JPH04193100A - Voltage controlling equipment for pumped storage generating system of variable speed type - Google Patents

Voltage controlling equipment for pumped storage generating system of variable speed type

Info

Publication number
JPH04193100A
JPH04193100A JP2322033A JP32203390A JPH04193100A JP H04193100 A JPH04193100 A JP H04193100A JP 2322033 A JP2322033 A JP 2322033A JP 32203390 A JP32203390 A JP 32203390A JP H04193100 A JPH04193100 A JP H04193100A
Authority
JP
Japan
Prior art keywords
voltage
signal
control
gain
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2322033A
Other languages
Japanese (ja)
Other versions
JP2950606B2 (en
Inventor
Chikage Sasa
佐々 千景
Mitsuyuki Abe
阿部 充幸
Hirokazu Kaneko
金子 寛和
Masaru Hirano
勝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2322033A priority Critical patent/JP2950606B2/en
Publication of JPH04193100A publication Critical patent/JPH04193100A/en
Application granted granted Critical
Publication of JP2950606B2 publication Critical patent/JP2950606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To control a system voltage and a system phase stably, by controlling the output voltage of a frequency converter through a phase control signal, which converges, the deviation between the voltage signal sensed through a voltage sensing means and a voltage reference signal used as the reference of the sensed voltage signal, into zero, and by also changing, in that case, the control gain of the aforesaid voltage control system, according to the magnitude of the sensed voltage signal. CONSTITUTION:A comparator 6 compares a voltage signal inputted from a voltage sensor 4 with a voltage reference signal used as the reference of a primary voltage, the voltage reference signal being inputted from a first voltage reference generator 5. Then, the deviation ev between the sensed voltage signal and the voltage reference signal is inputted to a voltage controller 9. A gain regulator 7 changes the control gain of the voltage controller 9, according to the deviation between a second voltage reference signal and the voltage signal sensed by a voltage sensor 4. The voltage controller 9 inputs a gain obtained from the gain regulator 7 and the voltage deviation (ev) obtained from the comparator 6, and gives to a phase controller 10 a phase control signal obtained from the deviation multiplied by the control gain. The phase controller 10 controls the amplitude and phase of the output voltage of the frequency converter 3, according to the phase control signal.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は巻線形同期発電電動機の2次側を周波数変換器
により可変周波数の交流で励磁する可変速揚水発電シス
テムにおいて、特に試送電運転を行なう際に巻線形同期
発電電動機の1次電圧の大きさに応じて制御ゲインを変
え、電圧制御系全体のゲインが低下しないように周波数
変換器の出力電圧を制御するようにした可変速揚水発電
システムの電圧制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a variable speed pumped storage power generation system in which the secondary side of a wound synchronous generator motor is excited with variable frequency alternating current using a frequency converter. In particular, when performing a test power transmission operation, the control gain is changed according to the magnitude of the primary voltage of the wound synchronous generator-motor, and the output voltage of the frequency converter is controlled so that the gain of the entire voltage control system does not decrease. This invention relates to a voltage control device for a variable speed pumped storage power generation system.

(従来の技術) 火力発電所や水力発電所は、電力需要の変化に応じた発
電量の制御が容易なことから、系統の周波数を一定に制
御する周波数調整のための発電所′として脚光を浴びて
いる。
(Conventional technology) Thermal power plants and hydroelectric power plants are attracting attention as power plants for frequency adjustment to control the grid frequency to a constant level because it is easy to control the amount of power generated according to changes in power demand. Bathing.

しかるに、最近原子力発電所の増加により電力需要の少
ない夜間に停止する火力発電所や水力発電圧か増加する
傾向にあるため、夜間の周波数調整容量か不足してきて
いる。従って、夜間の周波数調整容量を増加させる方法
として、夜間の余剰電力を用いて揚水を行なう揚水発電
所を可変速化し、電力需要の変化に応して発電電動機の
回転速度を制御して揚水電力を調整する可変速揚水発電
システムか検討されている。
However, due to the recent increase in the number of nuclear power plants, thermal power plants that shut down at night when demand for electricity is low, and hydropower generation capacity, have tended to increase, resulting in a shortage of nighttime frequency adjustment capacity. Therefore, as a method to increase frequency adjustment capacity at night, the speed of pumped storage power plants that pump water using surplus electricity at night is made variable, and the rotational speed of the generator motor is controlled in response to changes in power demand to generate pumped storage power. A variable speed pumped storage power generation system that adjusts the

ところで、揚水発電所においては、万−予想されない何
らかの原因で広範囲停電事故に至った場合に、系統復旧
のために起動させようとする火力または原子力発電所の
所内電力を供給する所謂試送電運転か行なわれることか
ある。この試送電運転は、揚水発電所の発電電動機を発
電モードで運転して火力または原子力発電所までの線路
を充電し、その後火力または原子力発電所の所内負荷に
電力を供給し、発電機か系統に並列されるまで続けられ
る。この場合、揚水発電所の送電端電圧は、線路充電時
は勿論のこと、所内負荷か順次投入される過程において
も一定に維持することが必要である。
By the way, in pumped storage power plants, in the unlikely event that a wide-scale power outage occurs due to some unforeseen cause, a so-called test transmission operation is carried out to supply on-site power to a thermal or nuclear power plant that is to be activated to restore the system. There are things that are done. This trial power transmission operation involves operating the pumped storage power plant's generator motor in generation mode to charge the line to the thermal or nuclear power plant, then supplying power to the internal load of the thermal or nuclear power plant, and connecting the generator to the grid. This continues until it is paralleled to . In this case, the voltage at the transmission end of the pumped storage power plant needs to be maintained constant not only during line charging, but also during the process in which the plant's loads are sequentially turned on.

しかし、従来の揚水発電所の発電電動機としては、直流
でのみ励磁され、且つ一定速度でしか運転できない同期
発電電動機(以下従来機という)か用いられているため
、発電機の端子電圧は励磁電流により誘起される電圧と
系統に接続される負荷の状況により決定される。従って
、系統に他の電源が接続されている状態では系統電圧の
位相は安定しているか、試送電運転の場合には例えば系
統に負荷が投入されたり、開放されたりするとその過渡
現象として系統電圧の大きさや位相か変化するため、系
統の安定化に問題かある。
However, as the generator-motor in conventional pumped storage power plants uses a synchronous generator-motor (hereinafter referred to as conventional machine) that is only excited by direct current and can only be operated at a constant speed, the terminal voltage of the generator depends on the excitation current. It is determined by the voltage induced by the voltage and the load conditions connected to the grid. Therefore, when other power sources are connected to the grid, the phase of the grid voltage is stable, and in the case of test transmission operation, for example, when a load is applied to or removed from the grid, the transient phenomenon Since the magnitude and phase of the current change, there may be a problem in stabilizing the system.

(発明か解決しようとする課題) このように従来機により試送電運転を行なうと、系統の
負荷等の変化により系統電圧の位相か過渡的に変化し、
電圧変動が大きくなり、しかも回復特性か悪くなるとい
う問題かある。
(Problem to be solved by the invention) As described above, when a trial power transmission operation is performed using a conventional machine, the phase of the grid voltage changes transiently due to changes in the grid load, etc.
The problem is that the voltage fluctuation becomes large and the recovery characteristics deteriorate.

本発明は巻線形同期発電電動機を備えた可変速揚水発電
システムにおいて、巻線形同期発電電動機の1次電圧に
応して制御ゲインを変え、電圧制御系全体のゲインか低
下しないようにすることにより、負荷変動等か生しても
系統電圧や位相を安定に制御することかできる良好な電
圧制御特性を持つ可変速揚水発電システムの電圧制御装
置を提供することを目的とする。
The present invention provides a variable speed pumped storage power generation system equipped with a wound-rotor synchronous generator-motor, by changing the control gain according to the primary voltage of the wound-rotor synchronous generator-motor to prevent the gain of the entire voltage control system from decreasing. An object of the present invention is to provide a voltage control device for a variable speed pumped storage power generation system that has good voltage control characteristics and can stably control system voltage and phase even when load fluctuations occur.

[発明の構成] (課題を解決するための手段) 本発明は上記の目的を達成するため、1次側か交流系統
に接続され、2次側が周波数変換器を介して前記交流系
統に接続され、且つ原動機により駆動される巻線形同期
発電電動機からなる可変速揚水発電システムにおいて、
前記巻線形同期発電電動機の1次電圧を検出し、電圧信
号を出力する電圧検出手段と、この電圧検出手段より入
力される電圧信号の大きさに応して電圧制御系の制御ゲ
インを変化するゲイン調節手段と、前記電圧検出手段に
より検出された電圧信号と前記巻線形同期発電電動機の
1次電圧の基準信号とを比較し、その偏差と前記ゲイン
調節手段より入力される制御ゲインにより偏差が収束す
るような位相制御信号を出力する電圧制御手段と、この
電圧制御手段より入力されるtn LSI ff;!I
御信号に応して前記周波数変換器の出力電圧を電圧制御
系全体のゲインが低下しないように制御する位相制御手
段とを備えた構成とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention has a primary side connected to an AC system, and a secondary side connected to the AC system via a frequency converter. In a variable speed pumped storage power generation system consisting of a wound synchronous generator motor driven by a prime mover,
Voltage detecting means for detecting the primary voltage of the wound synchronous generator-motor and outputting a voltage signal; and changing the control gain of the voltage control system according to the magnitude of the voltage signal input from the voltage detecting means. A gain adjustment means compares the voltage signal detected by the voltage detection means with a reference signal of the primary voltage of the wound synchronous generator-motor, and determines that the deviation is determined by the deviation and the control gain input from the gain adjustment means. A voltage control means that outputs a convergent phase control signal, and a tn LSI ff;! that is inputted from this voltage control means. I
and a phase control means for controlling the output voltage of the frequency converter in response to a control signal so that the gain of the entire voltage control system does not decrease.

(作用) このような構成の可変速揚水発電システムの電圧制御装
置にあっては、電圧検出手段により検出された電圧信号
とその基準止なる電圧基準信号との偏差か収束するよう
な位相制御信号により周波数変換器の出力電圧を制御す
る電圧制御系の制御ゲインを電圧信号の大きさに応じて
変化させることで、周波数変換器の変換ゲインの変化に
よる制御特性の低下が補償されるので、良好な制御特性
を持つ電圧制御を行なうことができると共に、負荷変動
か生じても系統電圧や位相の安定化を図ることか可能と
なる。
(Function) In the voltage control device of the variable speed pumped storage power generation system having such a configuration, a phase control signal is provided that converges the deviation between the voltage signal detected by the voltage detection means and the voltage reference signal that is the reference stop. By changing the control gain of the voltage control system that controls the output voltage of the frequency converter according to the magnitude of the voltage signal, the decrease in control characteristics due to changes in the conversion gain of the frequency converter can be compensated for, so it is good. In addition to being able to perform voltage control with excellent control characteristics, it is also possible to stabilize the system voltage and phase even if load fluctuations occur.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による可変速揚水発電システムの電圧制
御装置の第1の実施例を示す回路構成図である。第1図
において、1は可変速揚水発電システムを構成する巻線
形同期発電電動機で、図示しない水車等の原動機で駆動
される。この巻線形同期発電電動機1の1次巻線はイン
ダクタンスとキャパシタンスの分布定数で近似できる系
統2に接続され、また巻線形同期発電電動機1の2次巻
線は系統2に接続された周波数変換器3により励磁され
る。これらは主回路を構成しており、単結線にて示す。
FIG. 1 is a circuit configuration diagram showing a first embodiment of a voltage control device for a variable speed pumped storage power generation system according to the present invention. In FIG. 1, reference numeral 1 denotes a wound-rotor synchronous generator-motor constituting a variable speed pumped storage power generation system, which is driven by a prime mover such as a water wheel (not shown). The primary winding of this wound-type synchronous generator-motor 1 is connected to a system 2 that can be approximated by distributed constants of inductance and capacitance, and the secondary winding of this wound-type synchronous generator-motor 1 is connected to a frequency converter connected to system 2. It is excited by 3. These constitute the main circuit and are shown as single connections.

一方、4は巻線形同期発電電動機1の1次側に計器用変
圧器PTを介して接続された電圧検出器で、この電圧検
出器4は巻線形同期発電電動機1の1次電圧を検出し、
電圧信号を比較器6に入力すると共に、ゲイン調節器7
に入力する。比較器6は電圧検出器4より入力される電
圧信号と第1の電圧基準発生器5より入力される1次電
圧の基準となる電圧基$信号とを比較し、その偏差ev
を電圧制御器9に入力する。ゲイン調節器7は第2の電
圧基準信号と電圧検出器4て検出された電圧信号の偏差
に応して電圧制御器9の制御ゲインを変化させる。電圧
制御器9はゲイン調節器7からのゲインと比較器6から
の電圧の偏差evを人力し、この偏差に制御ケインを乗
算した位相制御信号を位相制御器10に与える。この位
相制御器10は位相制御信号に応して周波数変換器3の
出力電圧の振幅と位相を制御する。
On the other hand, 4 is a voltage detector connected to the primary side of the wound-rotor synchronous generator-motor 1 via an instrument transformer PT, and this voltage detector 4 detects the primary voltage of the wound-rotor synchronous generator-motor 1. ,
While inputting the voltage signal to the comparator 6, the gain adjuster 7
Enter. The comparator 6 compares the voltage signal inputted from the voltage detector 4 with the voltage base $ signal inputted from the first voltage reference generator 5 and serves as a reference for the primary voltage, and calculates the deviation ev.
is input to the voltage controller 9. The gain adjuster 7 changes the control gain of the voltage controller 9 according to the deviation between the second voltage reference signal and the voltage signal detected by the voltage detector 4. The voltage controller 9 manually calculates the deviation ev between the gain from the gain adjuster 7 and the voltage from the comparator 6, and provides a phase control signal obtained by multiplying this deviation by a control key to the phase controller 10. This phase controller 10 controls the amplitude and phase of the output voltage of the frequency converter 3 according to the phase control signal.

次に二のような構成の電圧制御装置の作用を迎べる。Next, we come to the action of the voltage control device configured as shown in the second section.

いま、電圧検出器4により巻線形同期発電電動機1の1
次電圧が検出され、その電圧信号が比較器6に入力され
ると、この比較器6ては第1の電圧基準発生器5より入
力される電圧基準信号と比較してその偏差evか電圧制
御器9に入力される。
Now, the voltage detector 4 indicates that one of the winding synchronous generator motors 1 is
When the next voltage is detected and the voltage signal is input to the comparator 6, this comparator 6 compares it with the voltage reference signal input from the first voltage reference generator 5 and determines the deviation ev from the voltage control. The signal is input to the device 9.

また、電圧検出器4により検出された電圧信号はゲイン
調節器7に入力されると、このゲイン調節器7は電圧信
号と第2の電圧基準発生器8より人力される第2の電圧
基準信号との偏差に応じて電圧制御器9の制御ゲインを
変化させる。即ち、電圧信号が第2の電圧基準信号より
も低下すれば、周波数変換器の変換ケイン(周波数変換
器を動作させる位相制御器の人力信号と周波数変換器の
出力電圧の比)が小さくなるので、制御ゲインを上げ、
その反対の場合には制御ゲインを下げる。この場合、第
1の基準電圧発生器5と第2の電圧基準発生器8で設定
される電圧基準の値は必ずしも同してはない。
Further, when the voltage signal detected by the voltage detector 4 is input to the gain adjuster 7, this gain adjuster 7 inputs the voltage signal and a second voltage reference signal manually generated from the second voltage reference generator 8. The control gain of the voltage controller 9 is changed according to the deviation from the voltage controller 9. In other words, if the voltage signal becomes lower than the second voltage reference signal, the conversion cane of the frequency converter (the ratio of the human input signal of the phase controller that operates the frequency converter to the output voltage of the frequency converter) becomes smaller. , increase the control gain,
In the opposite case, the control gain is lowered. In this case, the voltage reference values set by the first reference voltage generator 5 and the second voltage reference generator 8 are not necessarily the same.

電圧制御器9にゲイン調節器7からの制御ゲインと、比
較器6からの電圧の偏差が入力されると、この電圧制御
器9では偏差に制御ゲインを乗算した位相制御信号を位
相制御器10に与える。
When the control gain from the gain adjuster 7 and the voltage deviation from the comparator 6 are input to the voltage controller 9, the voltage controller 9 outputs a phase control signal obtained by multiplying the deviation by the control gain to the phase controller 10. give to

ここで、電圧制御器9として一般的な比例積分器を考え
ると、その制御ゲインとして比例ゲインに、と積分ゲイ
ンに1かある。電圧の偏差evと制御ゲインに、、に、
から演算される位相制御信号yは y−(Kp +に、/5)xev である。ここで、Sはラプラス演算子である。このに、
とに1がゲイン調節器7から入力される。
Here, if we consider a general proportional integrator as the voltage controller 9, its control gains include a proportional gain and an integral gain of 1. For voltage deviation ev and control gain,
The phase control signal y calculated from is y-(Kp+/5)xev. Here, S is a Laplace operator. In this,
1 is input from the gain adjuster 7.

そして、これらは電圧信号か大きくなればなる程大きく
なり、小さくなればなる程小さくなる。
These become larger as the voltage signal becomes larger, and become smaller as the voltage signal becomes smaller.

位相制御器10ては位相制御信号に応じて周波数変換器
3の出力電圧の振幅と位相を制御する。
A phase controller 10 controls the amplitude and phase of the output voltage of the frequency converter 3 according to the phase control signal.

もし、マイナーループに周波数変換器の出力電流を制御
する電流制御系を持つ場合には、周波数変換器3の電流
を図示しない電流検出器により検出し、その電流信号と
電圧制御器9から人力される位相制御信号を電流基準と
して制御する図示しない電流制御器を設け、その出力信
号を基準に位相制御器で周波数変換器3を制御するよう
にすればよい。
If the minor loop has a current control system that controls the output current of the frequency converter, the current of the frequency converter 3 is detected by a current detector (not shown), and the current signal and the voltage controller 9 are used to detect the current of the frequency converter 3. It is sufficient to provide a current controller (not shown) that controls the phase control signal using the phase control signal as a current reference, and to control the frequency converter 3 with the phase controller using the output signal as a reference.

第2図および第3図は各々制御ゲインが固定の場合と本
発明の第1の実施例により制御ゲインを可変にした場合
て、系統に負荷が投入されたときの電圧低下およびその
電圧回復のシミュレーションの結果を示すものである。
Figures 2 and 3 show the voltage drop and voltage recovery when a load is applied to the grid, respectively, when the control gain is fixed and when the control gain is made variable according to the first embodiment of the present invention. This shows the results of the simulation.

各図は電圧基準信号と実効値の電圧信号の波形を示す。Each figure shows the waveforms of the voltage reference signal and the effective value voltage signal.

第2図および第3図において、T1は系統に誘導性負荷
を投入した時点であり、電圧は単位法で示す。また、負
荷投入前の電圧、負荷投入後の最低電圧、負荷投人から
300m5ec後の電圧を各々V 1611.V m、
n +■、。11 とする。
In FIGS. 2 and 3, T1 is the point at which an inductive load is applied to the system, and the voltage is shown in units. In addition, the voltage before load application, the minimum voltage after load application, and the voltage 300m5ec after load application are each V1611. Vm,
n+■,. 11.

制御ケインを固定した場合には、第2図に示すようにT
1時点て負荷か投入されると、負荷投入前の電圧の70
%の電圧まで低下し、300 m5ec経過後において
約8596の電圧にまで回復している。
When the control cane is fixed, the T
When a load is applied at one point, the voltage before the load is applied is 70%.
%, and recovered to a voltage of about 8596 after 300 m5ec.

これに対して、第1の実施例のように制御ケインを可変
にする場合には、第3図に示すように14時点で負荷か
投入され、電圧か低下すると制御ケインを上げるように
ゲインか調整されるので、負荷投入時点の電圧は負荷投
入前の電圧の78%にまで低下L 、 300mr、e
c経過後においては約95%の電圧にまで回復している
On the other hand, when the control cane is made variable as in the first embodiment, the load is applied at time 14 as shown in Fig. 3, and when the voltage drops, the gain is changed to raise the control cane. Since the voltage is adjusted, the voltage at the time of load application is reduced to 78% of the voltage before load application L, 300 mr, e
After c, the voltage has recovered to about 95%.

このように制御ゲインを巻線形同期発電電動機1の1次
電圧の大きさに応、して変化させることにより、1次電
圧の過渡変化量を小さくすることができる。
By changing the control gain in accordance with the magnitude of the primary voltage of the wound-rotor synchronous generator-motor 1 in this manner, it is possible to reduce the amount of transient change in the primary voltage.

第4図は本発明の第2の実施例を示す回路図で、第1図
と同一部分には同一記号を付してその説明を省略する。
FIG. 4 is a circuit diagram showing a second embodiment of the present invention, in which the same parts as in FIG. 1 are given the same symbols and their explanation will be omitted.

第2の実施例においては、第4図に示すようにゲイン調
節器7に比較器6からの電圧の偏差信号を人力し、この
偏差信号の値に応じて電圧制御器9の制御ケインを可変
するようにしたものである。
In the second embodiment, as shown in FIG. 4, the voltage deviation signal from the comparator 6 is input to the gain adjuster 7, and the control cane of the voltage controller 9 is varied according to the value of this deviation signal. It was designed to do so.

このような構成とすれば、第1図に示す電圧基準発生器
8を省略でき、特に第1図において第1および第2の基
準電圧発生器から出力する各々の電圧基準信号の値を等
しくしたときと同様の制御特性か得られる。
With such a configuration, the voltage reference generator 8 shown in FIG. 1 can be omitted, and in particular, in FIG. Similar control characteristics can be obtained.

第5図は本発明の第3の実施例を示す回路構成図で、第
1図と同一部分には同一記号を付してその説明を省略す
る。
FIG. 5 is a circuit configuration diagram showing a third embodiment of the present invention, in which the same parts as in FIG. 1 are given the same symbols and their explanation will be omitted.

第3の実施例では、第5図に示すようにケイン調節器7
に比較器6からの電圧の偏差信号を人力し、その偏差に
応して変化するケインKxを求める。例えばKXは Kx =1+に、xev である。ここで、evは電圧の偏差であり、K。
In the third embodiment, the cane adjuster 7 as shown in FIG.
The voltage deviation signal from the comparator 6 is inputted manually, and the cane Kx that changes according to the deviation is determined. For example, KX is xev with Kx =1+. Here, ev is the voltage deviation and K.

は任意のゲインである。is an arbitrary gain.

また、電圧制御器9は固定の制御ケインと電圧の偏差よ
り演算するPI制御器91と上記ケインに8を乗算する
乗算器92からなる。この乗算器92の出力を基準に周
波数変換器の位相を位相制御器10て制御するようにし
たものである。
The voltage controller 9 includes a fixed control key and a PI controller 91 that calculates the voltage deviation, and a multiplier 92 that multiplies the key by 8. The phase of the frequency converter is controlled by a phase controller 10 based on the output of the multiplier 92.

このような構成とすれば、比例積分ケイ7に、。With such a configuration, the proportional integral Kei 7.

K1を固定としているので、例えば他の電源が系統に投
入後電圧か安定したときに、K、を零にすることて正規
の制御ゲインによる運転に復帰させることができる。
Since K1 is fixed, for example, when the voltage of another power source becomes stable after being turned on to the system, K can be set to zero to return to operation using the normal control gain.

[発明の効果] 以上述べたように本発明によれば、巻線形同期発電電動
機を備えた可変速揚水発電システムにおいて、巻線形同
期発電電動機の1次電圧を検出し、この電圧の大きさに
応して制御ゲインを変え、電圧制御系全体のゲインか変
化しないように周波数変換器の出力電圧を制御するよう
にしたので、例えば負荷投入時などの過渡時に系統の端
子電圧の低下により、巻線形同期発電電動機の1次電圧
か一低下しても周波数変換器の変換ゲインが低下しない
ように補償され、良好な制御特性で電圧制御を行なうこ
とができる可変速揚水発電システムの電圧制御装置を提
供できる。
[Effects of the Invention] As described above, according to the present invention, in a variable speed pumped storage power generation system equipped with a wound synchronous generator/motor, the primary voltage of the wound synchronous generator/motor is detected, and the magnitude of this voltage is By changing the control gain accordingly, the output voltage of the frequency converter is controlled so that the gain of the entire voltage control system does not change. A voltage control device for a variable-speed pumped storage power generation system that compensates for the conversion gain of the frequency converter to not decrease even if the primary voltage of the linear synchronous generator-motor drops by one level, and that can perform voltage control with good control characteristics. Can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による可変速揚水発電システムの電圧制
御装置の第1の実施例を示す回路構成図、第2図は制御
ゲインを固定した場合の負荷投入時の電圧の応答波形図
、第3図は第1の実施例による電圧制御時の負荷投入時
の電圧の応答波形図、第4図および第5図は本発明の第
2および第3の実施例をそれぞれ示す回路構成図である
。 1・・・巻線形同期発電電動機、2・・・系統、3・・
・周波数変換器、4・・・電圧検出器、5・・第1の電
圧基準発生器、6・・比較器、7・・・ゲイン調節器、
8・第2の電圧基準発生器、9・・・電圧制御器、91
・・・PI制御器、92・−乗算器、10・−位相制御
器。 出願人代理人 弁理士 鈴江武彦 第 1 z 第4二 61!5  二: 手続補正書4.2.26 平成  年  月  日
FIG. 1 is a circuit configuration diagram showing a first embodiment of the voltage control device for a variable speed pumped storage power generation system according to the present invention, FIG. 2 is a voltage response waveform diagram at the time of load application when the control gain is fixed, and FIG. FIG. 3 is a voltage response waveform diagram when a load is turned on during voltage control according to the first embodiment, and FIGS. 4 and 5 are circuit configuration diagrams showing the second and third embodiments of the present invention, respectively. . 1... Winding synchronous generator motor, 2... System, 3...
- Frequency converter, 4... Voltage detector, 5... First voltage reference generator, 6... Comparator, 7... Gain adjuster,
8. Second voltage reference generator, 9... Voltage controller, 91
...PI controller, 92.-multiplier, 10.-phase controller. Applicant's agent Patent attorney Takehiko Suzue No. 1 z No. 4261!5 2: Procedural amendment 4.2.26 Month, Day, 1998

Claims (1)

【特許請求の範囲】 1次側が交流系統に接続され、2次側が周波数変換器を
介して前記交流系統に接続され、且つ原動機により駆動
される巻線形同期発電電動機からなる可変速揚水発電シ
ステムにおいて、 前記巻線形同期発電電動機の1次電圧を検出し、電圧信
号を出力する電圧検出手段と、この電圧検出手段より入
力される電圧信号の大きさに応じて制御ゲインが変化す
るゲイン調節手段と、前記電圧検出手段により検出され
た電圧信号と前記巻線形同期発電電動機の1次電圧の基
準信号とを比較し、その偏差と前記ゲイン調節手段より
入力される制御ゲインにより偏差が収束するような位相
制御信号を出力する電圧制御手段と、この電圧制御手段
より入力される位相制御信号に応じて前記周波数変換器
の出力電圧を電圧制御系全体のゲインが低下しないよう
に制御する位相制御手段とを備えたことを特徴とする可
変速揚水発電システムの電圧制御装置。
[Claims] In a variable speed pumped storage power generation system comprising a wound synchronous generator-motor whose primary side is connected to an AC system, whose secondary side is connected to the AC system via a frequency converter, and which is driven by a prime mover. , a voltage detection means for detecting the primary voltage of the wound-rotor synchronous generator-motor and outputting a voltage signal; and a gain adjustment means for changing the control gain according to the magnitude of the voltage signal inputted from the voltage detection means. , the voltage signal detected by the voltage detection means is compared with a reference signal of the primary voltage of the wound-rotor synchronous generator-motor, and the deviation is converged by the deviation and the control gain input from the gain adjustment means. voltage control means for outputting a phase control signal; and phase control means for controlling the output voltage of the frequency converter in accordance with the phase control signal input from the voltage control means so that the gain of the entire voltage control system does not decrease. A voltage control device for a variable speed pumped storage power generation system.
JP2322033A 1990-11-26 1990-11-26 Voltage controller for variable speed pumped storage power generation system Expired - Fee Related JP2950606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322033A JP2950606B2 (en) 1990-11-26 1990-11-26 Voltage controller for variable speed pumped storage power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322033A JP2950606B2 (en) 1990-11-26 1990-11-26 Voltage controller for variable speed pumped storage power generation system

Publications (2)

Publication Number Publication Date
JPH04193100A true JPH04193100A (en) 1992-07-13
JP2950606B2 JP2950606B2 (en) 1999-09-20

Family

ID=18139176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322033A Expired - Fee Related JP2950606B2 (en) 1990-11-26 1990-11-26 Voltage controller for variable speed pumped storage power generation system

Country Status (1)

Country Link
JP (1) JP2950606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175902A (en) * 2016-03-22 2017-09-28 ゼネラル・エレクトリック・カンパニイ Smart Grid Synchronization Scheme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175902A (en) * 2016-03-22 2017-09-28 ゼネラル・エレクトリック・カンパニイ Smart Grid Synchronization Scheme

Also Published As

Publication number Publication date
JP2950606B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP3133386B2 (en) Control device for current source converter for supplying to AC bus
JP4306760B2 (en) Distributed power supply
Kassem et al. Robust control of an isolated hybrid wind–diesel power system using linear quadratic Gaussian approach
JPS58182726A (en) Method and apparatus for automatically setting optimum operation point of dc power source
US5886417A (en) Electrical power generating installation and method of operating same
JP2011055705A (en) Distributed power supply, power distribution facility, and power supply method
CN109617082B (en) Transient stability control method for inhibiting voltage frequency of micro-grid from exceeding limit
Bhadra et al. Study of voltage build up in a self-excited, variable speed induction generator/static inverter system with DC side capacitor
Pati et al. Performance improvement of a STATCOM using fuzzy controller for isolated generator
JPH04193100A (en) Voltage controlling equipment for pumped storage generating system of variable speed type
Akter et al. Multi-objective model reference modified adaptive PID framework to islanded microgrid control under various load conditions
Huang et al. Islanding detection methods based on self-oscillation of particular frequency in DC distribution systems
JP2009033862A (en) Output power leveling device for photovoltaic power generation system
Mohanty et al. Fuzzy logic controller based STATCOM for voltage profile improvement in a micro-grid
Singh et al. Decoupled solid state controller for asynchronous generator in pico-hydro power generation
Mohanty et al. Persistent voltage profiling of a wind energy-driven islanded microgrid with novel neuro-fuzzy controlled electric spring
Andalib-Bin-Karim et al. Fuzzy secondary controller based virtual synchronous generator control scheme for microgrids
Shukla et al. Topologies for stand-alone DFIG based wind energy conversion system
Mokhtari et al. Behavior Analysis Of Asynchronous Wind Turbine In Presence Of Static Synchronous Compensator Operating With Fuzzy Logic Voltage Controller
Mahdi et al. Simulation of adaptive gain control via 2-D lookup table for isolated hybrid micro-grid system
Kuchak et al. Improving the Dynamic Characteristics of the Autonomous Electric Generating Unit
Ansari et al. Direct Power Control Scheme with Voltage Modulation Control Technique for a Weak Grid Connected Voltage Source converters through Band Pass Filter
Henderson et al. An improved control algorithm for an electronic load governor
JBV et al. ACTIVE, REACTIVE POWER COMPENSATION AND DYNAMIC RESPONSE OF SEIG WTGS WITH 48 PULSE STATCOM BY USING INTELLIGENT CONTROLLERS
Al Hasani et al. Renewable Microgrid Modeling, Simulation, and Results Analysis

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees