JPH04191826A - Light pulse shaping method - Google Patents

Light pulse shaping method

Info

Publication number
JPH04191826A
JPH04191826A JP32452290A JP32452290A JPH04191826A JP H04191826 A JPH04191826 A JP H04191826A JP 32452290 A JP32452290 A JP 32452290A JP 32452290 A JP32452290 A JP 32452290A JP H04191826 A JPH04191826 A JP H04191826A
Authority
JP
Japan
Prior art keywords
optical
light
shaping
amplified
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32452290A
Other languages
Japanese (ja)
Other versions
JP2840713B2 (en
Inventor
Kenichi Kitayama
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32452290A priority Critical patent/JP2840713B2/en
Publication of JPH04191826A publication Critical patent/JPH04191826A/en
Application granted granted Critical
Publication of JP2840713B2 publication Critical patent/JP2840713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the execution of another waveform shaping in the ensuring stage after expected shaping treatment is ended by using optical amplification as means for shaping pulse waveforms and preserving all the original frequency components even after shaping. CONSTITUTION:Pumping light is transmitted so as to irradiate only the corresponding optical amplifier element with a mask 16 in order to selectively excite only the optical amplifier element existing in the position of the frequency component to be amplified. This pumping light and the frequency component of the signal light to be amplified are multiplexed by a multiplexer 17 and are made incident on a fiber 14 which amplifies the signal light. The light past the fiber is reflected by a mirror 8, travels backward in the same optical path and is again amplified by the optical fiber 14; thereafter, the pumping light is removed by a wavelength filter 18 and only the amplified light passes the fiber. This light is diffracted by diffraction gratings 4, 3, is taken out by a half mirror 9 to the outside of the system and finally, the shaping of the light pulse waveforms is completed. All the frequency components are preserved even after the waveform shaping in such a manner and, therefore, the separate waveform shaping is executed in the ensuing stage.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超短光パルスの波形を任意に整形する光パルス
整形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical pulse shaping method for arbitrarily shaping the waveform of an ultrashort optical pulse.

[従来の技術] 従来の代表的な光パルス整形方法について説明する。[Conventional technology] A typical conventional optical pulse shaping method will be explained.

第5図に示すものは従来の光パルス整形方法の光学系で
ある。図において、lはレーザ光源、2は光ファイバ、
3.4は1対の回折格子、5はレンズ、6はスリット、
7はマスク、8はミラー、9はハーフミラ−510はレ
ーザパルス、11はチャーブパルス、12は整形された
パルスである。
What is shown in FIG. 5 is an optical system for a conventional optical pulse shaping method. In the figure, l is a laser light source, 2 is an optical fiber,
3.4 is a pair of diffraction gratings, 5 is a lens, 6 is a slit,
7 is a mask, 8 is a mirror, 9 is a half mirror, 510 is a laser pulse, 11 is a chirped pulse, and 12 is a shaped pulse.

lOのレーザパルスを2の光ファイバを通過させると、
光パルスの強度がある程度強いときには光ファイバの自
己位相変調効果によって、光パルスの先頭部分、後方の
部分はそれぞれ負および正の周波数変調を受ける。光パ
ルスの波長が1,3μmよりも短い場合には、光ファイ
バの正の波長分散があるためパルス幅は拡がり、ファイ
バの色分散特性によって周波数は線形のチャーピングと
なる。
When a laser pulse of 1O is passed through 2 optical fibers,
When the intensity of the optical pulse is strong to a certain extent, the leading and trailing portions of the optical pulse undergo negative and positive frequency modulation, respectively, due to the self-phase modulation effect of the optical fiber. When the wavelength of the optical pulse is shorter than 1.3 μm, the pulse width is expanded due to the positive wavelength dispersion of the optical fiber, and the frequency becomes linearly chirped due to the chromatic dispersion characteristics of the fiber.

第6図において、(a)線形チャーピングを受けたパル
ス波形、(b)周波数、<c>周波数スペクトラム、(
d)時間差を補正して圧縮した短パルスである。周波数
スペクトラムは、矩形に近くなっている。この光パルス
を3と4の回折格子の間を往復させることによって、周
波数成分毎に空間的に分離し、さらに周波数の相違によ
って生じる光路差が線形チャーピングと逆特性になるこ
とを利用して、時間差を補正して短パルスに圧縮する。
In Figure 6, (a) pulse waveform subjected to linear chirping, (b) frequency, <c> frequency spectrum, (
d) It is a short pulse compressed by correcting the time difference. The frequency spectrum is nearly rectangular. By reciprocating this optical pulse between diffraction gratings 3 and 4, it is spatially separated into each frequency component, and further, by utilizing the fact that the optical path difference caused by the difference in frequency has a characteristic opposite to that of linear chirping. , corrects the time difference and compresses it into a short pulse.

したがって、回折格子の間隔はパルス幅に相当する光路
長差を与えるように設定しなければならない。6のスリ
ットは波形の裾引きの原因となる周波数成分を除去する
ためのものである。光パルスを往復させることの利点は
、光路長差を2倍にできるだけではなく、4の直後で拡
がったビームを9の光パルスの取り出し地点で集光でき
ることである。
Therefore, the spacing between the diffraction gratings must be set to provide an optical path length difference corresponding to the pulse width. The slit 6 is for removing frequency components that cause waveform tailing. The advantage of reciprocating the optical pulses is that not only can the difference in optical path length be doubled, but also that the beam expanded just after point 4 can be focused at the point where the optical pulses are taken out in point 9.

この光学系内の4の回折格子の直後では周波数毎に空間
的な分離ができた状態にあるので、以下に述べるような
周波数成分毎に空間的な操作か必要なパルス整形を行う
ことができる。予め生成すべき光パルス波形をフーリエ
変換して周波数スペクトラムを求め、所望の周波数成分
のみを透過させるパターンを有する7のマスクを通過さ
せることによって不要の周波数成分を除去し、8のミラ
ーで反射させ同一の光路を逆進させ空間的に広かった光
パルスを1点に集光した後、9のハーフミラ−で反射さ
せて取り出すことによって最終的に光パルス波形の整形
が完了する。第7図に示すものは、この数値計算結果て
あり、左側が周波数スペクトラムであり、右側がその光
パルス波形である。
Immediately after the 4th diffraction grating in this optical system, each frequency is spatially separated, so it is possible to perform spatial operations or necessary pulse shaping for each frequency component as described below. . The optical pulse waveform to be generated in advance is Fourier-transformed to obtain a frequency spectrum, and unnecessary frequency components are removed by passing through a mask 7 having a pattern that transmits only desired frequency components, and reflected by a mirror 8. After retracing the same optical path and focusing the spatially wide light pulse on one point, the light pulse is reflected by a half mirror 9 and taken out, thereby finally completing the shaping of the light pulse waveform. What is shown in FIG. 7 is the result of this numerical calculation; the left side is the frequency spectrum, and the right side is the optical pulse waveform.

(a)のスペクトラムから(b)のように中心部分を除
去すると、パルス波形を整形できることかわかる。
It can be seen that the pulse waveform can be shaped by removing the central portion from the spectrum of (a) as shown in (b).

[発明か解決しようとする課題〕 しかしながら本パルス整形方法においては、不要な周波
数整形をマスクによって遮断し除去するので、周波数成
分の一部が失われる。したがって、所期の処理が終了し
た後次段でまた別な波形整形を行うことは不可能であっ
た。
[Problems to be Solved by the Invention] However, in this pulse shaping method, unnecessary frequency shaping is blocked and removed by a mask, so that some frequency components are lost. Therefore, it is impossible to perform another waveform shaping at the next stage after the intended processing is completed.

本発明の目的は、従来のパルス波形整形方法において、
一部の周波数成分が処理の過程で失われるという欠点を
解決し、所期のパルス波形整形の処理が終了した後、次
段でまた別な波形整形を行うことか可能な手段を提供す
ることにある。
The object of the present invention is to
To solve the drawback that some frequency components are lost in the process of processing, and to provide a means by which another waveform shaping can be performed at the next stage after the intended pulse waveform shaping processing is completed. It is in.

[課題を解決するための手段1 本発明は光増幅をパルス波形整形の手段として用いるこ
とを最も主要な特徴とし、整形後も元の周波数成分が全
て保存される点が従来の技術とは異なる。
[Means for solving the problem 1 The main feature of the present invention is that optical amplification is used as a means for shaping pulse waveforms, and it differs from conventional technology in that all original frequency components are preserved even after shaping. .

[作用] この発明の光パルス整形方法によれば、一部の周波数成
分を処理の過程で失わせることなく、波形整形後も全周
波数成分を保存できるので、次段でまた別な波形成形を
行うことかできる。
[Operation] According to the optical pulse shaping method of the present invention, all frequency components can be preserved even after waveform shaping without losing some frequency components in the processing process, so another waveform shaping can be performed in the next stage. I can do what I want to do.

[実施例] (1)第1実施例 以下、図面をもって詳細を説明する。第1図は本発明の
光パルス整形方法の光学系を示す図であり、1はレーザ
光源、2は光ファイバ、384は1対の回折格子、5は
レンズ、6はスリット、8はミラー、9はハーフミラ−
1I3−1はErドープファイバを利得媒質とする光増
幅ユニット、10はレーザパルス、11はチャーブパル
ス、12は整形されたパルスである。
[Example] (1) First Example The details will be explained below with reference to the drawings. FIG. 1 is a diagram showing the optical system of the optical pulse shaping method of the present invention, in which 1 is a laser light source, 2 is an optical fiber, 384 is a pair of diffraction gratings, 5 is a lens, 6 is a slit, 8 is a mirror, 9 is a half mirror
1I3-1 is an optical amplification unit using an Er-doped fiber as a gain medium, 10 is a laser pulse, 11 is a chirb pulse, and 12 is a shaped pulse.

次に、光増幅コニノ)13 1を第2図によって説明す
る。図において、13−1の先増幅コニ。
Next, the optical amplifier 131 will be explained with reference to FIG. In the figure, 13-1 first amplification.

トチアリ、I4のE r F−ブファイバを利得媒質と
する光増幅素子の1次元アレイ、15はポンプ光源、1
6はポンプ光源用のマスク、I7は合分波器、18は信
号波長の光のみを通過させる帯域通過フィルタ、19は
1次元のレンズアレイから成る。なお、Erドープファ
イバを増幅素子として用いるので、■のレーザ光源の波
長は、利得が最大となる1、55μmとし、15のポン
プ光源の励起効率の高い波長098μmのレーザとする
。均一な周波数スペクトル分布を生成する過程までは従
来法と同一であるので、それ以降の処理についてのみ説
明する。
A one-dimensional array of optical amplification elements using E r F-fiber as a gain medium, 15 is a pump light source, 1
6 is a mask for the pump light source, I7 is a multiplexer/demultiplexer, 18 is a band pass filter that passes only light of the signal wavelength, and 19 is a one-dimensional lens array. Since an Er-doped fiber is used as an amplification element, the wavelength of the laser light source (2) is set to 1.55 μm, which provides the maximum gain, and the pump light source (15) is a laser having a wavelength of 098 μm, which has a high pumping efficiency. Since the process up to the generation of a uniform frequency spectrum distribution is the same as the conventional method, only the subsequent processing will be described.

先ず、予め生成すべき光パルス波形をフーリエ変換して
周波数スペクトラムを求める。増幅すべき周波数成分の
位置にある光増幅素子のみを選択的に励起するために、
16のマスクで該当する光増幅素子のみを照射するよう
ポンプ光透過させる。
First, the optical pulse waveform to be generated in advance is Fourier transformed to obtain a frequency spectrum. In order to selectively excite only the optical amplification element located at the position of the frequency component to be amplified,
The pump light is transmitted through a mask No. 16 so as to irradiate only the corresponding optical amplification element.

このポンプ光と増幅すべき信号光の周波数成分を17の
き波器で合波して14のファイバに入射させ、信号光を
増幅する。光ファイバを通過した光は8のミラーで反射
し、同一の光路を逆進して再度光ファイバで増幅された
後、18の波長フィルタでポンプ光か除去され増幅され
た光のみが通過し、4.3の回折格子で回折され9のハ
ーフミラ−で系の外部に取り出されることによって最終
的に光パルス波形の整形か完成する。
The frequency components of this pump light and the signal light to be amplified are multiplexed by a 17 waver and input into 14 fibers to amplify the signal light. The light that has passed through the optical fiber is reflected by mirror 8, travels the same optical path backwards, and is amplified again by the optical fiber, after which the pump light is removed by wavelength filter 18 and only the amplified light passes through. The light is diffracted by the diffraction grating 4.3 and taken out of the system by the half mirror 9, thereby completing the shaping of the optical pulse waveform.

前述の従来法と本実施例の主な相違点は、従来法か生成
すべき光パルス波形の周波数スペクトラムに応じて、所
望の周波数成分のみを透過させマスクによって不要の周
波数成分を除去していたのに対して、本発明では所望の
周波数成分のみを選択的に増幅する点にある。光学系の
構成で従来と異なる箇所は、7のマスクによって不要な
周波数成分を除去するのと異なり、光増幅ユニットを用
いている点である。光パルスを利得媒質を往復させて所
望の周波数成分のみを選択的に増幅することによって、
不要な周波数の光強度に比べて光強度を十分に大きくて
きるので、不要成分のパルス波形に与える影響は殆んと
無視てきる。したかって、所望の周波数成分のみを選択
的に増幅することは不要な周波数を除去するのと等価と
見なせる。
The main difference between the conventional method and this embodiment is that the conventional method transmits only desired frequency components and removes unnecessary frequency components using a mask, depending on the frequency spectrum of the optical pulse waveform to be generated. In contrast, the present invention is characterized in that only desired frequency components are selectively amplified. The difference in the configuration of the optical system from the conventional one is that an optical amplification unit is used instead of removing unnecessary frequency components using a mask in step 7. By reciprocating the optical pulse through a gain medium and selectively amplifying only the desired frequency components,
Since the light intensity is made sufficiently large compared to the light intensity of unnecessary frequencies, the influence of unnecessary components on the pulse waveform can be almost ignored. Therefore, selectively amplifying only desired frequency components can be considered equivalent to removing unnecessary frequencies.

(2)第2実施例 第3図に示すものは、第1図中の光増幅ユニ。(2) Second embodiment What is shown in FIG. 3 is the optical amplification unit shown in FIG.

ト13−1に代えて設けられた光増幅ユニ、ト13−2
てあり、光増幅媒質として光屈折結晶を用いたものであ
る。20は光屈折結晶を利得媒体とする光増幅素子の1
次元アレイ、21はポンプ光源用のマスク、22はポン
プ光、23はポンプ光と信号光の干渉によって形成され
た回折格子である。第2実施例と異なる光増幅方法つい
てのみ説明する。本光増幅方法は2光波混合を用いるも
ので、微弱な信号光とこれとコヒーレントなポンプ光を
結晶に入射させると、結晶の光屈折効果によって両者の
干渉縞に相当する屈折率が変調を生じ回折格子が結晶内
に形成される。ポンプ光はこの回折格子によって回折さ
れ、信号光にそのエネルギーが移行し信号光か強められ
る。代表的な光屈折結晶としては、BaTiO3等の強
誘電体結晶やGaAs等の化合物半導体があり、光屈折
効果の感度は使用波長によって異なる。
Optical amplification unit provided in place of G 13-1, G 13-2
It uses a photorefractive crystal as the optical amplification medium. 20 is one of the optical amplification elements using a photorefractive crystal as a gain medium.
In the dimensional array, 21 is a mask for a pump light source, 22 is a pump light, and 23 is a diffraction grating formed by interference of the pump light and signal light. Only the optical amplification method different from the second embodiment will be explained. This optical amplification method uses two-wave mixing. When a weak signal light and a coherent pump light are incident on a crystal, the refractive index corresponding to the interference fringes of both modulates due to the light refraction effect of the crystal. A diffraction grating is formed within the crystal. The pump light is diffracted by this diffraction grating, and its energy is transferred to the signal light, thereby intensifying the signal light. Typical photorefractive crystals include ferroelectric crystals such as BaTiO3 and compound semiconductors such as GaAs, and the sensitivity of the photorefractive effect varies depending on the wavelength used.

(3)第3実施例 第4図に示すものは、第1図中の光増幅ユニ。(3) Third embodiment What is shown in FIG. 4 is the optical amplification unit shown in FIG.

ト13−1に代えて設けられた光増幅ユニットl3−3
であり、光増幅媒質として半導体レーザを用いたもので
、24は半導体レーザの端面に無反射コートを施した光
増幅素子の1次元アレイ、25はそれらの電流源である
。第1実施例および第2実施例と異なる光増幅方法の部
分のみを説明する。本光増幅素子の場合には、電流を順
方向に注入し励起状態を保っておき、そこに微弱な信号
光を入射させ誘導放出を引き起こさせ光増幅を行う。
Optical amplification unit l3-3 provided in place of g13-1
A semiconductor laser is used as an optical amplification medium, and 24 is a one-dimensional array of optical amplification elements each having an anti-reflection coating applied to the end face of the semiconductor laser, and 25 is a current source thereof. Only the parts of the optical amplification method that are different from the first and second embodiments will be explained. In the case of this optical amplification element, a current is injected in the forward direction to maintain an excited state, and a weak signal light is made incident thereon to cause stimulated emission and optical amplification is performed.

雑音の原因となる自然放出光は18の狭帯域通過フィル
タで除去する。信号光の吸収を避けるためには、波長は
半導体の工早ルギー幅よりも小さく(波長は長く)なけ
ればならない。
Spontaneous emission light that causes noise is removed by 18 narrow band pass filters. In order to avoid absorption of signal light, the wavelength must be smaller (longer) than the semiconductor energy width.

[発明の効果E・ 以上説明したように、この発明の光パルス整形方法によ
れば、一部の周波数成分が処理の過程で失われるという
従来の欠点を解決し、波形整形後も全周波数成分を保存
できるので、次段でまた別な波形成形を行うことかでき
るという利点かある。
[Effect of the invention E. As explained above, according to the optical pulse shaping method of the present invention, the conventional drawback that some frequency components are lost during the processing process is solved, and even after waveform shaping, all frequency components are This has the advantage of being able to store a different waveform shape in the next stage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光パルス整形方法の光学系を説明する
図、第2図は第1実施例の光増幅ユニット13−1の概
略構成図、第3図は第2実施例の光増幅ユニット13−
2の概略構成図、第4図は第3実施例の光増幅ユニソ)
13 3の概略構成図である。 第5図は従来の光パルス整形方法の光学系を説明する図
、第6図中(a)は線形チャーピングを受けたパルス波
形、(b)は周波数、(C)は周波数スペクトラム、(
d)は時間差を補正して圧縮した短パルス、第7図は従
来法の光パルス整形の整形前(a)および整形後(b)
の数値計算結果を示す図であり、それぞれ左側が周波数
スペクトラム、右側がその光パルス波形である。 3.4・・・・・・一対の回折格子、5・・・・・レン
ズ、8.・・、、・ミラー、9・・・・・・ハーフミラ
−115・・・・・・ポンプ光源、7,16.21・・
・・・・マスク、14,20゜24・・・・・・増幅素
子の一次アレイ。
FIG. 1 is a diagram explaining the optical system of the optical pulse shaping method of the present invention, FIG. 2 is a schematic configuration diagram of the optical amplification unit 13-1 of the first embodiment, and FIG. 3 is an optical amplification diagram of the second embodiment. Unit 13-
2 is a schematic diagram of the configuration, and FIG. 4 is the optical amplification unit of the third embodiment)
133 is a schematic configuration diagram. FIG. 5 is a diagram explaining the optical system of the conventional optical pulse shaping method. In FIG. 6, (a) is the pulse waveform subjected to linear chirping, (b) is the frequency, (C) is the frequency spectrum, (
d) is a short pulse compressed by correcting the time difference, and Figure 7 shows before (a) and after (b) optical pulse shaping using the conventional method.
FIG. 2 is a diagram showing the results of numerical calculations, in which the left side shows the frequency spectrum and the right side shows the optical pulse waveform. 3.4...Pair of diffraction gratings, 5...Lens, 8. ...Mirror, 9...Half mirror 115...Pump light source, 7,16.21...
...Mask, 14,20°24...Primary array of amplification elements.

Claims (1)

【特許請求の範囲】[Claims] 光パルスを周波数成分毎に空間的に分離し、特定の周波
数成分の光強度のみを選択的に増幅し、再び空間的に集
光することによって、光パルス波形を整形する方法を、
周波数成分を空間的に分離する1対の回折格子、空間的
に分離された周波数成分のうち増幅すべき特定の成分の
みをフィルタリングするマスク、光増幅素子、光増幅素
子を励起するポンプ光源、ミラーやハーフミラー、レン
ズ等の光学系を用いて行うことを特徴とする光パルス整
形方法。
A method of shaping the waveform of an optical pulse by spatially separating the optical pulse into each frequency component, selectively amplifying only the optical intensity of a specific frequency component, and spatially focusing the light again.
A pair of diffraction gratings that spatially separate frequency components, a mask that filters only a specific component to be amplified among the spatially separated frequency components, an optical amplification element, a pump light source that excites the optical amplification element, and a mirror. An optical pulse shaping method characterized by using an optical system such as a mirror, a half mirror, or a lens.
JP32452290A 1990-11-27 1990-11-27 Optical pulse shaping method Expired - Fee Related JP2840713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32452290A JP2840713B2 (en) 1990-11-27 1990-11-27 Optical pulse shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32452290A JP2840713B2 (en) 1990-11-27 1990-11-27 Optical pulse shaping method

Publications (2)

Publication Number Publication Date
JPH04191826A true JPH04191826A (en) 1992-07-10
JP2840713B2 JP2840713B2 (en) 1998-12-24

Family

ID=18166740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32452290A Expired - Fee Related JP2840713B2 (en) 1990-11-27 1990-11-27 Optical pulse shaping method

Country Status (1)

Country Link
JP (1) JP2840713B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
US6061172A (en) * 1998-04-27 2000-05-09 Fujitsu Limited Active optical fiber and optical fiber amplifier
US6501592B2 (en) 1998-04-27 2002-12-31 Fujitsu Limited Optical amplifier reflecting spontaneous emission back into the amplifier to improve efficiency
JP2008235340A (en) * 2007-03-16 2008-10-02 Fujikura Ltd Optical pulse generator and optical fiber laser device
WO2009133477A1 (en) * 2008-02-26 2009-11-05 Li Ming Spectra shaping scheme for chirped pluse amplication
WO2009133478A1 (en) * 2008-02-26 2009-11-05 Li Ming Self-collimator planar spectroscopy shaping device for chirped-pulse-amplificaition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055094A (en) * 1998-03-20 2000-04-25 Fujitsu Limited Optical amplifying apparatus
US6061172A (en) * 1998-04-27 2000-05-09 Fujitsu Limited Active optical fiber and optical fiber amplifier
US6501592B2 (en) 1998-04-27 2002-12-31 Fujitsu Limited Optical amplifier reflecting spontaneous emission back into the amplifier to improve efficiency
JP2008235340A (en) * 2007-03-16 2008-10-02 Fujikura Ltd Optical pulse generator and optical fiber laser device
WO2009133477A1 (en) * 2008-02-26 2009-11-05 Li Ming Spectra shaping scheme for chirped pluse amplication
WO2009133478A1 (en) * 2008-02-26 2009-11-05 Li Ming Self-collimator planar spectroscopy shaping device for chirped-pulse-amplificaition
GB2473144A (en) * 2008-02-26 2011-03-02 Ming Li Spectra shaping scheme for chirped pluse amplication
GB2473145A (en) * 2008-02-26 2011-03-02 Ming Li Self-collimator planar spectroscopy shaping device for chirped-pulse-amplificaition
GB2473145B (en) * 2008-02-26 2012-06-27 Ming Li Self-collimator planar spectroscopy shaping device for chirped-pulse-amplificaition
GB2473144B (en) * 2008-02-26 2012-08-15 Ming Li Spectra shaping method for chirped pluse amplication

Also Published As

Publication number Publication date
JP2840713B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5499134A (en) Optical pulse amplification using chirped Bragg gratings
DE69302740T2 (en) Optical multi-circulation noise source with variable spectral width
EP0569353B1 (en) Rare-earth-doped lithium niobate waveguide structures
US5148323A (en) Local reference beam generator
KR102338206B1 (en) Laser device and waveform control method
DE102009045703A1 (en) Laser device i.e. driver laser, for use in extreme-UV-light source device, has longitudinal mode-control units for adjusting main oscillator, such that wavelengths of laser lights are included in one of amplification lines
JPH04250429A (en) Optical fiber amplifier
CN111856644B (en) Apodized long-period fiber bragg grating inscription device, inscription method and laser system
JPH04191826A (en) Light pulse shaping method
DE69121768T2 (en) Fiber optic amplifier
CN112366504A (en) Radial polarized light parameter amplifier insensitive to polarization and amplification method
JP4041079B2 (en) Sweeped broadband broadband Raman pump source
GB2076215A (en) Process and device for delivering a monochromatic light beam by stimulated scattering
US7133427B2 (en) Phase conjugate laser and method with improved fidelity
DE69210130T2 (en) Optical amplifier with a semiconductor laser as a multiplexer
CA2657497C (en) Spectral spreading and control device for high peak power pulse lasers
US20070047597A1 (en) Pulse picking and cleaning in short pulse high energy fiber laser system
JP2897076B2 (en) Optical fiber amplifier
JPH04191827A (en) Optical image processing method
CN114384627B (en) Mixed-period multiphase shift long-period fiber grating and preparation method thereof
EP1794853B1 (en) Spatial filter for phase conjugate laser
Smirnov et al. Chirped bulk Bragg gratings in PTR glass for ultrashort pulse stretching and compression
JPH02153327A (en) Light amplification module
CN115084984A (en) 920nm femtosecond optical parameter laser with high power and high signal-to-noise ratio
CN113948956A (en) Spectrum broadening system and laser amplification spectrum broadening method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees