工における技術範囲のみの精度しか望めず、それはま
た限界がある。
However, this ultrasonic processing method is only a mechanical polishing method in which material is mechanically removed by directly applying mechanical force (processing stress) to the workpiece, and the finishing accuracy of the processed surface depends on the machining technology. You can only hope for accuracy in the range, which also has its limits.

そこで、加工精度を向上させるために工具と被加工物と
の間に上記硬質砥粒を混合せる電解液を存在させて工具
と被加工物との間に電流を流しながら被加工物を電気的
に加工する電解加工(化学的研磨)を組合せた超音波電
解複合加工方法が案出され提供された(特開昭52−2
82821号公報参照)。
Therefore, in order to improve machining accuracy, an electrolytic solution that mixes the hard abrasive grains is placed between the tool and the workpiece, and the workpiece is electrically heated while passing a current between the tool and the workpiece. An ultrasonic electrolytic composite processing method that combines electrolytic processing (chemical polishing) to process
(See Publication No. 82821).

しかし乍ら、この後者の超音波加工方法は並行して行な
われる電解加工による被加工物の加工表面の材料除去に
よって前者の機械加工のみの超音波加工方法に比べて加
工表面の仕上り加工精度は向上するが、あくまでも工具
の超音波振動による硬質砥粒の被加工物への衝撃、即ち
被加工物に直接的に機械力を加えて加工する超音波加工
(機械的研磨)を主体として行なう加工方法であるため
この超音波加工時に生じる応力歪等の完全除去は望めず
、超精密な鏡面仕上げ加工精度を図る上で完成されてい
ないのが現状である。
However, this latter ultrasonic machining method has a lower finishing accuracy on the machined surface compared to the former ultrasonic machining method, which only involves machining, due to material removal from the machined surface of the workpiece by electrolytic machining, which is performed in parallel. However, the process is mainly based on ultrasonic machining (mechanical polishing) in which the impact of hard abrasive grains on the workpiece due to the ultrasonic vibration of the tool, in other words, applying mechanical force directly to the workpiece. Since this is a method, it cannot be expected to completely eliminate the stress and strain that occurs during ultrasonic processing, and the current state of the art is that it has not been perfected in terms of achieving ultra-precise mirror finish processing accuracy.

又、電解加工を主体とし且つこの電解作用(化学的材料
除去作用)の進行に起因して被加工物の加工表面に発生
する電解生成皮膜(不働態化酸化皮膜)を砥粒の研磨作
用により削り取りながら加工表面の鏡面仕上げ加工を行
なう様にした加工方法も知られている(特開昭53−1
395号公報参照)。
In addition, electrolytic processing is the main method, and the electrolytically generated film (passivated oxide film) generated on the processed surface of the workpiece due to the progress of this electrolytic action (chemical material removal action) is removed by the polishing action of abrasive grains. A machining method is also known in which the machined surface is polished to a mirror finish while being scraped (Japanese Patent Laid-Open No. 53-1
(See Publication No. 395).

即ち、この従来加工方法は被加工物の加工表面と平行に
対向設置した摺動する工具に電極と砥粒を加工表面に押
圧摺り合わせるパフとを交互に設け、工具と加工表面と
の間に異形状の硬質砥粒を懸濁した電解液を流して電解
加工を行なうと共に加工表面に発生した電解生成皮膜を
パフ及び砥粒の研磨作用により削り取る該生成皮膜の除
去を繰り返し行なうことによって、電解加工の促進と加
工表面の凸部を優先的に電解加工せしめて加工表面を鏡
面に仕上げる加工方法である。
That is, in this conventional machining method, electrodes and puffs that press and slide abrasive grains onto the machining surface are alternately provided on a sliding tool that is installed parallel to and opposite the machining surface of the workpiece, and there is a gap between the tool and the machining surface. By performing electrolytic processing by flowing an electrolytic solution containing irregularly shaped hard abrasive grains, and by repeatedly removing the electrolytically produced film generated on the processed surface by scraping it off by the polishing action of the puff and abrasive grains. This is a processing method that accelerates processing and preferentially performs electrolytic processing on convex portions of the processed surface to give the processed surface a mirror finish.

しかし乍ら、電解加工に起因して発生する加工表面の電
解生成皮膜を研磨除去する目的で電解液に懸濁し加工表
面と工具との間に存在させた硬質砥粒の研磨作用が加工
表面に加わり、硬質砥粒による引っ掛き傷等の応力歪が
加工表面に残る問題がある。それは硬質砥粒を工具によ
り加工表面に押圧しながら電解生成皮膜を該加工表面か
ら除去するために、電解生成皮膜の厚さに対して工具の
押圧制御が難しいことと砥粒が異形状で被加工物に機械
力(加工応力)を加えてしまう硬質な材料から形成され
ているからである。
However, the abrasive action of hard abrasive particles suspended in an electrolytic solution and placed between the machined surface and the tool for the purpose of polishing and removing the electrolytically generated film on the machined surface that occurs due to electrolytic machining is applied to the machined surface. In addition, there is the problem that stress distortion such as scratches caused by hard abrasive grains remains on the machined surface. This is because the electrolytically produced film is removed from the machined surface while pressing hard abrasive grains onto the machined surface using a tool, so it is difficult to control the pressure of the tool with respect to the thickness of the electrolytically produced film, and the abrasive grains are irregularly shaped and may be covered. This is because it is made of a hard material that applies mechanical force (processing stress) to the workpiece.

そのため、近年技術開発の進歩に伴い加工表面の超精密
な鏡面仕上げ加工が要求されてきた被加工物、例えば高
湿金属溶湯を鋳んで製品を成形するダイガスト等の鋳造
法に用いられる成形型の加工表面、即ち成形される製品
の表面鋳肌のでき具合に直接関係し、良好な鋳肌及び高
精度(寸法など)の製品を成形する上で重要なキャビテ
ィ表面の超精密な鏡面仕上げ加工(研磨加工)ができな
いものであった。
Therefore, in recent years, with the progress of technological development, it has become necessary to process workpieces with ultra-precise mirror finishing on the machined surface. Ultra-precise mirror finishing of the cavity surface is directly related to the quality of the surface of the molded product, and is important for molding products with good casting surface and high precision (dimensions, etc.). Polishing processing) was not possible.

〈発明が解決しようとする課題〉 本発明はこの様な従来事情に鑑みてなされたものであり
、その解決しようとする技術的課題は、電解液を用いて
被加工物表面の材料除去を行なう電解加工の進行に起因
して発生する被加工物表面の電解生成皮膜(不働態化酸
化皮膜)を効果的、特に加工表面の凸部に発生する電解
生成皮膜を効果的且つ優先的に、しかも加工表面に機械
力(加工応力)を与えることなく除去せしめながら加工
表面に対する電解作用(化学的材料除去作用)を一定に
保ちつつ超精密な鏡面仕上げ加工を実施し得る超音波加
工方法を提供することにある。
<Problem to be solved by the invention> The present invention has been made in view of such conventional circumstances, and the technical problem to be solved is to remove material from the surface of a workpiece using an electrolytic solution. Effectively removes the electrolytically generated film (passivated oxide film) on the surface of the workpiece that occurs due to the progress of electrolytic processing, and in particular effectively and preferentially removes the electrolytically generated film that occurs on the convex portions of the processed surface. To provide an ultrasonic machining method capable of carrying out ultra-precise mirror finish processing while maintaining a constant electrolytic action (chemical material removal action) on the machined surface while removing it without applying mechanical force (processing stress) to the machined surface. There is a particular thing.

〈課題を達成するための手段〉 上記課題を達成するために本発明が講じる技術的手段は
、電解液中に浸漬した状態で浮游する比重設定にて且つ
粒径0.5〜2.5μ程度の大きさで内芯部と外層部と
の分子密度を変えた高分子系材にて真球状に形成した軟
質真球体を電解液に混入し、被加工物の加工表面と一定
の極間距離を有して設置した超音波加工機の工具と該加
工表面との電解反応域間に軟質真球体を混合せる電解液
を所定の流速のもとて供給しながら存在させ、前記電界
反応域間に電流を通すと共に電解液の流れに乗って回転
しながら移動する軟質真球体の該回転を、流れ方向に対
して直交する工具の超音波振動により助長しながら且つ
工具の超音波振動により該軟質真球体を被加工物の加工
表面に発生する電解生成皮膜に起動接近させながら該生
成皮膜に研磨作用を与えて極微小の弾性破壊により除去
しつつその皮膜残滓を軟質真球体の表面に発生する官能
甚平によるイオン吸着作用により吸着捕獲しつつ前記電
解反応域間より排出しながら加工することを特徴とする
<Means for achieving the object> The technical means taken by the present invention to achieve the above object is to set the specific gravity so that the particles float when immersed in the electrolytic solution, and have a particle size of approximately 0.5 to 2.5μ. A soft spherical body made of a polymeric material with different molecular densities between the inner core and outer layer is mixed into the electrolyte, and the distance between the machining surface and the workpiece is set at a constant distance. An electrolytic solution that mixes soft spheres is supplied at a predetermined flow rate between the electrolytic reaction zone between the tool of an ultrasonic processing machine installed with The rotation of the soft true sphere, which rotates and moves along with the flow of electrolyte, is facilitated by the ultrasonic vibration of the tool perpendicular to the flow direction, and the ultrasonic vibration of the tool While the true sphere is brought close to the electrolytically generated film generated on the processing surface of the workpiece, a polishing action is applied to the generated film, and the film is removed by microscopic elastic fracture, while the film residue is generated on the surface of the soft true sphere. It is characterized in that processing is carried out while adsorbing and capturing ions by the ion adsorption effect of the functional jinbei and discharging them from between the electrolytic reaction zones.

又、電解液中に浸漬した状態で浮游する比重設定にて且
つ粒径0.5〜2.5μ程度の大きさで内芯部と外層部
との分子密度を変えた高分子系材にて真球状に形成した
軟質真球体と前記電解液とを、被加工物の加工表面と一
定の極間距離を有して設置した超音波加工機の工具と該
加工表面との電解反応域間に夫々側々に供給し且つ電解
液を所定の流速のもとで供給しながら軟質真球体を電解
液と混合させて存在させ、前記電解反応域間に電流を通
すと共に電解液の流れに乗って回転しながら移動する軟
質真球体の該回転を、流れ方向に対して直交する工具の
超音波振動により助長しながら且つ工具の超音波振動に
より該軟質真球体を被加工物の加工表面に発生する電解
生成皮膜に起動接近させながら該生成皮膜に研磨作用を
与えて極微小の弾性破壊により除去しつつその皮膜残滓
を軟質真球体の表面に発生する官能甚平によるイオン吸
着作用により吸着捕獲しつつ前記電解反応域間より排出
しながら加工することを特徴とする。
In addition, with a specific gravity setting that allows it to float when immersed in an electrolytic solution, and with a particle size of about 0.5 to 2.5μ, it is made of a polymer material with a different molecular density between the inner core and outer layer. A soft true sphere formed into a perfect spherical shape and the electrolytic solution are placed between the electrolytic reaction zone between the tool of an ultrasonic processing machine installed with a certain distance between the machining surface and the machining surface of the workpiece. While supplying the electrolytic solution to each side and at a predetermined flow rate, the soft true sphere is mixed with the electrolytic solution, and a current is passed between the electrolytic reaction zones and carried along with the flow of the electrolytic solution. The rotation of the soft true sphere that moves while rotating is promoted by the ultrasonic vibration of the tool perpendicular to the flow direction, and the soft true sphere is generated on the processing surface of the workpiece by the ultrasonic vibration of the tool. While starting to approach the electrolytically generated film, it applies an abrasive action to the formed film and removes it by microscopic elastic fracture, while adsorbing and capturing the film residue by the ion adsorption action of the functional jinbei generated on the surface of the soft true sphere. It is characterized by processing while discharging from between the electrolytic reaction zones.

〈作 用〉 而して、上記した本発明第1請求項記載の技術的手段に
よれば、被加工物の加工表面と一定の極間距離を有して
対向設置した超音波加工機の工具と該加工表面との電解
反応域間に、軟質真球体を混入した電解液を所定の流速
のもとて供給存在させつつ該電解反応域間に電流を通し
て加工表面を発生する電解作用で加工する。そして、電
解液中に浸漬した状態で浮游し該電解液の流れに乗って
回転しながら電解反応域間を移動する軟質真球体に、電
解液の流れと流れ方向に対して直交する工具の超音波振
動とにより高速回転作用を与えながら且つ該超音波振動
により軟質真球体を加工表面側に起動接近させながら該
加工表面に電解加工の進行に起因して発生する電解生成
皮膜、特に凹凸からなる加工表面の凸部に発生する電解
生成皮膜に研磨作用を与えて極微小の弾性破壊により該
生成皮膜を除去する。詳しくは軟質真球体を高速回転さ
せながら電解生成皮膜を接近させることにより、該生成
皮膜と真球体との間に生じる流体潤滑現象に起因する極
微小の弾性破壊により該生成皮膜を除去すると共にその
皮膜残滓を軟質真球体の周りに吸着捕獲しつつ電解液の
流れにより電解反応域間から排出する。それによって、
被加工物の加工表面に機械力(加工応力)を加えること
なく電解生成皮膜を破壊除去せしめて電解作用の該生成
皮膜による阻害低下を防ぎその電解作用を一定とし促進
させながら被加工物表面の鏡面仕上げ加工を行なう。
<Function> According to the above-mentioned technical means of the first claim of the present invention, the tool of the ultrasonic processing machine is installed facing the processing surface of the workpiece with a constant inter-mole distance. Processing is performed by electrolytic action that generates a processed surface by passing an electric current between the electrolytic reaction areas while supplying an electrolytic solution containing soft true spheres at a predetermined flow rate between the electrolytic reaction area and the processed surface. . Then, the soft sphere, which floats while immersed in the electrolytic solution and moves between electrolytic reaction zones while rotating along with the flow of the electrolytic solution, is exposed to the superposition of the tool perpendicular to the flow direction of the electrolytic solution. While giving a high-speed rotation effect by sonic vibration and by causing the soft spherical body to approach the machining surface side by means of the ultrasonic vibration, an electrolytically generated film, especially consisting of irregularities, is generated on the machining surface due to the progress of electrolytic machining. A polishing action is applied to the electrolytically generated film generated on the convex portions of the machined surface, and the formed film is removed by microscopic elastic fractures. Specifically, by bringing the electrolytically produced film close to the soft true sphere while rotating at high speed, the produced film is removed by microscopic elastic fractures caused by the fluid lubrication phenomenon that occurs between the produced film and the true sphere, and the resulting film is removed. While the film residue is adsorbed and captured around the soft sphere, it is discharged from between the electrolytic reaction zones by the flow of the electrolytic solution. Thereby,
The electrolytically generated film is destroyed and removed without applying mechanical force (processing stress) to the processed surface of the workpiece, preventing the electrolytic action from being inhibited by the formed film, and maintaining and promoting the electrolytic action while improving the surface of the workpiece. Perform mirror finish processing.

又、第2請求項記載の技術的手段によれば、被加工物の
加工表面と一定の極間距離を有して対向設置した超音波
振動する工具と該加工表面との電解反応域間に軟質真球
体と電解液とを夫々別々に供給且つ電解液を所定の流速
のもとで供給しながら混合存在させつつ前述した第1請
求項記載と同じ作用にて被加工物の鏡面仕上げ加工を行
なう。
Further, according to the technical means described in the second claim, there is a gap between the electrolytic reaction zone between the ultrasonic vibrating tool and the machining surface, which are installed facing the machining surface of the workpiece with a certain distance between the poles. The soft true sphere and the electrolytic solution are supplied separately, and the electrolytic solution is supplied at a predetermined flow rate while being mixed, and the workpiece is mirror-finished by the same effect as described in the first claim. Let's do it.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明すると、第
1図は第1請求項に係る実施例を示す説明図である。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is an explanatory diagram showing an example according to the first claim.

被加工物Aは例えばMoB−Ni −Mo系の硼化物サ
ーメツト材又はN i 12.5−Cr20.5圧延材
からなり、第1図に示す超音波加工機のテーブル1上に
載置し、この被加工物Aの加工表面2と一定の極間距離
を有して設置した超音波加工機の振動ホーン3に取付け
た工具Bとの電解反応域間に、軟質真珠体Cを混合した
電解液りを所定の流速のもとで注ぎ込み供給しながら存
在させ、該電解反応域間に電流を通してその電解作用に
より被加工物Aの加工表面2の材料を除去する電解加工
を行なうと共に電解液りの流れに乗って回転しながら電
解反応域間を通過する軟質真球体Cの回転を、流れ方向
に対して直交する工具Bの超音波振動、所謂上下振幅に
より助長して高速回転作用を与えながら且つ該軟質真球
体Cを工具Bの上下振幅により電解加工の進行に起因し
て加工表面2に発生する電解生成皮膜4に起動接近させ
なから該生成皮膜4に研磨作用を与えて極微小の弾性破
壊のもとで除去しつつその皮膜4残滓を軟質真球体Cの
周りに吸着捕獲しつつ電解反応域間から排出しながら加
工表面2の鏡面仕上げ加工(研磨加工)を行なうもので
ある。
The workpiece A is made of, for example, MoB-Ni-Mo-based boride cermet material or Ni 12.5-Cr20.5 rolled material, and is placed on the table 1 of the ultrasonic processing machine shown in FIG. Between the electrolytic reaction area between the processing surface 2 of the workpiece A and the tool B attached to the vibration horn 3 of the ultrasonic processing machine installed with a certain distance between the poles, an electrolytic solution containing soft pearl C is mixed. Electrolytic processing is performed in which a liquid is poured and supplied at a predetermined flow rate, and a current is passed between the electrolytic reaction zones to remove material on the processing surface 2 of the workpiece A by the electrolytic action. The rotation of the soft true sphere C, which passes between the electrolytic reaction zones while rotating along with the flow, is facilitated by ultrasonic vibrations, so-called vertical amplitudes, of the tool B perpendicular to the flow direction, giving a high-speed rotation effect. In addition, the soft true sphere C is brought closer to the electrolytically produced film 4 generated on the machining surface 2 due to the progress of electrolytic machining by the vertical vibration of the tool B, and a polishing action is applied to the produced film 4 to form extremely small particles. The mirror finishing process (polishing process) of the machined surface 2 is carried out while removing the film 4 under elastic fracture, adsorbing and trapping the film 4 residue around the soft true sphere C, and discharging it from between the electrolytic reaction zones.

上記軟質真球体Cは、高分子系材にて電解液り中に浸漬
した状態で浮游する比重設定で真球状に形成するもので
あり、例えば被加工物AがMoB−Ni−Mo系の硼化
物サーメツト材である場合、ポリアミドMXD6 (メ
タルキシリレンジアミンMXDA+シアピン酸)等を用
い、被加工物かN i 12.5−Cr20.5圧延材
である場合、アクリル樹脂又はナイロン等を用いて分子
密度を変えた内芯部(コア)C,と表層部(シェル)C
2とから粒径0.5〜2.5μ程度の大きさに形成する
(第5図参照)。尚、本実施例にあっては表層部C2よ
りも内芯部C□の分子密度を小さくしその密度差7万〜
9万低いものとし、官能基子に活発化を計るものにして
なる。
The soft spherical body C is made of a polymeric material and is formed into a spherical shape with a specific gravity set so that it floats when immersed in an electrolytic solution. When the workpiece is a compound cermet material, polyamide MXD6 (metal xylylene diamine MXDA + siapic acid) is used, and when the workpiece is a Ni12.5-Cr20.5 rolled material, an acrylic resin or nylon is used to Inner core C and surface layer C with different densities
2 to a particle size of about 0.5 to 2.5 μm (see FIG. 5). In this example, the molecular density of the inner core part C□ is lower than that of the surface part C2, and the density difference is 70,000~
90,000 lower, and it is designed to activate the functional groups.

而して、軟質真球体Cの表面には内芯部C7と表層部C
2との分子密度差によってイオン吸着作用(陰極チャー
ジ作用及び官能基子)が発生し、被加工物Aの加工表面
2に電解作用に起因して発生する電解生成皮膜4を超音
波振動による起動接近により破壊除去せしめながらその
皮膜4残滓を表面に吸着捕獲するものである(第4図参
照)。
Therefore, on the surface of the soft true sphere C, there is an inner core part C7 and a surface part C7.
An ion adsorption effect (cathode charge effect and functional groups) occurs due to the difference in molecular density between the workpiece A and the electrolytically generated film 4 generated due to the electrolytic action on the machined surface 2 of the workpiece A, which is activated and approached by ultrasonic vibration. While destroying and removing the film 4, the remaining film 4 is adsorbed and captured on the surface (see Fig. 4).

又、内芯部C1と表層部C2とからなる軟質真球体Cの
表面には第6図に示す様に、Mo−Ni−Co、Nd−
Fe−B、Nd、Ti材等からなる表面材C3をスパッ
クリング又はEB蒸着にてコーティングし、使用する電
解液りの濃度に応じてその比重設定、電解液り中に浸漬
した状態で分散浮游する比重設定としてなり、又この表
面材C3のコーティングによって軟質真球体Cに、工具
Bとの衝突時における反撥力を付与してなる。
Moreover, as shown in FIG. 6, the surface of the soft true sphere C consisting of the inner core part C1 and the surface part C2 is coated with Mo-Ni-Co, Nd-
The surface material C3 made of Fe-B, Nd, Ti, etc. is coated by spackling or EB evaporation, and its specific gravity is set according to the concentration of the electrolytic solution used, and it is dispersed and floated while immersed in the electrolytic solution. The specific gravity is set such that the surface material C3 coats the soft spherical body C to provide a repulsive force upon collision with the tool B.

尚、表面材C3はアクリル樹脂に比べて電解液りに対す
る条件比重設定が難しく、反撥力が小さいナイロン製軟
質真球体の表面にコーティングすることが好ましく、表
面材C8をコーティングした軟質真球体Cも粒径0.5
〜2.5μ程度の大きさとする。
In addition, the surface material C3 is difficult to set specific gravity conditions for electrolyte liquid compared to acrylic resin, and it is preferable to coat the surface of a soft true sphere made of nylon with small repulsive force, and the soft true sphere C coated with the surface material C8 is also Particle size 0.5
The size is approximately 2.5μ.

そして、この軟質真球体Cの使用においては加工表面2
の凹凸が激しい加工初期時には粒径2.5μ程度のもの
を使用し、加工時間の経過に伴い加工表面2が平坦化さ
れるにつれて粒径を小さくしてゆき、最終仕上げ加工と
して粒径05μ程度のものを使用することが好ましい。
In using this soft true sphere C, the processed surface 2
At the initial stage of machining, when the surface is highly uneven, particles with a grain size of approximately 2.5 μ are used, and as the machining surface 2 becomes flat as the machining time progresses, the grain size is reduced, and for final finishing, grains with a grain size of approximately 05 μ are used. It is preferable to use

そして、この軟質真球体Cを混入する電解液りとしては
例えば被加工物がMoB−Ni −Mo系の硼化物サー
メツト材である場合、過塩素酸60%HCL O4配合
比1+メタノ一ル100%CH。
For example, when the workpiece is a MoB-Ni-Mo boride cermet material, the electrolytic solution mixed with the soft true spheres C is 60% perchloric acid, 60% HCL, O4 blending ratio 1, and 100% methanol. CH.

OH配合比10+プチルセロゾルブCK3(CH2’)
2 CH20CH2CH20H ETHYLENE GLYCOL MONOBUTYL
 ETIIER・配合比6のもの、被加工物AがN i
 12.5−Cr20.5圧延材である場合、H2O(
純水)11に対してNa2S20312g+SC(NH
2)22g+CuNO31g配合比のものを夫々被加工
物Aの素材に応じて用い、前記工具Bと被加工物Aの加
工表面2との電解反応域間への供給は電解液貯溜タンク
(図示セズ)と途中に供給ポンプを介して配管接続した
電解液供給口5を図示した如く設置し、該供給口5から
所定の流速にて注ぎ込み供給するものである。
OH blending ratio 10 + Butyl cellosolve CK3 (CH2')
2 CH20CH2CH20H ETHYLENE GLYCOL MONOBUTYL
ETIIER, mixture ratio 6, workpiece A is Ni
In the case of 12.5-Cr20.5 rolled material, H2O(
pure water) 11 to Na2S20312g+SC(NH
2) A combination of 22g+CuNO31g is used depending on the material of workpiece A, and the electrolyte storage tank (shown in the figure) is used to supply the electrolytic reaction area between the tool B and the processing surface 2 of workpiece A. As shown in the figure, an electrolytic solution supply port 5 connected via a supply pump via a pipe is installed in the middle of the electrolyte, and the electrolyte is poured and supplied from the supply port 5 at a predetermined flow rate.

ちなみに、本実施例使用の超音波加工機は高域振動数例
えば15〜30±5 KH!の場合振幅15±21μ範
囲、低域振動数例えば2〜15±18KH2の場合振幅
24±2μ範囲で調整可能なジルコニア焼結体からなる
ピエゾ振動子6を発振装置7と連繋させて組込み、広範
囲の超音波発生域を用いて被加工物Aの加工表面2と電
解液りとの反応面を一定として被加工物Aの加工表面2
に電解生成皮膜4を得る様にしてなる。そして、前記加
工表面2と工具Bとの電解反応域間の通電は被加工物A
を載置するテーブル1と工具Bとを電解電流発生装置8
に接続組込み、テーブル1側を陽極(+)とし、工具B
側を陰極(−)として通電を行なう。
By the way, the ultrasonic processing machine used in this example has a high frequency frequency of, for example, 15 to 30±5 KH! A piezo vibrator 6 made of a zirconia sintered body, which can be adjusted in the amplitude range of 15±21 μ in the case of 15 ± 21 μ and in the range of 24 ± 2 μ in the case of low-frequency vibrations, for example, 2 to 15 ± 18 KH2, is incorporated in conjunction with the oscillation device 7, and a wide range of vibration can be achieved. The processing surface 2 of the workpiece A is set using the ultrasonic generation region of
In this way, an electrolytically generated film 4 is obtained. The current flow between the electrolytic reaction zones of the processing surface 2 and the tool B is applied to the workpiece A.
The table 1 on which the tool B is placed and the electrolytic current generator 8
Connect and incorporate the table 1 side as the anode (+), tool B
Current is applied using the side as the cathode (-).

次に、本実施例の超音波加工方法(以下、本工法と称す
)の作用を説明すると、超音波加工機のテーブル1上に
放電加工等によって荒加工された被加工物Aを載置し、
荒加工された被加工物Aの加工表面2と一定の極間距離
を有して超音波加工機の工具Bを設置臨ませて該工具B
と加工表面2との電解反応域間に、軟質真球体Cを混合
した電解液りを所定の流速のもとで供給しながら存在さ
せ、電解電流発生装置8がら前記電解反応域間に通電を
行なうと共に、振動ホーン3により工具Bを超音波振動
させる。
Next, to explain the operation of the ultrasonic machining method of this embodiment (hereinafter referred to as the present method), a workpiece A that has been roughly machined by electrical discharge machining or the like is placed on the table 1 of the ultrasonic machining machine. ,
The tool B of the ultrasonic processing machine is installed with a certain distance between the machining surface 2 of the rough machined workpiece A and the tool B
An electrolytic solution containing the soft true spheres C is supplied between the electrolytic reaction zone and the processed surface 2 at a predetermined flow rate, and an electrolytic current generator 8 applies current between the electrolytic reaction zone. At the same time, the vibration horn 3 causes the tool B to vibrate ultrasonically.

而して、荒加工された被加工物Aの加工表面2の材料は
発生する電解作用で除去され電解加工が行なわれると共
に、電解液りの流れに乗って回転しながら電解反応域間
を移動する軟質真球体Cは電解液りの流れと工具Bの上
下振幅とによりその回転が助長されて高速回転作用が付
与され且つ上下振幅により押し下げられて電解加工の進
行に起因して加工表面2に発生する電解生成皮膜4に起
動接近する。このとき、軟質真球体Cは電解生成皮膜4
に対して10〜30人程度の間隔領域まで高速回転しな
がら近く (第3図参照)。すると、軟質真球体Cと電
解生成皮膜4との間には流体潤滑現象(電解生成皮膜に
作用する流体力学的圧力)が生じ、この流体潤滑現象に
起因する極微小の弾性破壊により電解生成皮膜4、特に
凹凸からなる加工表面2の凸部の電解生成皮膜4が優先
的に極微小の弾性破壊により除去される。ここで、凸部
の電解生成物皮膜4が優先的に除去される理由は球形軟
質砥粒Cの比重が電解液り中に浸漬した状態で浮游する
条件に設定されていることと工具Bの振幅上下幅が広範
囲の超音波発生域で可変調整が可能なことによって得ら
れるものであり、除去された電解生成物皮膜4残滓は軟
質真球体Cの表面に発生するイオン吸着作用(陰極電荷
及び官能甚平)により軟質真球体Cの周りに吸着捕獲さ
れつつ継続供給される電解液りの流れによって工具Bと
加工表面2との電解反応域間から排出される(第4図参
照)。
Thus, the material on the machined surface 2 of the roughly machined workpiece A is removed by the generated electrolytic action and electrolytic processing is performed, and the material moves between electrolytic reaction zones while rotating along with the flow of the electrolytic solution. The rotation of the soft true sphere C is promoted by the flow of the electrolytic solution and the vertical amplitude of the tool B, giving it a high-speed rotating action, and the soft sphere C is pushed down by the vertical vibration and rotates against the machined surface 2 due to the progress of electrolytic machining. The electrolytically generated film 4 is started and approached. At this time, the soft true sphere C is the electrolytically generated film 4
While rotating at high speed, the robot moves close to the distance of about 10 to 30 people (see Figure 3). Then, a fluid lubrication phenomenon (hydrodynamic pressure acting on the electrolytically produced film) occurs between the soft true sphere C and the electrolytically produced film 4, and the electrolytically produced film is damaged by minute elastic fractures caused by this fluid lubrication phenomenon. 4. In particular, the electrolytically produced film 4 on the convex portions of the machined surface 2 consisting of irregularities is preferentially removed by ultra-fine elastic fractures. Here, the reason why the electrolytic product film 4 on the convex portion is preferentially removed is that the specific gravity of the spherical soft abrasive grains C is set to a condition that allows it to float while immersed in the electrolytic solution, and the reason why the electrolytic product film 4 on the convex portion is preferentially removed is that This is achieved by the fact that the amplitude can be variably adjusted in a wide range of ultrasonic generation ranges, and the removed electrolytic product film 4 remains due to the ion adsorption effect (cathode charge and The electrolytic solution is adsorbed and captured around the soft spherical body C by the sensual jinbei and is discharged from between the electrolytic reaction zone between the tool B and the machining surface 2 by the flow of the electrolytic solution that is continuously supplied (see FIG. 4).

実施例1 本実施例では以上の作用と以下の加工条件に基づいて加
工を行なった。
Example 1 In this example, processing was performed based on the above effects and the following processing conditions.

a2被加工物の材質: Mo B−N i −Mo系材
す、加工面積(電解研磨面積)・20a+fC1電解電
圧=56■ d、電解電流: 2[IA e、電解液流速:  500 ml /分 17℃f、
超音波振動数(最大値) 21.5KH2g、極間距離
=50μ h、電解液/軟質真球体混合比=17%すると、別紙表
1から明らかな様に加工時間30秒で0.1μ/ 4 
mmという高い表面精度の鏡面仕上げ加工特性が得られ
た。
a2 Material of workpiece: Mo B-N i -Mo-based material, processing area (electrolytic polishing area)・20a+fC1 electrolytic voltage=56■ d, electrolytic current: 2[IA e, electrolyte flow rate: 500 ml/min 17℃f,
Assuming that the ultrasonic frequency (maximum value) is 21.5KH2g, the distance between poles is 50μ h, and the electrolyte/soft sphere mixing ratio is 17%, it is clear from Table 1 that the processing time is 0.1μ/4 in 30 seconds.
Mirror finish processing characteristics with a high surface accuracy of mm were obtained.

尚、斯るMoB−Ni−Mo系材の加工特性において表
1に示した様に加工時間の経過に伴い軟質真球体Cの混
合比、工具Bの振動数及び振幅、被加工物Aの加工表面
2に対する極間距離を変えて行なった。
As shown in Table 1, the machining characteristics of the MoB-Ni-Mo material change as the mixing ratio of the soft spheres C, the vibration frequency and amplitude of the tool B, and the machining of the workpiece A change as the machining time progresses. The experiment was carried out by changing the distance between the poles with respect to the surface 2.

実施例2 実施例1と同様にして、以下の加工条件に基づいて加工
を行なった。
Example 2 Processing was carried out in the same manner as in Example 1 based on the following processing conditions.

a、被加工物の材質: N i 12.5−Cr20.
5圧延材 す、加工面積(電解研磨面積):20cnfC0電解電
圧:4.gV d、電解電流:I、7A e、電解液流速:  500m1/分 20℃f、超音
波振動数(最大値) 2(lKHxg、極間距離:20
μ h、電解液/軟質真球体混合比=2% すると、別紙表2から明らかな様に加工時間30秒で0
.03μ/4閣という表面精度の鏡面仕上げ加工特性が
得られた。
a. Material of workpiece: Ni 12.5-Cr20.
5. Rolled material, processing area (electrolytic polishing area): 20cnfC0 electrolytic voltage: 4. gV d, electrolytic current: I, 7A e, electrolyte flow rate: 500 m1/min 20°C f, ultrasonic frequency (maximum value) 2 (lKHxg, distance between poles: 20
μ h, electrolyte/soft true sphere mixing ratio = 2% Then, as is clear from Appendix Table 2, the temperature decreases to 0 after 30 seconds of processing time.
.. A mirror finish processing characteristic with a surface accuracy of 0.3μ/4k was obtained.

尚、斯るN i 12.5−Cr20.5圧延材の加工
特性においては表2に示した様に加工時間の経過に伴い
工具Bの振動数及び振幅、被加工物Aの加工表面2に対
する極間距離を変えて行なった場合を示す。
As shown in Table 2, the machining characteristics of the N i 12.5-Cr20.5 rolled material change as the frequency and amplitude of the tool B and the machining surface 2 of the workpiece A change with the passage of machining time. This shows the case where the distance between poles was changed.

次に、本工法の優れた加工技術をより明確にするために
、実施例の加工条件により得られたNi12、5− C
r 20.5圧延材と、同じくこのNi12.5−Cr
 20.5圧延材を用いて従来工法(特開昭52−13
95号公報の加工技術)により得られた該圧延材との表
面精度を比較すると、従来工法は別紙表4のプロバイル
図形(仕上げ面輪郭)から明らかな様に平滑仕上げ、P
EAK To VALLEY 1250人という鏡面仕
上げ加工特性にとどまり、これに対し本工法は別紙表3
のプロバイル図形(仕上げ面輪郭)から明らかな様に平
滑仕上げ、PEAK To VALLEY 364人と
いう高精度の鏡面仕上げ加工特性が得られる。
Next, in order to clarify the superior processing technology of this method, we will discuss Ni12,5-C obtained under the processing conditions of the example.
r 20.5 rolled material and this Ni12.5-Cr
Conventional method using 20.5 rolled material (Unexamined Japanese Patent Publication No. 52-13
Comparing the surface precision with the rolled material obtained by the processing technology of Publication No. 95), the conventional method has a smooth finish, P
EAK To VALLEY 1,250 people is limited to the mirror finish processing characteristics, whereas this method is as shown in Appendix Table 3.
As is clear from the profile figure (finished surface contour), a smooth finish and a high precision mirror finish processing characteristic of PEAK TO VALLEY 364 can be obtained.

そして、第7図に示す本工法と第8図に示す従来工法の
N i12.5−Cr20.5圧延材の加工表面の表面
金属組織図から明らかな様に本工法は加工による応力歪
が全く残留していないのに対し、従来工法のものは加工
による応力歪(引っ掛き傷等)が除去されずに残留して
いることが分る。
As is clear from the surface metallographic diagrams of the machined surfaces of the Ni12.5-Cr20.5 rolled material of the present method shown in Figure 7 and the conventional method shown in Figure 8, this method has no stress strain due to processing. It can be seen that in contrast to the conventional construction method, stress and distortion (scratches, etc.) due to processing were not removed and remained.

従って、本工法によれば電解液り中に浸漬した状態で浮
游する条件に比較設定され所定の流速のもとで供給され
る電解液りの流れに乗って回転しながら電解反応域間を
移動する軟質真球体Cの回転を工具Bの上下振幅により
助長せしめて高速回転作用を与え且つ振幅上下幅が広範
囲の超音波発生域で可変調整を可能とした工具Bの上下
振幅により該軟質真球体Cを、電解作用の進行に起因し
て被加工物への加工表面2に発生する電解生成皮膜4に
10〜30人程度の間隙領域まで高速回転させながら起
動接近させ、それによって、軟質真球体Cと電解生成皮
膜4との間に流体潤滑現象を発生させて該生成皮膜4を
極微小の弾性破壊により除去する無接触のもとて除去せ
しめ、電解生成皮膜4を通して行なわれる電解作用の該
生成皮膜4による阻害低下を防いで電解作用を一定とし
促進させながら鏡面仕上げ加工を実施可能としてなるか
ら、加工表面2に加工による機械力(加工応力)を与え
ることなく、電解加工を主体として被加工物Aの加工表
面2の超精密な鏡面仕上げ加工を高能率的に行なうこと
ができるものである。
Therefore, according to this method, the condition is set to be similar to that of floating while immersed in the electrolytic solution, and the electrolytic solution moves between electrolytic reaction zones while rotating along with the flow of the electrolytic solution supplied at a predetermined flow rate. The rotation of the soft true sphere C is facilitated by the vertical amplitude of the tool B to give a high-speed rotation action, and the vertical amplitude of the tool B can be variably adjusted in a wide range of ultrasonic generation ranges. C is started and brought close to the electrolytically generated film 4 generated on the processing surface 2 of the workpiece due to the progress of the electrolytic action while rotating at high speed to a gap region of about 10 to 30 mm, thereby forming a soft true sphere. A fluid lubrication phenomenon is generated between C and the electrolytically generated film 4, and the formed film 4 is removed in a non-contact manner by microscopic elastic fracture, and the electrolytic action carried out through the electrolytically formed film 4 is removed. Since it is possible to carry out mirror finish processing while preventing the degradation caused by the produced film 4 and keeping the electrolytic action constant and promoting it, it is possible to perform electrolytic processing mainly without applying mechanical force (processing stress) to the processing surface 2. It is possible to perform ultra-precise mirror finishing of the processing surface 2 of the workpiece A with high efficiency.

第9図は第2請求項に係る実施例を示し、斯る実施例の
基本的な構成は上記した第1請求項に係る実施例詳述と
変りないため説明は省略し、同じ構成部分にあっては同
じ符号を用いる。図中9は工具Bと被加工物Aの加工表
面2との電解反応域間に電解液りを供給する電解液用供
給口であり、10は前記電解反応域間に軟質真球体Cを
供給し該真球体Cを電解液り中に混入する真球体用供給
口である。
FIG. 9 shows an embodiment according to the second claim, and since the basic structure of this embodiment is the same as the detailed description of the embodiment according to the first claim described above, the explanation will be omitted, and the same components will be explained. If so, use the same code. In the figure, 9 is an electrolytic solution supply port that supplies an electrolytic solution between the electrolytic reaction zones of the tool B and the machining surface 2 of the workpiece A, and 10 is an electrolytic solution supply port that supplies a soft true sphere C between the electrolytic reaction zones. This is a true sphere supply port for mixing the true sphere C into the electrolyte solution.

上記電解液用供給口9は上述した様に電解液貯留タンク
と途中に供給ポンプを介して配管接続して設置し、真球
体用供給口10は真球体貯留ホッパー(図示せず)と途
中に任意の移送供給手段、例えば移送ファン等を介して
配管接続して設置する。
As described above, the electrolyte supply port 9 is connected to the electrolyte storage tank via a supply pump, and the spherical supply port 10 is connected to the spherical storage hopper (not shown). It is installed via a piping connection via any transfer supply means, such as a transfer fan.

而して、斯る第2請求項に係る本工法によれば、工具B
と被加工物Aの加工表面2との電解反応域間に電解液用
供給口9から電解液りを所定の流速のもとで注ぎ込み供
給すると共に、真球体用供給口10から軟質真球体Cを
供給しながら混合存在させ、被加工物Aの加工表面2の
電解加工を主体として鏡面仕上げ加工を行ない、工具B
により軟質真球体Cの回転を助長せしめながら、且つ該
真球体Cを電解作用の進行に起因して被加工物への加工
表面2に発生する電解生成皮膜4に起動接近させながら
該生成皮膜4を極微小の弾性破壊により除去せしめ、除
去された皮膜4残滓を軟質真球体Cの周りに吸着捕獲し
つつ継続供給される電解液りの流れによって電解反応域
間から排出しながら電解生成皮膜4による電解作用の阻
害低下を防いで電解作用を一定にし促進させながら鏡面
仕上げ加工を実施可能としたものである。
Therefore, according to the present method according to the second claim, tool B
An electrolytic solution is poured and supplied at a predetermined flow rate from the electrolytic solution supply port 9 between the electrolytic reaction zone of the workpiece A and the processing surface 2 of the workpiece A, and at the same time, the soft spherical body C is supplied from the spherical supply port 10. is mixed while supplying the workpiece A, mirror finishing processing is performed mainly by electrolytic processing of the processing surface 2 of the workpiece A, and the tool B
While promoting the rotation of the soft true sphere C, and while bringing the true sphere C closer to the electrolytically generated film 4 that is generated on the processing surface 2 of the workpiece due to the progress of electrolytic action, the formed film 4 is The electrolytically generated film 4 is removed by ultra-fine elastic fractures, and the removed film 4 residue is adsorbed and captured around the soft sphere C, while being discharged from between the electrolytic reaction zones by the flow of the electrolytic solution continuously supplied. This makes it possible to perform mirror finishing while keeping the electrolytic action constant and promoting it by preventing the inhibition and decline of the electrolytic action.

そして、工具Bと被加工物Aの加工表面2との電解反応
域間への電解液つと軟質真球体Cとの供給存在を夫々別
々の供給機構並びに供給経路に行なう構成とすることで
、例えば加工表面2の凹凸が激しい加工初期時には粒径
が大きい軟質真球体Cを供給して加工能率の向上を図り
、加工時間の経過に伴い加工表面2が平坦化されるにっ
れ粒径が小さい軟質真球体Cを供給するその供給パタン
を簡単且つ速やかに実施可能とし、しかも電解液りへの
軟質真球体Cの混合比調整を任意に行ない得る様にした
ものである。
By configuring that the electrolytic solution and the soft true spheres C are supplied between the electrolytic reaction zones of the tool B and the machining surface 2 of the workpiece A through separate supply mechanisms and supply routes, for example, At the beginning of machining when the machining surface 2 has severe irregularities, soft true spheres C with a large particle size are supplied to improve machining efficiency, and as the machining time progresses, the machining surface 2 becomes flat and the grain size becomes small. The supply pattern for supplying the soft true spheres C can be implemented simply and quickly, and the mixing ratio of the soft true spheres C to the electrolyte solution can be adjusted as desired.

尚、上記した実施例にあっては電解液用供給口9と真球
体用供給口10とを夫々独自に設置せしめた構成とした
が、該両供給口9.IOを連通一体化せしめて独自の供
給経路に分岐接続させた電解液兼真球体供給口として、
供給口内にて混合させつつ電解液りと軟質真球体Cを工
具Bと被加工物Aの加工表面2との電解反応域間に供給
存在させる様にするも可能である。
In the embodiment described above, the electrolytic solution supply port 9 and the true sphere supply port 10 were each independently installed, but both supply ports 9. As an electrolyte and true sphere supply port that integrates IO and branches into a unique supply route,
It is also possible to supply the electrolytic liquid and the soft true spheres C between the electrolytic reaction zone of the tool B and the machining surface 2 of the workpiece A while mixing them in the supply port.

〈発明の効果〉 本発明の超音波加工方法は斜上の如く構成してなるから
、下記の作用効果を奏する。
<Effects of the Invention> Since the ultrasonic machining method of the present invention is configured in a diagonal manner, it exhibits the following effects.

■ 電解液中に浸漬した状態で浮游する比重設定にて且
つ内芯部と外層部との分子密度を変えた高分子系材にて
真球状に形成した粒径0.5〜2,5μ程度の軟質真球
体を電解液に混入させ、該電解液を一定の極間距離を有
して対向させた超音波加工機の工具と被加工物の加工表
面との電解反応域間に所定の流速のもとで供給しながら
存在させ、この電解液の流れに乗って回転しながら該電
解反応域間を移動する軟質真球体の回転を工具の超音波
振動により助長して高速回転作用に与えながら且つ被加
工物の加工表面に発生する電解生成皮膜に起動接近させ
ながら被加工物を加工する様にしてなるから、電解反応
域間に電流を通すことによって発生する電解作用の進行
に起因して被加工物の加工表面に発生する電解生成皮膜
を、工具により高速回転しながら接近する軟質真球体と
該生成皮膜との間に生じる流体潤滑現象に起因する極微
小の弾性破壊により除去する無接触にて除去することが
出来るとともに、超音波振動の振巾を変化させることに
より軟質真球体の運動量を制御することが可能となり電
解反応の制御、即ち電解反応のダレ等の改善をも計るこ
とが出来る。
■ Particle size of approximately 0.5 to 2.5μ, made of a polymeric material with a specific gravity that allows it to float when immersed in an electrolytic solution, and with different molecular densities between the inner core and outer layer. A soft true sphere is mixed into an electrolytic solution, and the electrolytic solution is set at a predetermined flow rate between the electrolytic reaction zone between the tool of an ultrasonic processing machine and the processing surface of the workpiece, which are opposed to each other with a certain distance between the poles. The ultrasonic vibration of the tool promotes the rotation of the soft true sphere that moves between the electrolytic reaction zones while rotating along with the flow of the electrolytic solution, giving it a high-speed rotating action. In addition, since the workpiece is machined while being brought close to the electrolytically generated film generated on the processing surface of the workpiece, the electrolytic reaction occurs due to the progress of the electrolytic action generated by passing an electric current between the electrolytic reaction zones. A non-contact method that removes the electrolytically generated film that occurs on the processing surface of the workpiece by microscopic elastic fractures caused by the fluid lubrication phenomenon that occurs between the formed film and a soft spherical object that approaches while rotating at high speed with a tool. In addition to being able to control the momentum of the soft sphere by changing the amplitude of ultrasonic vibration, it is also possible to control the electrolytic reaction, that is, to improve the sagging of the electrolytic reaction. I can do it.

従って、本工法によれば、電解作用の進行に起因して発
生する特に加工表面の凸部に発生する電解生成皮膜を効
果的且つ優先的に、しかも加工表面に機械力(加工応力
)を与えることなく除去せしめて電解作用を一定とし促
進させながら行なうことができるため、従来工法では得
られない超精密な鏡面仕上げ加工を実施し得る。
Therefore, according to this method, it is possible to effectively and preferentially remove the electrolytically generated film that occurs due to the progress of electrolytic action, especially on the convex parts of the machined surface, and to apply mechanical force (processing stress) to the machined surface. Since the process can be carried out while the electrolytic action is constant and promoted, it is possible to perform ultra-precise mirror finishing that cannot be obtained with conventional methods.

■ 軟質真球体は分子密度を変えた内芯部と表層部、具
体的には実施例詳述の如く表層部よりも内芯部の分子密
度を小さくした高分子系材にて形成してなるから、その
表面にはイオン吸着作用が発生し、それによって被加工
物の加工表面から極微小の弾性破壊により除去した電解
生成皮膜残滓を吸着捕獲せしめつつ継続供給される電解
液の流れによって電解反応域間より排出する皮膜残滓(
除去残滓)のキャリアーとなり、電解反応域間における
電解液の清浄化をより一層図り得る。
■ The soft true sphere is made of an inner core and a surface layer with different molecular densities, specifically, as described in detail in the example, made of a polymeric material with a lower molecular density in the inner core than in the surface layer. Therefore, an ion adsorption effect occurs on the surface, which adsorbs and captures the electrolytically generated film residue removed from the processed surface of the workpiece by microscopic elastic fracture, and the electrolytic reaction occurs due to the continuous flow of electrolyte. Film residue discharged from between areas (
This serves as a carrier for the removed residue) and can further purify the electrolytic solution between the electrolytic reaction zones.

■ 軟質真球体と電解液とを超音波加工機の工具と被加
工物の加工表面との電解反応域間に夫々別々に供給しな
がら混合存在させて被加工物の加工を行なう様にしたか
ら、上記作用効果■、■と同じ作用効果が得られること
は勿論、加工表面の凹凸が激しい加工初期には粒径が大
きい軟質真球体を供給せしめて加工能率の向上を図り、
加工時間の経過に伴い加工表面が平坦化されるにつれて
粒径が小さい軟質真球体を供給する供給パタンを簡単且
つ速やかに実施、即ち軟質真球体と電解液との供給を独
自の供給経路、機構にて行なう構成であるから、予め軟
質真球体と電解液とを混合せしめた状態で一緒に供給す
る構成、機構に比べてその実施、制御を簡単且つ速やか
に行なうことが出来る。
■ The soft true sphere and the electrolytic solution are supplied separately between the electrolytic reaction zone of the tool of the ultrasonic processing machine and the surface of the workpiece to be mixed and processed to process the workpiece. , Not only can the same effects as described in ■ and ■ above be obtained, but also the machining efficiency is improved by supplying soft true spheres with a large particle size during the initial stage of machining when the machining surface is extremely uneven.
Easily and quickly implement a supply pattern that supplies soft true spheres whose particle size becomes smaller as the machined surface becomes flattened over the course of machining time. In other words, a unique supply route and mechanism is used to supply soft true spheres and electrolyte. Since the configuration is such that the soft sphere and the electrolyte are mixed in advance and are supplied together, the implementation and control can be performed more easily and quickly than in a configuration or mechanism that supplies the soft true sphere and the electrolyte together in a mixed state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1請求項に係る超音波加工方法の実施
例を示す説明図、第2図は工具と被加工物の加工表面と
の電解反応域間を示す部分拡大図、第3図及び第4図は
軟質真球体による生成皮膜の除去状態を示す拡大図、第
5図及び第6図は軟質真球体を示す断面図、第7図は本
工法にて得られたN i12.5−Cr20.5圧延材
の加工表面の表面金属組織図、第8図は従来工法のNi
12.5−Cr2O,5圧延材の加工表面の表面金属組
織図、第9図は第2請求項に係る超音波加工方法の実施
例を示す説明図である。 尚、図中 A・被加工物     B:工 具 C:軟質真球体    C1:内芯部 C2:表層部     D=電解液
FIG. 1 is an explanatory view showing an embodiment of the ultrasonic machining method according to the first claim of the present invention, FIG. 2 is a partially enlarged view showing the electrolytic reaction zone between the tool and the machining surface of the workpiece, and FIG. 4 and 4 are enlarged views showing the removed state of the produced film by the soft true sphere, FIGS. 5 and 6 are cross-sectional views showing the soft true sphere, and FIG. 7 is the Ni12. The surface metallographic structure of the machined surface of 5-Cr20.5 rolled material, Figure 8 shows the Ni
A surface metallographic diagram of the processed surface of the 12.5-Cr2O,5 rolled material, FIG. 9 is an explanatory view showing an embodiment of the ultrasonic processing method according to the second claim. In the figure, A: Workpiece B: Tool C: Soft true sphere C1: Inner core C2: Surface layer D = Electrolyte

Claims (2)

【特許請求の範囲】[Claims] (1)電解液中に浸漬した状態で浮游する比重設定にて
且つ粒径0.5〜2.5μ程度の大きさで内芯部と外層
部との分子密度を変えた高分子系材にて真球状に形成し
た軟質真球体を電解液に混入し、被加工物の加工表面と
一定の極間距離を有して設置した超音波加工機の工具と
該加工表面との電解反応域間に軟質真球体を混合せる電
解液を所定の流速のもとで供給しながら存在させ、前記
電解反応域間に電流を通すと共に電解液の流れに乗って
回転しながら移動する軟質真球体の該回転を、流れ方向
に対して直交する工具の超音波振動により助長しながら
且つ工具の超音波振動により該軟質真球体を被加工物の
加工表面に発生する電解生成皮膜に起動接近させながら
該生成皮膜に研磨作用を与えて極微小の弾性破壊により
除去しつつその皮膜残滓を軟質真球体の表面に発生する
イオン吸着作用により吸着捕獲しつつ前記電解反応域間
より排出しながら加工することを特徴とする超音波加工
方法。
(1) A polymeric material with a specific gravity setting that allows it to float when immersed in an electrolytic solution, and with a particle size of approximately 0.5 to 2.5μ and a different molecular density between the inner core and outer layer. A soft spherical body formed into a perfect spherical shape is mixed into an electrolytic solution, and the electrolytic reaction zone between the tool of an ultrasonic processing machine installed with a certain distance between the machining surface of the workpiece and the machining surface. An electrolytic solution in which the soft true spheres are mixed is supplied at a predetermined flow rate, and a current is passed between the electrolytic reaction zones, and the soft true spheres rotate and move along with the flow of the electrolytic solution. While the rotation is promoted by ultrasonic vibration of the tool perpendicular to the flow direction, and the ultrasonic vibration of the tool causes the soft true sphere to approach the electrolytically generated film generated on the machined surface of the workpiece, The process is characterized by applying a polishing action to the film, removing it by microscopic elastic fracture, adsorbing and capturing the film residue by the ion adsorption action generated on the surface of the soft true sphere, and discharging it from between the electrolytic reaction zones. Ultrasonic processing method.
(2)電解液中に浸漬した状態で浮游する比重設定にて
且つ粒径0.5〜2.5μ程度の大きさで内芯部と外層
部との分子密度を変えた高分子系材にて真球状に形成し
た軟質真球体と前記電解液とを、被加工物の加工表面と
一定の極間距離を有して設置した超音波加工機の工具と
該加工表面との電解反応域間に夫々別々に供給し且つ電
解液を所定の流速のもとで供給しながら軟質真球体を電
解液と混合させて存在させ、前記電解反応域間に電流を
通すと共に電解液の流れに乗って回転しながら移動する
軟質真球体の該回転を、流れ方向に対して直交する工具
の超音波振動により助長しながら且つ工具の超音波振動
により該軟質真球体を被加工物の加工表面に発生する電
解生成皮膜に起動接近させながら該生成皮膜に研磨作用
を与えて極微小の弾性破壊により除去しつつその皮膜残
滓を軟質真球体の表面に発生するイオン吸着作用により
吸着捕獲しつつ前記電解反応域間より排出しながら加工
することを特徴とする超音波加工方法。
(2) A polymeric material with a specific gravity setting that allows it to float when immersed in an electrolytic solution, and with a particle size of about 0.5 to 2.5μ and a different molecular density between the inner core and outer layer. A soft true sphere formed into a perfect spherical shape and the electrolytic solution are placed between the electrolytic reaction zone between the tool of an ultrasonic processing machine and the machined surface, which is installed with a certain distance between the machining surface and the workpiece surface. The soft spheres are mixed with the electrolyte while supplying the electrolyte at a predetermined flow rate, and a current is passed between the electrolytic reaction zones while riding the flow of the electrolyte. The rotation of the soft true sphere that moves while rotating is promoted by the ultrasonic vibration of the tool perpendicular to the flow direction, and the soft true sphere is generated on the processing surface of the workpiece by the ultrasonic vibration of the tool. While starting to approach the electrolytically generated film, it is applied an abrasive action to the formed film to be removed by microscopic elastic fracture, and the remaining film is adsorbed and captured by the ion adsorption action generated on the surface of the soft true sphere, while the electrolytic reaction area An ultrasonic processing method characterized by processing while discharging from the gap.
JP32652090A 1989-05-19 1990-11-27 Ultrasonic machining method Pending JPH04193420A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32652090A JPH04193420A (en) 1990-11-27 1990-11-27 Ultrasonic machining method
US07/680,314 US5085747A (en) 1989-05-19 1991-04-04 Ultrasonic machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32652090A JPH04193420A (en) 1990-11-27 1990-11-27 Ultrasonic machining method

Publications (1)

Publication Number Publication Date
JPH04193420A true JPH04193420A (en) 1992-07-13

Family

ID=18188750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32652090A Pending JPH04193420A (en) 1989-05-19 1990-11-27 Ultrasonic machining method

Country Status (1)

Country Link
JP (1) JPH04193420A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741980A (en) * 2015-03-30 2015-07-01 浙江工业大学 Ultrasonic grinding miniature female mold machining method based on mold dielectrophoresis effect
CN110524377A (en) * 2019-09-05 2019-12-03 扬州大学 A kind of turbine tongue-and-groove ultrasonic wave added precision ECM grinding system and method
CN110587047A (en) * 2019-09-18 2019-12-20 扬州大学 Turbine mortise ultrasonic-assisted precise electrolytic grinding machining method
CN110935969A (en) * 2019-11-22 2020-03-31 浙江工业大学 Electrolytic grinding method and device for inner hole of revolving body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104741980A (en) * 2015-03-30 2015-07-01 浙江工业大学 Ultrasonic grinding miniature female mold machining method based on mold dielectrophoresis effect
CN110524377A (en) * 2019-09-05 2019-12-03 扬州大学 A kind of turbine tongue-and-groove ultrasonic wave added precision ECM grinding system and method
CN110587047A (en) * 2019-09-18 2019-12-20 扬州大学 Turbine mortise ultrasonic-assisted precise electrolytic grinding machining method
CN110587047B (en) * 2019-09-18 2020-07-31 扬州大学 Turbine mortise ultrasonic-assisted precise electrolytic grinding machining method
CN110935969A (en) * 2019-11-22 2020-03-31 浙江工业大学 Electrolytic grinding method and device for inner hole of revolving body

Similar Documents

Publication Publication Date Title
US5085747A (en) Ultrasonic machining method
JPH06506156A (en) Orbital electrolytic machining method
Hung Postprocessing of additively manufactured metal parts
TW458847B (en) Electrically conductive dressing-grinding method and apparatus therefor
CN106736306A (en) A kind of electronic product metal shell and its surface treatment method
US5062933A (en) Ultrasonic machining method
CN110281160A (en) The surface treatment method of the workpiece made of hard brittle material
US5032238A (en) Method of and apparatus for electropolishing and grinding
US8070933B2 (en) Electrolytic microfinishing of metallic workpieces
CN112008609A (en) Core-shell abrasive jet polishing method
CN105033838B (en) The forming method of mechanical lapping metal surface micro-nano hole
JP3740523B2 (en) Ultrafine particle material flattening method
JPH04193420A (en) Ultrasonic machining method
JPH08192348A (en) Grinding and polishing method and device therefor
JP2808501B2 (en) Removal method of damaged layer by electric discharge machining
JPS62193777A (en) Linear abrasive body and polishing method
EP1637265B1 (en) Rotation surface-reducing head, electrolytic surface-reducing device, and electrolytic surface-reducing method
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
EP0403537A1 (en) Ultrasonic polishing.
JP2002086350A (en) Polishing fluid for electrophoretic polishing and polishing method
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPH06254754A (en) Mirror grinding device and method
JP2003071716A (en) Method and device for working brittle material work
JPS62124869A (en) Method for truing and dressing of metal bonded grinding stone
US3948620A (en) Method of making cutting master for erosion machining