JPH04190680A - Inverter power source circuit - Google Patents

Inverter power source circuit

Info

Publication number
JPH04190680A
JPH04190680A JP2318622A JP31862290A JPH04190680A JP H04190680 A JPH04190680 A JP H04190680A JP 2318622 A JP2318622 A JP 2318622A JP 31862290 A JP31862290 A JP 31862290A JP H04190680 A JPH04190680 A JP H04190680A
Authority
JP
Japan
Prior art keywords
frequency
signal
converted
circuit
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2318622A
Other languages
Japanese (ja)
Other versions
JP3079564B2 (en
Inventor
Yoshiaki Doi
喜明 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP02318622A priority Critical patent/JP3079564B2/en
Publication of JPH04190680A publication Critical patent/JPH04190680A/en
Application granted granted Critical
Publication of JP3079564B2 publication Critical patent/JP3079564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain an inverter power source circuit which is low in loss and noise by driving a switching element with a signal obtained by performing pulse width modulation to the first converted-frequency signal, the frequency of which is lower than the self-resonant frequency of a converting transformer, with the second converted- frequency signal, the frequency of which is higher than the self-resonant frequency. CONSTITUTION:A half-wave division circuit 12 divides the first converted-frequency signal from a reference sine wave generation circuit 10 into two half-wave signals, the phases of which are shifted from each other by 180 deg., and the half-wave signals are respectively compared with a triangular-wave synchronizing signal 18 generated by a triangular-wave synchronizing signal generation circuit 11 as the second converted- frequency signal by means of PWM comparators 14 and 15 in a pulse width modulator circuit 13. As a result, a switching element driving signal which is modulated in pulse width is generated for driving switching elements 3 and 4. The first converted frequency is set lower than the self-resonant frequency of a converting transformer 5 and the second converted frequency is set higher than the self-resonant frequency, so that only sine waves which are the first converted frequency can be generated on the secondary side of the transformer 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインバータ電源回路に関し、特にDC−ACブ
ツシュ・プル・インバータ電源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inverter power supply circuit, and more particularly to a DC-AC bush-pull inverter power supply circuit.

〔従来の技術〕[Conventional technology]

従来、スイッチング・レギュレータにおけるDC−AC
ブツシュ・プル・インバータ電源回路として、第3図お
よび第4図に示すものがそれぞれ提案されている。第3
図に示すものは、直流電源lをDC−DCコンバータ2
で電圧変換、したものを、スイッチング素子3,4で断
続し、これを変換トランス5で電圧変換することでAC
出力を得ている。この場合、スイッチング素子3.4は
固定デユーティで駆動させている。また、第4図に示す
ものは、帰還用ダイオード8と昇降圧用インダクタ9を
備えており、スイッチング素子3.4の駆動デユーティ
を制御することによりインバータ電源回路自体に出力安
定化の機能を持たせている。
Conventionally, DC-AC in switching regulators
As bush-pull inverter power supply circuits, those shown in FIGS. 3 and 4 have been proposed. Third
What is shown in the figure is a DC power supply l connected to a DC-DC converter 2.
The voltage converted by the switching elements 3 and 4 is switched on and off, and then the voltage is converted by the conversion transformer 5.
I am getting output. In this case, the switching element 3.4 is driven with a fixed duty. Furthermore, the one shown in FIG. 4 is equipped with a feedback diode 8 and a buck-boost inductor 9, and by controlling the drive duty of the switching element 3.4, the inverter power supply circuit itself has an output stabilization function. ing.

なお、これらDC−ACインバータ回路には仮想線で示
すように、整流・平滑回路6が接続され、負荷回路7に
接続される。
Note that a rectifier/smoothing circuit 6 is connected to these DC-AC inverter circuits, as shown by imaginary lines, and is connected to a load circuit 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来のインバータ電源回路では、スイッチン
グ素子3,4を駆動する信号に矩形波を使用しているた
め、高効率化、小型化に伴ってスイッチング素子3.4
の駆動信号の高周波化を図ると、高調波の発生により変
換トランスでの損失が増加するという問題がある。また
、変換トランスの2次側に整流器を接続した場合に、そ
の整流器の逆回復特性により雑音を発生するという問題
がある。
In such a conventional inverter power supply circuit, a rectangular wave is used as a signal to drive the switching elements 3 and 4.
When increasing the frequency of the drive signal, there is a problem in that the loss in the conversion transformer increases due to the generation of harmonics. Furthermore, when a rectifier is connected to the secondary side of the conversion transformer, there is a problem in that noise is generated due to the reverse recovery characteristics of the rectifier.

これらを改善するために、変換トランスの1次側インダ
クタンスと結合コンデンサ等による共振回路を挿入した
共振型インバータ回路が提案されているが、この共振回
路の定数の選定が容易ではないことと、共振特性を利用
した場合、デユーティ制御をかけることが困難であり回
路が複雑になるという問題が生じる。
In order to improve these problems, a resonant inverter circuit has been proposed in which a resonant circuit is inserted using the primary inductance of the conversion transformer and a coupling capacitor, but it is not easy to select the constants of this resonant circuit, and the resonance When such characteristics are used, it is difficult to apply duty control and the circuit becomes complicated.

本発明の目的は、これらの問題を解消し、低損失、低雑
音のインバータ電源回路を提供することにある。
An object of the present invention is to solve these problems and provide an inverter power supply circuit with low loss and low noise.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のインバータ電源回路は、スイッチング素子を断
続させる駆動回路として、変換トランスの自己共振周波
数より低い第1の変換周波数信号を発生する手段と、こ
の自己共振周波数より高い第2の変換周波数信号を発生
する手段とを備えており、第1の変換周波数信号を第2
の変換周波数信号でパルス幅変調した信号で前記スイッ
チング素子を駆動するように構成する。
The inverter power supply circuit of the present invention has means for generating a first conversion frequency signal lower than the self-resonance frequency of the conversion transformer, and a second conversion frequency signal higher than the self-resonance frequency of the conversion transformer, as a drive circuit for switching on and off the switching elements. and means for generating the first converted frequency signal to a second converted frequency signal.
The switching element is configured to be driven by a signal pulse width modulated with a conversion frequency signal.

この場合、第1の変換周波数信号は基準正弦波信号であ
り、第2の変換周波数信号は三角波信号である。
In this case, the first converted frequency signal is a reference sine wave signal and the second converted frequency signal is a triangular wave signal.

〔作用〕[Effect]

本発明によれば、変換トランスの自己共振周波数より低
い第1の変換周波数信号を、自己共振周波数よりも高い
第2の変換周波数信号でパルス幅変調した信号でスイッ
チング素子を駆動することで、変換トランスの二次側に
は第1の変換周波数のみを発生させることができる。
According to the present invention, the first conversion frequency signal lower than the self-resonance frequency of the conversion transformer is pulse-width modulated with the second conversion frequency signal higher than the self-resonance frequency to drive the switching element, thereby converting the conversion transformer. Only the first conversion frequency can be generated on the secondary side of the transformer.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

同図において、1は直流電源、3.4はスイッチング素
子、5は変換トランスであり、変換トランス5の一次側
において直流電源1をスイッチング素子3.4で断続し
て二次側に電圧を発生させる。
In the figure, 1 is a DC power supply, 3.4 is a switching element, and 5 is a conversion transformer. On the primary side of the conversion transformer 5, the DC power supply 1 is switched on and off by the switching element 3.4 to generate a voltage on the secondary side. let

前記スイッチング素子3,4の制御回路として、第1の
変換周波数信号を発生する基準正弦波発生回路10と、
−第2の変換周波数信号を発生する三角波同期信号発生
回路11と、前記基準正弦波を半波毎に分割する半波分
割回路12と、PWMコンパレータ14,15を備えて
分割された半波の正弦波を三角波でPWM変調するパル
ス幅変調回路13と、前記基準正弦波の振幅を制御する
出力電圧検出回路16とを備えている。
a reference sine wave generation circuit 10 that generates a first conversion frequency signal as a control circuit for the switching elements 3 and 4;
- A triangular wave synchronization signal generation circuit 11 that generates a second conversion frequency signal, a half-wave division circuit 12 that divides the reference sine wave into half waves, and PWM comparators 14 and 15 to divide the divided half waves. It includes a pulse width modulation circuit 13 that performs PWM modulation of a sine wave with a triangular wave, and an output voltage detection circuit 16 that controls the amplitude of the reference sine wave.

ここで、第1の変換周波数信号は変換トランス5の自己
共振周波数より低くなるように設定され、第2の変換周
波数信号は変換トランス5の自己共振周波数より高くな
るように設定されている。
Here, the first conversion frequency signal is set to be lower than the self-resonant frequency of the conversion transformer 5, and the second conversion frequency signal is set to be higher than the self-resonance frequency of the conversion transformer 5.

この構成によれば、第2図に一部の波形を示すように、
基準正弦波発生回路10からの第1の変換周波数信号は
、半波分割回路12により位相が180°ずれた2つの
半波信号17に分割される。
According to this configuration, as shown in part of the waveforms in FIG.
The first converted frequency signal from the reference sine wave generation circuit 10 is divided by the half-wave division circuit 12 into two half-wave signals 17 with a phase shift of 180°.

2つの半波信号17は、それぞれパルス幅変調回路13
内のPWMコンパレータ14,15により、三角波同期
信号発生回路11からの第2の変換周波数信号としての
三角波同期信号18と比較され、パルス幅変調されたス
イッチング駆動信号19となる。
The two half-wave signals 17 are each sent to a pulse width modulation circuit 13.
The PWM comparators 14 and 15 within the triangular wave synchronizing signal generating circuit 11 compare the triangular wave synchronizing signal 18 as the second conversion frequency signal to produce a pulse width modulated switching drive signal 19.

そして、スイッチング素子3.4は、それぞれ位相が1
80°ずれた2つの半波信号から発生する正弦波近似さ
れたスイッチング駆動信号19により駆動される。この
スイッチング素子3.4が駆動されて直流電源1を断続
することで、変換トランス5の二次側に所要電圧の交流
信号が出力される。このとき、第1の変換周波数を変換
トランス5の自己共振周波数より低く、第2の変換周波
数を変換トランス5の自己共振周波数より高く設定して
いるため、変換トランス5では第2の変換周波数は伝送
されず、第1の変換周波数である正弦波のみが出力に発
生する。
The switching elements 3.4 each have a phase of 1.
It is driven by a switching drive signal 19 approximated to a sine wave generated from two half-wave signals shifted by 80°. The switching element 3.4 is driven to connect and disconnect the DC power supply 1, thereby outputting an AC signal of a required voltage to the secondary side of the conversion transformer 5. At this time, since the first conversion frequency is set lower than the self-resonant frequency of the conversion transformer 5 and the second conversion frequency is set higher than the self-resonance frequency of the conversion transformer 5, the second conversion frequency in the conversion transformer 5 is No transmission occurs, only a sine wave at the first conversion frequency is generated at the output.

しかも、出力電圧検出回路16からの信号により、基準
正弦波発生回路10において、正弦波の振幅を制御して
いるため、出力電圧の振幅を制御でき、インバータ回路
のみで出力電圧の安定化を容品に図ることができる。
Moreover, since the amplitude of the sine wave is controlled in the reference sine wave generation circuit 10 by the signal from the output voltage detection circuit 16, the amplitude of the output voltage can be controlled, and the output voltage can be stabilized using only the inverter circuit. It can be made into a product.

なお、出力電圧検出回路16は、半波分割回路12にお
いて発生された半波信号17の基底部の直流分のレベル
を制御して出力電圧の安定化を図るようにしてもよい。
Note that the output voltage detection circuit 16 may stabilize the output voltage by controlling the level of the base DC component of the half-wave signal 17 generated in the half-wave dividing circuit 12.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、変換トランスの自己共振
周波数より低い第1の変換周波数信号を、自己共振周波
数よりも高い第2の変換周波数信号でパルス幅変調した
信号でスイッチング素子を駆動するように構成している
ので、変換トランスの二次側には第1の変換周波数のみ
を発生させることができる。これにより、高調波成分の
発生を抑え、変換トランスでの損失を低減できる。また
、二次側に整流器を接続した際の雑音を低減することが
できる。また、基準正弦波の振幅を制御し、あるいは半
波信号の直流しづルを制御することで出力電圧の安定化
を図ること−もてきる。
As explained above, the present invention drives a switching element with a signal obtained by pulse-width modulating a first conversion frequency signal lower than the self-resonance frequency of a conversion transformer with a second conversion frequency signal higher than the self-resonance frequency. Therefore, only the first conversion frequency can be generated on the secondary side of the conversion transformer. This suppresses the generation of harmonic components and reduces loss in the conversion transformer. Further, noise when a rectifier is connected to the secondary side can be reduced. It is also possible to stabilize the output voltage by controlling the amplitude of the reference sine wave or by controlling the DC slope of the half-wave signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のブロック回路図、第2図は
第1図の構成における主要部の波形図、第3図および第
4図はそれぞれ異なる従来のインバータ電源回路のブロ
ック回路図である。 1・・・直流電源、2・・・DC−DCコンバータ、3
.4・・・スイッチング素子、5・・・変換トランス、
6・・・整流・平滑回路、7・・・負荷回路、8・・・
帰還用ダイオード、9・・・昇鋒圧用インダクタ、10
・・・基準正弦波発生回路、11・・・三角波同期信号
発生回路、12・・・半波分割回路、13・・・パルス
幅変調回路、14.15・・・PWMコンパレータ、1
6・・・出力電圧検出回路、17・・・半波信号、18
・・・三角波同期信号、19・・・スイッチング駆動信
号。 第1図 第3図 第4図
FIG. 1 is a block circuit diagram of an embodiment of the present invention, FIG. 2 is a waveform diagram of main parts in the configuration of FIG. 1, and FIGS. 3 and 4 are block circuit diagrams of different conventional inverter power supply circuits. It is. 1...DC power supply, 2...DC-DC converter, 3
.. 4... Switching element, 5... Conversion transformer,
6... Rectifier/smoothing circuit, 7... Load circuit, 8...
Feedback diode, 9... Boosting inductor, 10
... Reference sine wave generation circuit, 11 ... Triangular wave synchronization signal generation circuit, 12 ... Half wave division circuit, 13 ... Pulse width modulation circuit, 14.15 ... PWM comparator, 1
6... Output voltage detection circuit, 17... Half wave signal, 18
... Triangular wave synchronization signal, 19... Switching drive signal. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、変換トランスの一次側の直流電源をスイッチング素
子で断続して二次側に交流電圧を得るようにしたインバ
ータ電源回路において、前記スイッチング素子を断続さ
せる駆動回路として、前記変換トランスの自己共振周波
数より低い第1の変換周波数信号を発生する手段と、こ
の自己共振周波数より高い第2の変換周波数信号を発生
する手段とを備え、前記第1の変換周波数信号を第2の
変換周波数信号でパルス幅変調した信号で前記スイッチ
ング素子を駆動するように構成したことを特徴とするイ
ンバータ電源回路。 2、第1の変換周波数信号は基準正弦波信号であり、第
2の変換周波数信号は三角波信号である特許請求の範囲
第1項記載のインバータ電源回路。
[Scope of Claims] 1. In an inverter power supply circuit in which a DC power supply on the primary side of a conversion transformer is switched on and off using a switching element to obtain an AC voltage on the secondary side, as a drive circuit that cuts on and off the switching element, the means for generating a first conversion frequency signal lower than the self-resonant frequency of the conversion transformer; and means for generating a second conversion frequency signal higher than the self-resonance frequency; An inverter power supply circuit characterized in that the switching element is driven by a signal pulse width modulated with a conversion frequency signal. 2. The inverter power supply circuit according to claim 1, wherein the first conversion frequency signal is a reference sine wave signal, and the second conversion frequency signal is a triangular wave signal.
JP02318622A 1990-11-24 1990-11-24 Inverter power circuit Expired - Fee Related JP3079564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02318622A JP3079564B2 (en) 1990-11-24 1990-11-24 Inverter power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02318622A JP3079564B2 (en) 1990-11-24 1990-11-24 Inverter power circuit

Publications (2)

Publication Number Publication Date
JPH04190680A true JPH04190680A (en) 1992-07-09
JP3079564B2 JP3079564B2 (en) 2000-08-21

Family

ID=18101195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02318622A Expired - Fee Related JP3079564B2 (en) 1990-11-24 1990-11-24 Inverter power circuit

Country Status (1)

Country Link
JP (1) JP3079564B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171637A (en) * 2013-03-08 2014-09-22 Health Holdings Co Ltd Ac potential curing instrument
JP2014183912A (en) * 2013-03-22 2014-10-02 Health Holdings Co Ltd Alternating current potential treatment device
JP2014200612A (en) * 2013-04-10 2014-10-27 ヘルスホールディングス株式会社 Alternating current potential treatment device
JP2015016061A (en) * 2013-07-10 2015-01-29 ヘルスホールディングス株式会社 Alternating current potential treatment device
JP2015054105A (en) * 2013-09-12 2015-03-23 ヘルスホールディングス株式会社 Ac electric potential therapy device
CN110336385A (en) * 2018-03-28 2019-10-15 苹果公司 Wireless charging device with Sinusoidal Pulse Width Modulation
CN114468394A (en) * 2022-02-15 2022-05-13 哈勃智能传感(深圳)有限公司 Resonant frequency extraction method, driving method and atomization system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171637A (en) * 2013-03-08 2014-09-22 Health Holdings Co Ltd Ac potential curing instrument
JP2014183912A (en) * 2013-03-22 2014-10-02 Health Holdings Co Ltd Alternating current potential treatment device
JP2014200612A (en) * 2013-04-10 2014-10-27 ヘルスホールディングス株式会社 Alternating current potential treatment device
JP2015016061A (en) * 2013-07-10 2015-01-29 ヘルスホールディングス株式会社 Alternating current potential treatment device
JP2015054105A (en) * 2013-09-12 2015-03-23 ヘルスホールディングス株式会社 Ac electric potential therapy device
CN110336385A (en) * 2018-03-28 2019-10-15 苹果公司 Wireless charging device with Sinusoidal Pulse Width Modulation
CN110336385B (en) * 2018-03-28 2024-04-02 苹果公司 Wireless charging device with sinusoidal pulse width modulation
CN114468394A (en) * 2022-02-15 2022-05-13 哈勃智能传感(深圳)有限公司 Resonant frequency extraction method, driving method and atomization system

Also Published As

Publication number Publication date
JP3079564B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US5481449A (en) Efficient, high power density, high power factor converter for very low dc voltage applications
US5731969A (en) Three-phase AC power converter with power factor correction
US5742496A (en) Invertor apparatus for converting a DC voltage to a single-phase AC voltage
US5038267A (en) Soft-switching power converter for operation in discrete pulse modulation and pulse width modulation modes
US7379309B2 (en) High-frequency DC-DC converter control
KR20090084637A (en) Controller for use in a resonant direct current / direct current converter
US4934822A (en) PWM-controlled power supply capable of eliminating modulation-frequency signal components from ground potentials
KR20030011337A (en) Switch-mode power supply with autonomous primary inverter
US5701243A (en) High-power factor series resonant rectifier circuit
GB2412508A (en) Isolated dc-to-dc converter
JP4929863B2 (en) Power converter
US20090237968A1 (en) Power inverter and method
JPH04190680A (en) Inverter power source circuit
US5712780A (en) Unity power factor converter for high quality power supply with magnetically coupled compensation
US4405976A (en) Audio tracking pulse-width modulated power supply
JP3425331B2 (en) Power supply
CN105703622B (en) DC-DC power converter and its method
US8736245B1 (en) Method and means to combine pulse width modulation level control, full resonance and zero voltage switching for switched mode power supplies
KR0155248B1 (en) Stability dc-power supply with variable function for high voltage
US6816394B2 (en) Approximated sinusoidal waveform inverter
JP2001298330A (en) Isolated pwm power amplifier
JP4872498B2 (en) Pulse width modulation method
JP2001320880A (en) Rectifying power supply
US9036370B2 (en) AC/DC power converter with improved power factor and improved THDi
KR100407017B1 (en) The Electronic Power Transformer for conversion of AC to AC/DC

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees