JPH04192619A - Mos semiconductor circuit for differential amplifier - Google Patents

Mos semiconductor circuit for differential amplifier

Info

Publication number
JPH04192619A
JPH04192619A JP31870190A JP31870190A JPH04192619A JP H04192619 A JPH04192619 A JP H04192619A JP 31870190 A JP31870190 A JP 31870190A JP 31870190 A JP31870190 A JP 31870190A JP H04192619 A JPH04192619 A JP H04192619A
Authority
JP
Japan
Prior art keywords
transistor
amplification
semiconductor circuit
constant current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31870190A
Other languages
Japanese (ja)
Other versions
JP2697299B2 (en
Inventor
Yukio Yano
幸雄 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18102037&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04192619(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2318701A priority Critical patent/JP2697299B2/en
Publication of JPH04192619A publication Critical patent/JPH04192619A/en
Application granted granted Critical
Publication of JP2697299B2 publication Critical patent/JP2697299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manipulation Of Pulses (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To quicken the response to an amplifier transistor(TR) with respect to a change in an input signal and to improve the load driving speed by making the substrate potential of the amplifier TR independent of the source and the drain. CONSTITUTION:A couple of current paths comprising series connection of amplifier transistors(TRs) 1, 2 and loads 3, 4 the amplifiers in a differential amplifier semiconductor circuit 10 are connected in parallel, and a constant current is supplied to them, the substrate of the amplifier TRs 1, 2 is not connected to the source and is independent from both the source and the grain. Thus, the response of both the amplifier TRs 1, 2 is improved with respect to a timewise change in input signals S1, S2 and the drive speed to the loads is enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、MOSトランジスタにより構成され1対の入
力信号を受けてディジタル化信号を出力する差動増幅用
の半導体回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor circuit for differential amplification that is configured with MOS transistors and receives a pair of input signals and outputs a digitized signal.

〔従来の技術] センサや入力キー類の出力信号は厳密にはその  ・値
が種々の因子により影響されるアナログ信号であって、
これをディジタルな信号に変換してマイクロコンピュー
タ等に与えるにはいわば1ビツトのADi換用のコンパ
レータないしディジタル化回路が必要で、集積回路装置
に多数個組み込んで置きその内の必要な信号チャネル数
だけ随時使用できるようにするのが便利である。
[Prior art] Strictly speaking, output signals from sensors and input keys are analog signals whose values are influenced by various factors.
In order to convert this into a digital signal and provide it to a microcomputer, etc., a comparator or digitization circuit for converting 1-bit ADI is required, and a large number of them are built into an integrated circuit device and the required number of signal channels is set. It is convenient to be able to use only one at any time.

かかる2簡単なAD変換動作を正確に行なうにはゲイン
の高い差動増幅回路を利用するのが有利でこりをM2S
回−にするのが有利である0本発明はかかる用途に適す
る差動増幅用のMO3半導体回路に関し、以下その従来
例を第2図を参照して簡単に説明する。2.   ・4
 。
In order to accurately perform such two simple AD conversion operations, it is advantageous to use a differential amplifier circuit with a high gain.
The present invention relates to an MO3 semiconductor circuit for differential amplification suitable for such applications, and a conventional example thereof will be briefly explained below with reference to FIG. 2.・4
.

1対のnチャネルMOSトランジスタ1と2が差動増幅
用のトランジスタで、それらのゲートに入力信号Slと
32がそれぞれ与えられる。その上の電源電圧V側の電
流ミラー回路を構成する2個の′pチ中ネJしMO3I
−ランジスタ3と4はいずれも増幅負荷用であって、そ
の内の基準電流側トランジスタ3は増幅トランジスタl
と直列接続されて一方の電流分路を、従動電流側トラン
ジスタ4は増幅トランジスタ2と直列接続されて他方の
電流分路をそれぞれ構成し、両型流分路は互いに並列接
続されて、後者内の増幅トランジスタ2と負荷トランジ
スタ4の相互接続点の電位がディジタル化信号DSとし
て出力される。
A pair of n-channel MOS transistors 1 and 2 are transistors for differential amplification, and input signals Sl and 32 are applied to their gates, respectively. MO3I, which constitutes the current mirror circuit on the power supply voltage V side above it, is
- Both transistors 3 and 4 are for amplification loads, and among them, reference current side transistor 3 is an amplification transistor l
The driven current side transistor 4 is connected in series with the amplifier transistor 2 to form one current shunt, and the driven current side transistor 4 is connected in series with the amplifying transistor 2 to form the other current shunt, and both types of flow shunts are connected in parallel to each other to form one current shunt in the latter. The potential at the interconnection point between the amplifying transistor 2 and the load transistor 4 is output as a digitized signal DS.

一接地電位E側の電流ミラー回路は上述の2個の電流分
路に対し定電流を供給するためのもので、 ′抵抗5、
と直列接続された基準電流トランジスタ6と従動電流ト
ランジスタ7とからなり、この例ではいずれもnチャネ
ルMOSトランジスタとされて従動電流トランジスタ7
の方から両型流分路に対して定電流が供給される。
The current mirror circuit on the side of one ground potential E is for supplying constant current to the two current shunts mentioned above;
It consists of a reference current transistor 6 and a driven current transistor 7 connected in series, and in this example, both are n-channel MOS transistors and the driven current transistor 7 is connected in series.
A constant current is supplied to both types of flow shunts.

この第2図の差動増幅回路により例えばセンサから出力
されるアナログ信号をディジタル化するには、センサの
出力信号を入力信号SLとし、これと比較すべ°き基準
値をもつ基準電圧を入力信号S2として与え、センサ信
号のアナログ値め基準電圧との大小に応じて「し、また
はrH,の論理値をとるディジタル化信号DSを取り出
す。
In order to digitize an analog signal output from, for example, a sensor using the differential amplifier circuit shown in FIG. A digitized signal DS is given as S2 and takes a logical value of "y" or "rH" depending on the magnitude of the analog value of the sensor signal and the reference voltage.

このように構成された差動増幅回路はアナログ信号を正
確にディジタル化するに適したごく低い動作しきい値を
もち、そのディジタル化ないしは比較動作の精度の向上
にはトランジスタ7により供給される定電流値を増して
差動増幅回路の動作ゲインを上げるのが有効である。
The differential amplifier circuit constructed in this manner has a very low operating threshold suitable for accurately digitizing analog signals, and the constant supplied by transistor 7 is used to improve the accuracy of the digitization or comparison operation. It is effective to increase the operating gain of the differential amplifier circuit by increasing the current value.

〔発明が解決しようとする課題〕5゜ 上述の差動増幅回路はディジタル化精度が高い特長を有
するが、これ力ごらデイ、ジタル化体号を受けるマイク
ロコンピュータ、等の負荷側、の動作速度が最近釜上向
上し、これに応じて負、前駆動速度を高める上で問題が
出て、来た。
[Problems to be Solved by the Invention] 5. The above-mentioned differential amplifier circuit has a feature of high digitization precision, but this does not affect the operation of the load side of a microcomputer, etc. that receives digitized data. The speed has recently increased on the hook, and accordingly came the problem of increasing the negative, front drive speed.

この負荷駆動速度を向上させるには、負荷駆動能力を上
げて負荷内の例えば静電容量の充放電に要する時間を短
縮するのが最も簡単かつ有、効で、これにも第21!l
の定電流トランジスタ7から増幅トランジスタ1、と2
゜を含む並列電流分路に対して供給する定電流値を増す
のが有効であるが、これが過大になるとトランジスタが
飽和領域に入って回路、が正常に動、作しなく8なり、
こ、れを避−は−、るため、トラン咋スタを大形化す6
るとチップサイズが増して不躾、済になり消費電流も当
然大きくなる。
In order to improve this load driving speed, the easiest and most effective way is to increase the load driving ability and shorten the time required to charge and discharge, for example, the capacitance within the load, and this is also the 21st! l
constant current transistor 7 to amplification transistors 1 and 2
It is effective to increase the constant current value supplied to the parallel current branch including
To avoid this, the transducer is made larger6.
As a result, the chip size increases, which becomes unnecessary, and the current consumption also naturally increases.

本発明の目的は従来のかかる難点を幕、消して、ト、ラ
ン、。ジスタを大形化したり、消費電流を増加させたり
することなく、−差動、増幅用MO3半導体回路の負荷
駆動速度を向上す、ることにある。
The purpose of the present invention is to eliminate such drawbacks of the conventional technology. The object of the present invention is to improve the load driving speed of a differential and amplifying MO3 semiconductor circuit without increasing the size of the transistor or increasing current consumption.

〔課題を解決するための手段] 本発明によれば、上述のMO5I−ランジスタにより構
成される差動増幅用半導体回路において、増幅トランジ
スタ5と増幅負荷をそれぞれ直列接続した1対の電流分
路を並列接続して定電流を供給し、増幅トランジスタの
サブストレートの電位を、ソースとドレインや電位から
独立させ、増幅トランジスタのゲートに対しそれぞれへ
カ信号を与え一方の電流分路の増幅トランジスタと増幅
負荷の相互接続点4からディジタル化信号を取り、出す
ことにより上述の目的が達成さそる。
[Means for Solving the Problems] According to the present invention, in the semiconductor circuit for differential amplification constituted by the MO5I-transistor described above, a pair of current shunts in which the amplification transistor 5 and the amplification load are respectively connected in series are provided. Connect in parallel to supply a constant current, make the potential of the substrate of the amplification transistor independent from the source, drain, and potential, and apply a signal to each gate of the amplification transistor to connect the amplification transistor in one current branch and amplification. The above objective is achieved by taking and issuing a digitized signal from the load interconnection point 4.

なお、定電流供給用トラ−ンジスタを増2幅トラン、ジ
子りを同チャネル形、とし、増幅、トランジスタをその
サブストレートに定電流トランジスタのサブストレー木
と同一電位を与えた状態で動作させるのが望ましい、さ
らに、ディジタル化信号をゲートに受ける別の増幅トラ
ンジスタとこれに定電流を供給する別の定電流トランジ
スタを設け、両者の、相互接続点からディジタル化5信
夛を取り出すようにするのが有利である。
Note that the transistor for constant current supply is an amplifying transistor, the transistor is of the same channel type, and the amplifying transistor is operated with the same potential as the substrate of the constant current transistor applied to its substrate. It is preferable to provide another amplification transistor that receives the digitized signal at its gate and another constant current transistor that supplies a constant current to it, and extract the digitized signal from the interconnection point between the two. is advantageous.

〔作用〕[Effect]

前述の第2図に示すようコニ、従来から増幅トランジス
タlや2はそのサブストレートをソースと接続した状態
で使用していたが、本発明では前項の構成にいうように
そのサブストレートの電位をソースやドレインの電位か
ら独立させることにより、そのソース層とサブストレー
ト用のウェルとの間にも空乏層が広がるいわゆる基板効
果を発生させる。これにより、ウェルの電位がソース層
の電位とドレイン層の電位の中間になって従来よりドレ
イン層側に近付(ので、ゲートとウェルの間の電位差が
減少してゲートの実効静電容量や浮遊静電容量が減少す
る0本発明はかかる効果を利用して入力信号の変化に対
する増幅トランジスタの応答を速め、従って負荷に対す
る駆動速度を高めるようにしたものである。
As shown in the above-mentioned FIG. 2, amplification transistors 1 and 2 have conventionally been used with their substrates connected to their sources, but in the present invention, as shown in the configuration in the previous section, the potential of the substrates is By making the potential independent of the source and drain potentials, a so-called substrate effect is generated in which a depletion layer spreads between the source layer and the substrate well. As a result, the potential of the well becomes intermediate between the potential of the source layer and the potential of the drain layer, and is closer to the drain layer side than before (therefore, the potential difference between the gate and the well decreases, and the effective capacitance of the gate increases. The present invention utilizes this effect to speed up the response of the amplification transistor to changes in the input signal, thereby increasing the drive speed for the load.

〔実施例] 以下、第1図を参照して本発明による差動増幅用MOS
半導体回路の実施例を説明する0図では一点鎖線で囲ん
で示す差動増幅回路lO内の第2図に対応する部分に同
じ符号が付されており、説明の重複部分は省略すること
とする0図には、その出力側に関連回路例が加えられて
いる。
[Example] Hereinafter, with reference to FIG. 1, a differential amplification MOS according to the present invention will be explained.
In Figure 0, which describes an example of the semiconductor circuit, the same reference numerals are given to the parts of the differential amplifier circuit 10 shown surrounded by a dashed line that correspond to those in Figure 2, and the duplicated explanations will be omitted. In Figure 0, an example of a related circuit is added to the output side.

この第1図の差動増幅回路10の第2図と異なるところ
は、増幅トランジスタ1と2ともそのサブストレートを
ソースと接続せず、従って電位的にソースおよびドレイ
ンの双方から独立させることにより、前述のように入力
信号SlやS2の時間的な変化に対する両増幅トランジ
スタ1と2の応答を従来よりも高めた点にある。なお、
定電流トランジスタ7から増幅トランジスタlと2を含
む2個の電流分路に供給する定電流値はもちろんそれら
に流れる電流が飽和しない程度に設定され、かつ両増幅
トランジスタlと2とも差動増幅用であるから、いずれ
の動作点もゲートに受ける入力信号SLやS2に対して
電流がほぼ線形に変化し得る範囲内に設定される。
The difference between the differential amplifier circuit 10 in FIG. 1 and that in FIG. 2 is that the substrates of the amplifying transistors 1 and 2 are not connected to the source, and therefore, they are electrically independent from both the source and the drain. As mentioned above, the response of both amplifying transistors 1 and 2 to temporal changes in input signals Sl and S2 is improved compared to the conventional one. In addition,
The constant current value supplied from the constant current transistor 7 to the two current branches including the amplification transistors l and 2 is of course set to such an extent that the current flowing through them does not saturate, and both amplification transistors l and 2 are used for differential amplification. Therefore, each operating point is set within a range in which the current can change approximately linearly with respect to the input signals SL and S2 received by the gate.

また第1図の実施例では、増幅トランジスタlと2のサ
ブストレート用のウェルが図では破線で簡略に示すよう
定電流トランジスタ7のサブストレート用のウェルと共
通化される。これによって第2図のように増幅トランジ
スタ用と定電流トランジスタ用のウェルを相互に分離す
る必要がある従来回路と比べて、差動増幅回路10の組
み込みに要するチップ面積を節約できる。実験によれば
、かかるウェルの共通化によって増幅トランジスタ1と
2の高応答速度の特長は失われない。
In the embodiment shown in FIG. 1, the substrate wells of the amplification transistors 1 and 2 are shared with the substrate well of the constant current transistor 7, as shown simply by broken lines in the figure. As a result, the chip area required for incorporating the differential amplifier circuit 10 can be saved compared to the conventional circuit in which the wells for the amplification transistor and the constant current transistor need to be separated from each other as shown in FIG. According to experiments, the feature of high response speed of the amplification transistors 1 and 2 is not lost by using such a common well.

さらに第1図の実施例では、負荷に対する駆動能力を上
げるために差動増幅回路から出力されるディジタル化信
号DSがもう1段増幅される。このため、図のように接
地電位E側の電流ミラー回路にロチャネル形の従動電流
トランジスタ8を追加し、これを増幅用負荷としディジ
タル化信号DSをゲートに受けるpチャネル形の別の増
幅トランジスタ9を設け、両者の相互接続点からディジ
タル化信号を取り出す、かかる増幅トランジスタ9を設
けるとゲートの充放電に要する時間だけ応答が遅れる場
合があるが、本発明では差動増幅回路lOの応答が充分
早いのでこのおそれは少なく、回路の総ゲインを上げて
ディジタル化の精度を高め、かつ駆動能力を上げて負荷
駆動速度を高めることができる。
Furthermore, in the embodiment shown in FIG. 1, the digitized signal DS output from the differential amplifier circuit is amplified by one more stage in order to increase the driving ability for the load. Therefore, as shown in the figure, a low-channel type driven current transistor 8 is added to the current mirror circuit on the ground potential E side, and this is used as an amplification load, and another p-channel type amplification transistor 9 receives the digitized signal DS at its gate. If such an amplification transistor 9 is provided, the response may be delayed by the time required for charging and discharging the gate, but in the present invention, the response of the differential amplifier circuit lO is sufficient. Since it is fast, there is little risk of this happening, and the total gain of the circuit can be increased to improve the precision of digitization, and the drive capability can be increased to increase the load drive speed.

以上のようにして作られたディジタル化信号はもちろん
そのままで出力することでよいのであるが、第1図の実
施例ではさろにインバータ回路20が設けられており、
1対の相補トランジスタ21と22の共通接続ゲートに
ディジタル化信号を受け、両者の相互接続点から出力信
号Soを取り出すようになっている。
Of course, the digitized signal created as described above can be output as is, but in the embodiment shown in FIG. 1, an inverter circuit 20 is additionally provided.
A digitized signal is received at the common connection gates of a pair of complementary transistors 21 and 22, and an output signal So is taken out from the interconnection point between the two.

なお、差動増幅回路lOの増幅トランジスタlと2のサ
ブストレートを前述のように電位的にそのソースやドレ
インから独立させる構成はそれらの動作の飽和を防止す
る上でも有用であり、しかもそれらの応答を速めるため
定電流トランジスタ7の供給電流を増す必要をなくして
消費電流の増加を防止する上でとくに有用なことが試作
結果から実証されている。
Note that the configuration in which the substrates of the amplification transistors 1 and 2 of the differential amplifier circuit 1O are electrically independent from their sources and drains as described above is useful in preventing saturation of their operations, and moreover, Prototype results have demonstrated that this is particularly useful in preventing an increase in current consumption by eliminating the need to increase the supply current of the constant current transistor 7 in order to speed up the response.

〔発明の効果] 以上のとおり本発明では、MOSトランジスタにより構
成されアナログ入力信号を受けてディジタル化信号を出
力する半導体回路において、増幅トランジスタと増幅負
荷をそれぞれ直列接続した1対の電流分路を並列接続し
て定電流を供給し、増幅トランジスタのサブストレート
電位をソースとドレインから独立させて、増幅トランジ
スタのゲートにそれぞれ入力信号を与え一方の電流分路
の増幅トランジスタと増幅負荷の相互接続点からディジ
タル化信号を取り出すことによって、次の効果を上げる
ことができる。
[Effects of the Invention] As described above, in the present invention, a pair of current shunts each having an amplification transistor and an amplification load connected in series is provided in a semiconductor circuit configured with MOS transistors that receives an analog input signal and outputs a digitized signal. Connect in parallel to supply a constant current, make the substrate potential of the amplification transistor independent from the source and drain, and apply input signals to the gates of the amplification transistors respectively.Interconnection point between the amplification transistor in one current branch and the amplification load. By extracting the digitized signal from the digitized signal, the following effects can be achieved.

(a)ソース層とサブストレート間に空乏層が広がる基
板効果によりゲートの実効静電容量や浮遊静電容量を減
少させて、入力信号の変化に対する増幅トランジスタの
応答を速め、駆動トランジスタ等を大形化したり消費電
流を増加させたりすること雇<、負荷駆動速度を高める
ことができる。
(a) The substrate effect in which the depletion layer spreads between the source layer and the substrate reduces the effective capacitance and stray capacitance of the gate, speeds up the response of the amplification transistor to changes in the input signal, and increases the drive transistor etc. The load drive speed can be increased by increasing the current consumption or increasing the current consumption.

高増幅トランジスタのサブストレート用ウェルを定電流
トランジスタ7用のウェルと共通化して、これらのウェ
ルを相互に分離する必要がある従来回路と比べて、差動
増幅回路の組み込みに要するチップ面積を節約できる。
By sharing the well for the substrate of the high amplification transistor with the well for constant current transistor 7, the chip area required for incorporating the differential amplifier circuit can be saved compared to conventional circuits that require these wells to be separated from each other. can.

      ゛(C)差動増幅回路の高応答速度を利用
しでそれから出力されるディジタル化信号をもう1段増
福すれば、回路の総ゲインを上げてディジタル化の精度
を高め、かつ駆動能力を向上して負荷駆動速度を一層高
めることができる。
(C) By utilizing the high response speed of the differential amplifier circuit and amplifying the digitized signal output from it by one more stage, the total gain of the circuit can be increased, the precision of digitization can be increased, and the drive capability can be increased. It is possible to further increase the load driving speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による差動増幅用MO3半導体回路の実
施例回路図である。第2図は従来技術による差動増幅回
路の回路図である。これらの図において、 1.2:増幅トランジスタ、3.4:増幅負荷ないし負
荷トランジスタ、5:定電流設定抵抗、6:基準t2i
!トランジスタ、7,8:定電流トランジスタないし従
動電流トランジスタ、9:別の増幅トランジスタ、10
:差動増幅回路、20:インノλ−タ回路、21,22
 :インハータ用トランジスタ、DS:ディジタル化信
号、E:接地電位、Si、S2:入力信号、v’:tl
[を圧、である。 、パ〜− 代理人弁理士 山 口  巌 六3.!、。 −ざら)′
FIG. 1 is a circuit diagram of an embodiment of an MO3 semiconductor circuit for differential amplification according to the present invention. FIG. 2 is a circuit diagram of a differential amplifier circuit according to the prior art. In these figures, 1.2: amplification transistor, 3.4: amplification load or load transistor, 5: constant current setting resistor, 6: reference t2i
! Transistors, 7, 8: Constant current transistor or driven current transistor, 9: Another amplification transistor, 10
: Differential amplifier circuit, 20: Innotor circuit, 21, 22
: Inherder transistor, DS: Digitized signal, E: Ground potential, Si, S2: Input signal, v': tl
[pressure, is. , PA~-Representative Patent Attorney Iwao Yamaguchi 3. ! ,. -Zara)′

Claims (1)

【特許請求の範囲】 1)MOSトランジスタにより構成され1対の入力信号
を受けてディジタル化信号を出力する半導体回路であっ
て、増幅トランジスタと増幅負荷とをそれぞれ直列接続
した1対の電流分路を並列接続して定電流を供給し、増
幅トランジスタのサブストレート電位をソースとドレイ
ンの電位から独立させ、増幅トランジスタのゲートにそ
れぞれ入力信号を与えて一方の電流分路の増幅トランジ
スタと増幅負荷の相互接続点からディジタル化信号を取
り出すようにしたことを特徴とする差動増幅用MOS半
導体回路。 2)請求項1に記載の回路において、定電流供給用トラ
ンジスタを増幅トランジスタと同チャネル形とし、増幅
トランジスタをそのサブストレートに定電流トランジス
タのサブストレートと同じ電位を与えた状態で動作させ
るようにしたことを特徴とする差動増幅用MOS半導体
回路。 3)請求項1に記載の回路において、ディジタル化信号
をゲートに受ける別の増幅トランジスタとこれに定電流
を供給する別の定電流トランジスタを設け、両者の相互
接続点から増幅されたディジタル化信号を取り出すよう
にしたことを特徴とする差動増幅用MOS半導体回路。
[Claims] 1) A semiconductor circuit configured of MOS transistors that receives a pair of input signals and outputs a digitized signal, the semiconductor circuit comprising a pair of current shunts in which an amplification transistor and an amplification load are connected in series. are connected in parallel to supply a constant current, the substrate potential of the amplification transistor is made independent from the source and drain potentials, and an input signal is given to the gate of each amplification transistor to connect the amplification transistor in one current branch and the amplification load. A MOS semiconductor circuit for differential amplification, characterized in that a digitized signal is extracted from an interconnection point. 2) In the circuit according to claim 1, the constant current supply transistor is of the same channel type as the amplification transistor, and the amplification transistor is operated with the same potential applied to its substrate as that of the substrate of the constant current transistor. A MOS semiconductor circuit for differential amplification, characterized by the following. 3) In the circuit according to claim 1, there is provided another amplification transistor that receives the digitized signal at its gate and another constant current transistor that supplies a constant current to the amplification transistor, and the amplified digitized signal is obtained from the interconnection point between the two. 1. A MOS semiconductor circuit for differential amplification, characterized in that the MOS semiconductor circuit is adapted to take out.
JP2318701A 1990-11-24 1990-11-24 MOS semiconductor circuit for differential amplification Expired - Lifetime JP2697299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318701A JP2697299B2 (en) 1990-11-24 1990-11-24 MOS semiconductor circuit for differential amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318701A JP2697299B2 (en) 1990-11-24 1990-11-24 MOS semiconductor circuit for differential amplification

Publications (2)

Publication Number Publication Date
JPH04192619A true JPH04192619A (en) 1992-07-10
JP2697299B2 JP2697299B2 (en) 1998-01-14

Family

ID=18102037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318701A Expired - Lifetime JP2697299B2 (en) 1990-11-24 1990-11-24 MOS semiconductor circuit for differential amplification

Country Status (1)

Country Link
JP (1) JP2697299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259036A (en) * 2010-06-04 2011-12-22 Fuji Electric Co Ltd Comparator circuit
US8248162B2 (en) 2009-11-02 2012-08-21 Oki Semiconductor Co., Ltd. Differential amplifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887910A (en) * 1981-11-19 1983-05-25 Nippon Denso Co Ltd Comparator circuit
JPS61202518A (en) * 1985-03-06 1986-09-08 Fujitsu Ltd Comparator circuit
JPS6370612A (en) * 1986-09-12 1988-03-30 Hitachi Ltd Driver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887910A (en) * 1981-11-19 1983-05-25 Nippon Denso Co Ltd Comparator circuit
JPS61202518A (en) * 1985-03-06 1986-09-08 Fujitsu Ltd Comparator circuit
JPS6370612A (en) * 1986-09-12 1988-03-30 Hitachi Ltd Driver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8248162B2 (en) 2009-11-02 2012-08-21 Oki Semiconductor Co., Ltd. Differential amplifier
JP2011259036A (en) * 2010-06-04 2011-12-22 Fuji Electric Co Ltd Comparator circuit
US8598914B2 (en) 2010-06-04 2013-12-03 Fuji Electric Co., Ltd. Comparator circuit with current mirror

Also Published As

Publication number Publication date
JP2697299B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
US4100502A (en) Class B FET amplifier circuit
US4728900A (en) Balanced differential amplifier
KR100355082B1 (en) Operationally amplifying method and operational amplifier
EP0613240B1 (en) High gain rail-to-rail CMOS amplifier
US5329171A (en) Zero cross detection circuit
GB1467297A (en) Complementary field-effect transistor differential amplifier
US4694201A (en) Current-saving CMOS input buffer
US4749955A (en) Low voltage comparator circuit
GB1272372A (en) Differential amplifier circuit using field effect transistors
JPH04192619A (en) Mos semiconductor circuit for differential amplifier
US20090261905A1 (en) Open gain adjustment circuit for operational amplifier
US6496066B2 (en) Fully differential operational amplifier of the folded cascode type
US5872482A (en) Amplifier circuit having a pair of differential transistors with differing threshold values for perform offset compensation
US4431971A (en) Dynamic operational amplifier
JPS58139506A (en) Differential amplifying circuit
US7078970B2 (en) CMOS class AB operational amplifier
US5164614A (en) Low power bias voltage generating circuit comprising a current mirror
JPH07221568A (en) Amplifier circuit device
US6570450B2 (en) Efficient AC coupled CMOS RF amplifier
JP2833968B2 (en) CMOS output buffer circuit
JPS60194603A (en) Integrated amplifier for output stage performed by cmos technique
JPH0521446B2 (en)
JPH0818355A (en) Operational amplifier
JPH03286606A (en) Operational amplifier circuit
EP0499645A4 (en) Differential amplifying circuit of operational amplifier