JPH0419072Y2 - - Google Patents
Info
- Publication number
- JPH0419072Y2 JPH0419072Y2 JP1987091961U JP9196187U JPH0419072Y2 JP H0419072 Y2 JPH0419072 Y2 JP H0419072Y2 JP 1987091961 U JP1987091961 U JP 1987091961U JP 9196187 U JP9196187 U JP 9196187U JP H0419072 Y2 JPH0419072 Y2 JP H0419072Y2
- Authority
- JP
- Japan
- Prior art keywords
- ice
- piles
- steel
- water
- frozen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000007710 freezing Methods 0.000 claims description 11
- 230000008014 freezing Effects 0.000 claims description 10
- 229920000098 polyolefin Polymers 0.000 claims description 7
- 229920003002 synthetic resin Polymers 0.000 claims description 7
- 239000000057 synthetic resin Substances 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 5
- 229920006311 Urethane elastomer Polymers 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011414 polymer cement Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- BLDFSDCBQJUWFG-UHFFFAOYSA-N 2-(methylamino)-1,2-diphenylethanol Chemical compound C=1C=CC=CC=1C(NC)C(O)C1=CC=CC=C1 BLDFSDCBQJUWFG-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011527 polyurethane coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000005413 snowmelt Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Landscapes
- Piles And Underground Anchors (AREA)
- Revetment (AREA)
Description
産業上の利用分野
この考案は、寒冷地において使用する鋼管杭・
鋼矢板等の水域構造物構成用鋼製部材に対する流
氷・凍着氷対策に関する。
従来の技術
(1) 冬期に流氷・結氷が見られる地域では、これ
らにより、海岸線や河川護岸が年々侵食されて
いる。その対策の1つとして鋼管杭、鋼矢板、
鋼管矢板等の水中打込部材による護岸等の防氷
施設が建設されているが、通常の腐食以外に流
氷・結氷による摩耗・衝撃が付加され、施設の
耐久性に問題が発生している。特にコンクリー
ト構造物による防護施設の場合には、前記以外
にコンクリートの凍結融解作用によりその劣化
は著しい。
(2) また、湖沼につくられた桟橋用基礎杭の表面
に湖沼水が凍着・結氷し春先における湖沼への
雪解け水流入に伴う増水により、基礎杭の表面
に密着した凍着氷が水位上昇に伴い上方に移動
するがこの時、基礎杭を同時に引きあげ、桟橋
施設が破壊するという事故が発生している。類
似の事故がダムの貯水池における取水塔基礎に
おいても発生している。
これらの事故を防止するために従来より基礎
杭の回りをエアーでバブリングし凍着させない
方法が採用されているが、コストが高く、また
維持、管理がたいへんである。
(3) さらに、河川の結氷が春先にゆるみ河下に向
つて流下していく時には、河川護岸を強くこす
つて行き、河川護岸を摩耗し、河川護岸の安定
上問題が生じていた。
このため、護岸全面をコンクリートでライニ
ングするなどの方法がとられていたが、コスト
が高く、またライニングしたコンクリートが損
傷するという問題があつた。
考案が解決しようとする問題点
本考案は、前述の従来技術の問題点を有利に解
決する技術的手段を提供することを目的とするも
のであつて流氷・凍着氷対策の必要な水域構造物
構成用鋼製部材に対して優れた耐凍着性、耐摩耗
性、防食性等を付与しようとするものである。
問題点を解決するための手段
すなわち、本考案は河川や、湖沼等あるいは、
港湾・海洋等の水域で使用する構造物構成用鋼製
部材において少なくとも水位の変動および水流に
より、流氷または凍着氷が摺動する範囲が、耐候
性、耐海水性、耐衝撃性、耐摩耗性、耐凍着性を
有する合成樹脂系被覆材で被覆されている部材を
使用することを特徴とする流氷・凍着氷および腐
食対策を施した構造物構成用鋼製部材にある。
以下、詳細に説明する。
本考案に係わる鋼製部材は、前記したごとき、
流氷や凍着氷および腐食対策の必要な部材であ
り、たとえば鋼管杭、鋼矢板、鋼管矢板、あるゆ
る水中打込み鋼製部材が挙げられる。又防氷堤、
石油掘削リグなどの構造部材等が挙げられる。
本考案者はこの鋼製部材の必要部分を合成樹脂
系被覆材で被覆することにつき検討を行つた。
たとえば、各種合成樹脂系被覆材について、凍
着強度を調べたところ、ポリオレフイン系、ポリ
ウレタン系において特に優れた結果が得られた
(第1表)。ポリオレフイン系としては低密度ポリ
エチレン(以下LDPEと記す)、中密度ポリエチ
レン(以下MDPEと記す)、高密度ポリエチレン
(以下HDPEと記す)やポリプロピレンが好まし
くLDPEが特に好ましい。
又、ポリウレタン系としては、ウレタン系エラ
ストマーが特に好ましい。
又、表面粗度は大となると凍着強度も大となる
が、表面粗度がほぼ20μ以下となると凍着強度は
表面粗度が影響されない(第7図)。
以下図面に基づき説明する。
第1図a図は結氷し基礎杭1の周囲に氷2が凍
着した状況を示し、b図は春先の雪融水等が湖沼
等に流入したため、増水し凍着氷が上昇する時
に、基礎杭を引きぬいた状況を示す。
米国五大湖では、基礎杭として、松などの木杭
が使用されているものもあるが、上記の問題が発
生している。
鋼杭、コンクリート杭等を使用する場合にも上
向きの引抜き力が作用するので、根入れ長を増や
す必要があり、コスト高となつていた。
第2図は本考案の実施例で、第2図aは基礎杭
の特定範囲を本考案にある合成樹脂系被覆材3で
被覆した状態を示し、第2図bは前記被覆材は凍
着強度が極めて小さいので、水位上昇の初期に被
覆材3と凍着氷との付着が切れてしまい、氷2だ
けが抜けあがつた状態を示す。
水位の変動に伴い氷が上下し被覆材を摩耗する
が、前記被覆材3は氷による摩耗に対しても十分
な耐久性がある。
第3図aは河川における結氷が、春先にゆる
み、河川を流下していく時に河川護岸1を擦つて
いる状態を示し、第3図bは護岸を構成する氷中
打込み部材1の特定範囲を本考案にある合成樹脂
系被覆材3で被覆した状態を示す。
該被覆材は氷による摩耗に強いので、水中打込
み部材が、損傷することがない。
また、凍着強度も小さく、表面も滑らかなので
氷も流れやすい。
第4図aは、沿岸に設置される防氷堤1を示
し、冬期に流氷が押しよせ、沿岸の養殖施設を破
壊するのを防止するための施設である。
本考案にある合成樹脂系被覆材で第4図bに示
すように被覆することにより、防氷堤に作用する
氷力を低減するとともに、氷がスライドアツプす
る時に部材を擦つていくが摩耗を防止することが
できる。
第5図は鋼矢板を被覆した本考案例で、第6図
は鋼管杭を被覆した本考案例である。
実施例
アラスカのベツセル市 KUSKOKWIM
RIVERの護岸としてポリエチレン被覆鋼管杭
(ポリオレフイン系被覆)、ウレタンエラストマー
被覆鋼管杭(ウレタン系)及びポリマーセメント
被覆鋼管杭を打設し、実曝露を実施した。なお、
この地域は、冬期には完全に河川が結氷して−
140℃にも達し、春の雪融けとともに、川に張り
つめた氷が融解し、川を流れ下る時に、鋼管杭の
表面を摩擦(摩耗)していくものである。次に曝
露サンプルと、実曝露結果を示す。
なお、鋼管杭としては600φ×12mのスパイラ
ル溶接鋼管を使用しその外周面に被覆を施した。
曝露の結果最も良好なものは低密度ポリエチレ
ンとブタジエン系ウレタンエラストマーであり、
次には高密度ポリエチレンとアジプレン系ウレタ
ンエラストマー及びヒマシ油系ウレタンエラスト
マーで、ポリマーセメントは摩耗量が大きく、一
部割れも発生しており、良好な結果は得られなか
つた。
結果を第2表に示す。
Industrial Application Fields This idea is suitable for steel pipe piles and pipes used in cold regions.
Concerning countermeasures against drift ice and frozen ice for steel members for constructing water body structures such as steel sheet piles. Conventional technology (1) In areas where drift ice and ice formation occur during the winter, coastlines and river banks are eroded year after year by these ice formations. One of the countermeasures is steel pipe piles, steel sheet piles,
Anti-icing facilities such as seawalls are being constructed using underwater driven members such as steel pipe sheet piles, but in addition to normal corrosion, they are also subject to abrasion and impact from drifting ice and freezing, causing problems with the durability of the facilities. Particularly in the case of protective facilities made of concrete structures, their deterioration is significant due to freezing and thawing effects of the concrete in addition to the above. (2) In addition, lake water freezes and freezes on the surface of foundation piles for piers built in lakes and marshes, and as the water increases due to the inflow of melted snow into lakes and marshes in early spring, the frozen ice that adheres to the surface of the foundation piles increases the water level. As it rises, it moves upwards, but at this time, the foundation piles are pulled up at the same time, causing an accident in which the pier facilities are destroyed. Similar accidents have also occurred at the foundations of water intake towers in dam reservoirs. In order to prevent these accidents, the conventional method of bubbling air around the foundation piles to prevent freezing has been adopted, but this method is expensive and difficult to maintain and manage. (3) Furthermore, when river ice loosens in early spring and flows downstream, it rubs strongly against the river embankment, causing wear and tear on the river embankment, causing problems with the stability of the river embankment. For this reason, methods such as lining the entire surface of the seawall with concrete have been taken, but this has been expensive and has the problem of damaging the concrete lining. Problems to be Solved by the Invention The purpose of the present invention is to provide a technical means for advantageously solving the problems of the prior art described above, and is aimed at providing a water body structure that requires countermeasures against drift ice and frozen ice. The objective is to impart excellent anti-freezing properties, abrasion resistance, anti-corrosion properties, etc. to steel members for product construction. Means to solve the problem In other words, the present invention is applicable to rivers, lakes, marshes, etc.
Steel members for structures used in water areas such as ports and oceans must have weather resistance, seawater resistance, impact resistance, and abrasion resistance, at least in the area where drift ice or frozen ice slides due to water level fluctuations and water currents. The present invention relates to a steel member for constructing a structure that is protected against drift ice, frozen ice, and corrosion, and is characterized by using a member coated with a synthetic resin-based coating material having properties such as hardness and freeze resistance. This will be explained in detail below. The steel member according to the present invention is as described above.
These are members that require countermeasures against drift ice, frozen ice, and corrosion, such as steel pipe piles, steel sheet piles, steel pipe sheet piles, and all types of submerged steel members. Also, ice breakwater,
Examples include structural members of oil drilling rigs and the like. The present inventor investigated the possibility of covering the necessary portions of this steel member with a synthetic resin coating material. For example, when we investigated the freezing strength of various synthetic resin coating materials, particularly excellent results were obtained for polyolefin and polyurethane coating materials (Table 1). As the polyolefin type, low density polyethylene (hereinafter referred to as LDPE), medium density polyethylene (hereinafter referred to as MDPE), high density polyethylene (hereinafter referred to as HDPE) and polypropylene are preferred, and LDPE is particularly preferred. Further, as the polyurethane type, urethane type elastomer is particularly preferable. Furthermore, as the surface roughness increases, the adhesion strength also increases, but when the surface roughness is approximately 20μ or less, the adhesion strength is not affected by the surface roughness (Figure 7). This will be explained below based on the drawings. Figure 1a shows a situation in which ice 2 has frozen around the foundation pile 1, and Figure b shows a situation in which ice 2 has frozen around the foundation pile 1, and Figure b shows a situation where snowmelt water from early spring flows into lakes and marshes, so when the water rises and the frozen ice rises. This shows the situation after the foundation piles have been pulled out. In some of the Great Lakes in the United States, wooden piles such as pine are used as foundation piles, but the above-mentioned problems occur. Even when steel piles, concrete piles, etc. are used, upward pull-out force acts, so it is necessary to increase the penetration length, resulting in high costs. Figure 2 shows an embodiment of the present invention; Figure 2a shows a specific area of a foundation pile covered with the synthetic resin covering material 3 of the present invention, and Figure 2b shows that the covering material is frozen. Since the strength is extremely low, the adhesion between the coating material 3 and the frozen ice breaks at the beginning of the rise in the water level, and only the ice 2 has broken off. As the water level fluctuates, ice rises and falls and wears down the covering material, but the covering material 3 has sufficient durability against wear caused by ice. Figure 3a shows the state in which ice in a river loosens in early spring and rubs against the river bank 1 as it flows down the river, and Figure 3b shows a specific range of the members 1 driven into the ice that make up the bank. A state covered with the synthetic resin coating material 3 according to the present invention is shown. Since the coating is resistant to ice abrasion, the underwater driving parts are not damaged. In addition, the freezing strength is low and the surface is smooth, so ice flows easily. FIG. 4a shows an ice break 1 installed on the coast, which is a facility to prevent drift ice from pushing away in winter and destroying aquaculture facilities on the coast. By coating the ice breakwater with the synthetic resin coating material of the present invention as shown in Figure 4b, it is possible to reduce the ice force that acts on the ice breakwater, and also to reduce the wear and tear of the ice that rubs against the members when they slide up. It can be prevented. Fig. 5 shows an example of the invention in which steel sheet piles are covered, and Fig. 6 shows an example of the invention in which steel pipe piles are covered. Example: Bethusel, Alaska KUSKOKWIM
Polyethylene-coated steel pipe piles (polyolefin-based coating), urethane elastomer-coated steel pipe piles (urethane-based), and polymer cement-coated steel pipe piles were driven as bank protection for the RIVER, and actual exposure was conducted. In addition,
In this area, the rivers completely freeze over in the winter.
The temperature reaches 140 degrees Celsius, and as the snow melts in the spring, the ice on the river melts, causing friction (wear) on the surface of the steel pipe piles as it flows down the river. Next, we will show the exposure samples and actual exposure results. As the steel pipe pile, a 600φ x 12m spiral welded steel pipe was used, and its outer peripheral surface was coated. The products with the best exposure results were low-density polyethylene and butadiene-based urethane elastomers;
Next, high-density polyethylene, adiprene-based urethane elastomer, and castor oil-based urethane elastomer were used, but the polymer cement had a large amount of wear and some cracks occurred, so good results could not be obtained. The results are shown in Table 2.
【表】【table】
【表】【table】
【表】【table】
【表】
考案の効果
本考案の効果は、以下の通り
1 凍着強度が小さい。
ポリオレフイン系被覆材あるいは、ウレタン系
被覆材は、実験結果からもわかるように、その凍
着強度は、コンクリートの約1/20、鋼の約1/10で
あるため、水中打込部材の表面をこれらの材料で
被覆すると、水位の上昇、下降に伴い凍着氷から
伝達される引抜き、押込み力は、極めて小さくな
り、水中打込部材の土中への根入れ長さを短かく
でき、かつ水中打込部材根入れ下端の地盤強度も
小さくてすむ。すなわち、土中への根入れ長が少
なくてもよいので極めて経済的である。
2 耐摩耗性に優れている。
ポリオレフイン系被覆材あるいは、ウレタン系
被覆材は、実験結果からもわかるように、氷によ
る摩耗量は、コンクリートの約1/20、鋼の約1/2
であるため、水中打込部材の表面をこれらの材料
で被覆すると凍着した氷が水位の変動に伴い上下
に摺動(この時は、すでに氷と部材との縁が切れ
ている)しても摩耗量が少ないので、コンクリー
トの20倍、鋼の2倍の耐久性を保持することがで
きる。
また、河川護岸等に、前述の水中打込部材を使
用すると、河川を流下していく氷による摩耗量も
少なく耐久性のある護岸とすることができる。
3 防食性に優れている。
流氷・対策を施こす必要のある部位は、流氷、
凍着による摩耗や、引抜き、押込み作用に抵抗す
るだけでなく、塩分や紫外線に対する長期耐久性
すなわち防食性が要求される。
ポリオレフイン系被覆材あるいは、ウレタン系
被覆材は、この長期防食性に優れたものである。
なお、港湾・海洋などで鋼製部材を使用する場
合、鋼材の腐食の激しい部位(低水位以下約1.0
m〜飛沫帯)と流氷・凍着氷の影響をうける部位
とは、ほとんど一致している。[Table] Effects of the invention The effects of the invention are as follows: 1. Freezing strength is small. As can be seen from experimental results, the freezing strength of polyolefin-based or urethane-based covering materials is approximately 1/20 that of concrete and 1/10 that of steel, so it is difficult to protect the surface of parts cast in water. When coated with these materials, the pulling and pushing forces transmitted from frozen ice as the water level rises and falls becomes extremely small, making it possible to shorten the length of penetration of underwater parts into the soil. The ground strength at the lower end of the underwater driven member is also small. In other words, it is extremely economical because the length of penetration into the soil may be small. 2 Excellent wear resistance. As can be seen from experimental results, polyolefin-based or urethane-based covering materials wear out due to ice at about 1/20th that of concrete and about 1/2 that of steel.
Therefore, when the surface of a component driven underwater is coated with these materials, the frozen ice will slide up and down as the water level changes (at this time, the edge between the ice and the component has already been cut). It also has less wear and tear, making it 20 times more durable than concrete and twice as durable as steel. Further, when the above-mentioned submersible driven member is used in a river revetment or the like, the revetment can be made durable with less wear due to ice flowing down the river. 3 Excellent corrosion resistance. Drift ice/The areas where measures need to be taken are drift ice,
In addition to resisting abrasion due to freezing, pulling out, and pushing, it is also required to have long-term durability against salt and ultraviolet light, that is, corrosion resistance. Polyolefin coating materials or urethane coating materials have excellent long-term corrosion protection. In addition, when using steel members in ports, oceans, etc., it is important to note that when steel members are used in areas where the steel material is severely corroded (approximately 1.0
The areas affected by drift ice and frozen ice are almost the same.
第1図a,b、第2図a,bは立面図、第3図
a,bは斜視図、第4図a,bは立面図、第5図
a,cは正面図、第5図bは第5図aの側面図、
第5図dは第5図cの側面図、第6図aは正面
図、第6図bは第6図aの側面図である。第7図
は凍着強度と粗度との関係を示す図である。
1……構造物(基礎杭等)、2……氷、3……
被覆材。
Figures 1a and b and 2a and b are elevational views, Figures 3a and b are perspective views, Figures 4a and b are elevational views, Figures 5a and c are front views, and Figure 5b is a side view of Figure 5a;
5d is a side view of FIG. 5c, FIG. 6a is a front view, and FIG. 6b is a side view of FIG. 6a. FIG. 7 is a diagram showing the relationship between freezing strength and roughness. 1...Structures (foundation piles, etc.), 2...Ice, 3...
Covering material.
Claims (1)
用する構造物構成部材において、少なくとも水位
の変動あるいは水流により、流氷または凍着氷が
摺動する範囲が、ポリオレフイン系あるいはポリ
ウレタン系の合成樹脂系被覆材で被覆されている
ことを特徴とする流氷・凍着氷対策を施した水域
構造物構成用鋼製部材。 For structural components used in rivers, lakes, or water bodies such as ports and oceans, at least the area where drift ice or frozen ice slides due to changes in water level or water flow is coated with polyolefin or polyurethane synthetic resin. A steel member for constructing water body structures that is coated with a material that prevents drift ice and freezing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987091961U JPH0419072Y2 (en) | 1987-06-17 | 1987-06-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987091961U JPH0419072Y2 (en) | 1987-06-17 | 1987-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS64631U JPS64631U (en) | 1989-01-05 |
JPH0419072Y2 true JPH0419072Y2 (en) | 1992-04-28 |
Family
ID=30953223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987091961U Expired JPH0419072Y2 (en) | 1987-06-17 | 1987-06-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0419072Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6098006A (en) * | 1983-11-04 | 1985-06-01 | Mitsui Eng & Shipbuild Co Ltd | Concrete structure in icy waters |
-
1987
- 1987-06-17 JP JP1987091961U patent/JPH0419072Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6098006A (en) * | 1983-11-04 | 1985-06-01 | Mitsui Eng & Shipbuild Co Ltd | Concrete structure in icy waters |
Also Published As
Publication number | Publication date |
---|---|
JPS64631U (en) | 1989-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5697736A (en) | Seawalls and shoreline reinforcement systems | |
Burcharth et al. | Types and functions of coastal structures | |
Smith | Types of marine concrete structures | |
JPH0419072Y2 (en) | ||
Barnes et al. | The Lincolnshire coastline and the 1953 storm flood | |
Elliott | ACCOUNT OF THE DYMCHURCH WALL, WHICH FORMS TH, E SEA DEFENCES OF ROMNEY MARSH.(INCLUDES PLATE). | |
Jenkins et al. | Opening and maintaining tidal lagoons & estuaries | |
Barker et al. | Ice rubble generation for offshore production structures: Current practices overview | |
Mackie | Concrete durability in small harbours: The Southern African experience | |
Abam et al. | Construction and performance of river bank erosion protection structure in the Niger Delta | |
Beltaos et al. | Ice-jam effects on Red River flooding and possible mitigation methods | |
Barker et al. | Overview of ice rubble generators and ice protection structures in temperate regions | |
EP0760036A1 (en) | A system for protecting harbors against sedimentation and for nourishing shores | |
O BRIEN | DISCUSSION. THE DYMCHURCH WALL, WHICH FORMS THE SEA DEFENCES OF ROMNEY MARSH. | |
CA2271580A1 (en) | The ryan wave reversing break wall | |
Edge et al. | Immediate impacts of Hurricane Ike on the Texas coast | |
Wortman | Construction of Navigation Canals Affording Operation at High Speed: Report | |
Davis | USA--Mississippi and Alabama | |
Hill et al. | Gold Coast Canal Revetment Wall Design | |
Maynord et al. | Upper Mississippi River System Navigation/Sedimentation Study. Report 1, Bank erosion literature study | |
BEARD et al. | CORRESPONDENCE. COAST EROSION. | |
Manual | Distribution Restriction Statement | |
Davis et al. | Wetland shoreline protection and erosion control: Design considerations | |
Sears et al. | Discussion on the Holland Dikes | |
Harts | Harbor Improvement on the Pacific Coast of the United States |