JPH04190085A - Hot air drying method - Google Patents

Hot air drying method

Info

Publication number
JPH04190085A
JPH04190085A JP2322024A JP32202490A JPH04190085A JP H04190085 A JPH04190085 A JP H04190085A JP 2322024 A JP2322024 A JP 2322024A JP 32202490 A JP32202490 A JP 32202490A JP H04190085 A JPH04190085 A JP H04190085A
Authority
JP
Japan
Prior art keywords
gas
drying
hot air
water vapor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2322024A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuneizumi
常泉 浩志
Naoki Furuno
直樹 古野
Noboru Nakayama
昇 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2322024A priority Critical patent/JPH04190085A/en
Publication of JPH04190085A publication Critical patent/JPH04190085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To reduce heat loss in a hot air drying facility by a method wherein highly humid gas, discharged after drying process, is dehumidified by a gas separating film and is circulated again into the drying processing unit of a material to be processed as gas for drying. CONSTITUTION:Air for drying, which flows out of a heat exchanger 12, is blown against strip copper plates 16, penetrating through a processing material receiving unit 15 in a drying chamber 14. Wet gas, blown against the strip copper plates 16, flows out of the drying chamber 14 and is supplied to a water vapor separator 13 through a blower 11 after becoming gas proximated to the saturating condition of about 90-100 deg.C. The water vapor separator 13 is provided with a gas separating film 17 and removes the water vapor corresponding to the total amount evaporated from the strip copper plates 16 and the like selectively. Dry gas, not permeated through the gas separating film 17, enters a heat exchanger 12 and the temperature of the same is risen to about 120 deg.C without causing deterioration of temperature substantially.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、製鉄、食品、バルブ、印刷工業等で行なわれ
る温風乾燥方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hot air drying method used in the steel manufacturing, food, valve, printing industries, etc.

[従来の技術とその課題] 製鉄ラインにおける冷延工程、酸洗1稈等には、クリー
ニング処理が必要とされる。クリーニング処理後の鋼板
類は錆の発生を防止するため、その直後に強制乾燥され
た後、次の工程に移される。
[Prior art and its problems] Cleaning treatment is required in the cold rolling process, pickling one culm, etc. in a steel manufacturing line. In order to prevent rust from forming, the steel plates after the cleaning treatment are immediately forced to dry before being transferred to the next process.

ここでの乾燥方法として、加熱空気による温風乾燥が一
般的に用いられる。第2図は、従来の代表的な温風乾燥
設備の構成を示す説明図である。図中1は、フロア−で
ある。フロア−1から熱交換器2に乾燥用空気が供給さ
れる。熱交換器2に供給された空気は、120℃程度に
昇温された後乾燥室3に供給されるようになっている。
As a drying method here, hot air drying using heated air is generally used. FIG. 2 is an explanatory diagram showing the configuration of a typical conventional hot air drying facility. In the figure, 1 is a floor. Drying air is supplied from the floor 1 to the heat exchanger 2. The air supplied to the heat exchanger 2 is heated to about 120° C. and then supplied to the drying chamber 3.

乾燥室3内で被処理体であるストリップ鋼板4に吹き付
けられた空気は、そのまま外部に排出されるようになっ
ている。
The air blown onto the strip steel plate 4, which is the object to be treated, in the drying chamber 3 is discharged to the outside as it is.

なお、このような温風乾燥設備は、製鉄ライン以外にも
食品、バルブ、印刷工業等の製造ラインでドライヤーと
して使用されている。
Note that such hot air drying equipment is used as a dryer not only in steel manufacturing lines but also in manufacturing lines for food products, valves, printing industries, and the like.

このような温風乾燥設備によって行われる温風乾燥方法
では、使用後の水蒸気を多量含んだガス空気は再利用さ
れることなく高温状態のまま外部に排出される。このた
め、約30 kcal/ N13の熱損失が生じ、製鉄
所のように大量の温風処理を必要とするところでは、膨
大なエネルギー損失となる。
In the hot air drying method performed by such hot air drying equipment, the used gas air containing a large amount of water vapor is not reused but is discharged outside in a high temperature state. This results in a heat loss of about 30 kcal/N13, resulting in a huge energy loss in places such as steel mills that require large amounts of hot air treatment.

このような問題を解消するため、上述の記排ガスから熱
回収を行う試みもなされている。しかし、この方法によ
るものでは、排ガスの温度が100〜200℃程度と低
いため、効率的な熱回収が困難であり現実には実用化さ
れていない。
In order to solve such problems, attempts have been made to recover heat from the above-mentioned exhaust gas. However, with this method, the temperature of the exhaust gas is as low as about 100 to 200° C., making efficient heat recovery difficult, and it has not been put into practical use.

本発明は、かかる点に鑑みてなされたものであり、排ガ
ス中の水蒸気を効率的に除去し、除去後のドライガスを
再利用して、温風乾燥設備の熱損失を激減させることが
できる温風乾燥方法を提供するものである。
The present invention has been made in view of this point, and can efficiently remove water vapor in exhaust gas, reuse the removed dry gas, and drastically reduce heat loss in hot air drying equipment. A hot air drying method is provided.

[課題を解決するための手段] 本発明は、被処理体に所定温度に加熱した乾燥用ガスを
供給して乾燥処理を施した後、該乾燥処理後に排出され
た高湿ガスをガス分離膜によって除湿して乾燥ガスにし
、該乾燥ガスを再度前記乾燥用ガスとして前記被処理体
の乾燥処理部に循環させることを特徴とする温風乾燥方
法である。
[Means for Solving the Problems] The present invention provides a drying process by supplying a drying gas heated to a predetermined temperature to an object to be processed, and then passing the high-humidity gas discharged after the drying process through a gas separation membrane. This hot air drying method is characterized in that the drying gas is dehumidified by the drying gas, and the drying gas is circulated again as the drying gas to the drying processing section for the object to be processed.

[作用コ 本発明にかかる温風乾燥方法によれば、ガス分離膜を用
いることにより、高温高湿の排ガスから水蒸気を選択的
に分離する。そして、排ガスの温度を大幅に低下するこ
となく脱湿乾燥した後、これを乾燥用ガスとして循環使
用する。これにより温風乾燥設備の熱損失を激減させる
[Operations] According to the hot air drying method according to the present invention, water vapor is selectively separated from high temperature and high humidity exhaust gas by using a gas separation membrane. Then, after dehumidifying and drying the exhaust gas without significantly lowering its temperature, the exhaust gas is recycled and used as a drying gas. This dramatically reduces heat loss in hot air drying equipment.

[実施例] 以下、本発明の実施例について図面を参照して説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図は、本発明方法を適用した製鉄ラインで用いられ
る温風乾燥設備の構成を示す説明図である。図中11は
、熱交換器12に乾燥用空気を供給するブロアーである
。ブロアー11と熱交換器12の間には、水蒸気分離器
13が介在されている。熱交換器12は、乾燥用空気を
120℃程度に昇温してから乾燥室14内の被処理体収
容部15に供給するようになっている。すなわち、熱交
換器12を出た乾燥用空気は、乾燥室14内で被処理体
収容部15内を挿通するストリップ鋼板16に吹き付け
られる。ストリップ鋼板16に吹き付けられたウェット
ガスは、約90〜100℃の飽和状態に近いガスになっ
てから、乾燥室14を出てブロアー11を介して再び水
蒸気分離器13に供給されるようになっている。水蒸気
分離器13は、ガス分離膜17を有しており、ストリッ
プ鋼板16等から蒸発した全量相当の水蒸気を選択的に
除去するようになっている。そして、ガス分離膜17を
透過しない乾燥ガスが、はとんど温度低下のないまま、
熱交換器12に入り再び約120℃まで昇温されるよう
になっている。 ここで、このようなガス分離膜17を
用いて、水蒸気を除去する場合、ガス分離膜を介して存
在する供給側ガスと透過側ガスに夫々含まれる水蒸気の
分圧差を大きくするため、透過側に大量のドライガス(
これは非透過ガスの一部であったり別途ドライエアー等
を用いたりする)を流したり、或いは、透過側を減圧に
する必要がある。しかし、このような手段を採用すると
、製品ガスのロスや、余分なエネルギーの必要性が生じ
るため極めて不経済である。そこで、本発明では、非脱
湿ガスが高温多湿であること及びドライガスがあまり高
い脱湿度を要求されないことに着目して、透過側のパー
ジ用ガスとして、大気をそのまま利用している。
FIG. 1 is an explanatory diagram showing the configuration of hot air drying equipment used in a steel manufacturing line to which the method of the present invention is applied. In the figure, 11 is a blower that supplies drying air to the heat exchanger 12. A steam separator 13 is interposed between the blower 11 and the heat exchanger 12. The heat exchanger 12 is configured to heat the drying air to about 120° C. and then supply it to the object storage section 15 in the drying chamber 14 . That is, the drying air that has exited the heat exchanger 12 is blown within the drying chamber 14 onto the strip steel plate 16 that is inserted through the object housing section 15 . The wet gas blown onto the strip steel plate 16 becomes a nearly saturated gas at approximately 90 to 100°C, then leaves the drying chamber 14 and is supplied to the steam separator 13 again via the blower 11. ing. The water vapor separator 13 has a gas separation membrane 17 and is configured to selectively remove the entire amount of water vapor evaporated from the strip steel plate 16 and the like. Then, the dry gas that does not pass through the gas separation membrane 17 remains almost unchanged in temperature.
It enters the heat exchanger 12 and is heated again to about 120°C. Here, when removing water vapor using such a gas separation membrane 17, in order to increase the partial pressure difference between the water vapor contained in the supply side gas and the permeation side gas, which exist through the gas separation membrane, the permeation side A large amount of dry gas (
For this purpose, it is necessary to flow some of the non-permeable gas (using dry air or the like) or to reduce the pressure on the permeate side. However, adopting such a method is extremely uneconomical as it results in loss of product gas and the need for extra energy. Therefore, in the present invention, attention is paid to the fact that the non-dehumidified gas is hot and humid and that the dry gas is not required to be highly dehumidified, and the atmosphere is used as it is as the purge gas on the permeation side.

その結果、ブロア−11程度の低エネルギー送風で十分
な脱湿効果が得られる。なお、ガス分離膜17の性能と
しては、水蒸気と空気(N2)の分離係数α〉500、
水蒸気の透過速度RH2o>1xl O−’Cm3 (
STP)/cm’ −see−cmHg以上が好ましく
、更に好ましくはα〉1000、RH20>lXl0−
3cm’  (STP)7cm2・sec−cmHgで
ある。因みに、これ以下の性能のガス分離膜を用いた場
合でも、プロセスとしては成り立つが、膜面積が大きく
なったり、2段分離の必要性が生じ経済的に不利となる
As a result, a sufficient dehumidification effect can be obtained with a low-energy blast of about 11 blowers. The performance of the gas separation membrane 17 is as follows: water vapor and air (N2) separation coefficient α>500;
Water vapor permeation rate RH2o>1xl O-'Cm3 (
STP)/cm' -see-cmHg or more is preferable, more preferably α>1000, RH20>lXl0-
3cm' (STP)7cm2·sec-cmHg. Incidentally, even if a gas separation membrane with a performance lower than this is used, the process will still work, but the membrane area will become large and two-stage separation will become necessary, which will be economically disadvantageous.

このようにこの温風乾燥方法は、乾燥室14を出たウェ
ットガスをブロアー11を介して再び水蒸気分離器13
に供給してそのガス分離膜17より水蒸気を選択的に除
去してから熱交換器12に再供給する。つまり、−度使
用した排ガスの温度を大幅に低下することなく、脱湿乾
燥後の乾燥用ガスとして循環使用する。これにより温風
乾燥設備の熱損失を激減させることができる。
In this way, in this hot air drying method, the wet gas leaving the drying chamber 14 is passed through the blower 11 and returned to the steam separator 13.
After selectively removing water vapor from the gas separation membrane 17, the gas is supplied to the heat exchanger 12 again. In other words, the exhaust gas used is recycled and used as a drying gas after dehumidifying and drying without significantly lowering the temperature of the exhaust gas. As a result, heat loss in hot air drying equipment can be drastically reduced.

[発明の効果コ 以上説明した如く、本発明にかかる温風乾燥方法によれ
ば、排ガス中の水蒸気を効率的に除去し、除去後のドラ
イガスを再利用して、温風乾燥設備の熱損失を激減させ
ることができる等顕著な効果を奏するものである。
[Effects of the Invention] As explained above, according to the hot air drying method according to the present invention, water vapor in the exhaust gas is efficiently removed, the removed dry gas is reused, and the heat of the hot air drying equipment is This has remarkable effects such as being able to drastically reduce losses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を適用した製鉄ラインで用いられ
る温風乾燥設備の構成を示す説明図、第2図は、従来の
温風乾燥設備の構成を示す説明図である。 11・・・ブロアー、12・・・熱交換器、13・・・
水蒸気分離器、14・・・乾燥室、15・・・被処理体
収容部、16・・奇リップ鋼板、17・・・ガス分離膜
FIG. 1 is an explanatory diagram showing the configuration of hot air drying equipment used in a steel manufacturing line to which the method of the present invention is applied, and FIG. 2 is an explanatory diagram showing the configuration of a conventional hot air drying equipment. 11... Blower, 12... Heat exchanger, 13...
Steam separator, 14... Drying chamber, 15... Processed object housing section, 16... Odd lip steel plate, 17... Gas separation membrane.

Claims (1)

【特許請求の範囲】[Claims] 被処理体に所定温度に加熱した乾燥用ガスを供給して乾
燥処理を施した後、該乾燥処理後に排出された高湿ガス
をガス分離膜によって除湿して乾燥ガスにし、該乾燥ガ
スを再度前記乾燥用ガスとして前記被処理体の乾燥処理
部に循環させることを特徴とする温風乾燥方法。
After drying the object by supplying a drying gas heated to a predetermined temperature, the high-humidity gas discharged after the drying process is dehumidified by a gas separation membrane to turn it into dry gas, and the dry gas is recycled again. A hot air drying method characterized in that the drying gas is circulated to a drying processing section for the object to be processed.
JP2322024A 1990-11-26 1990-11-26 Hot air drying method Pending JPH04190085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322024A JPH04190085A (en) 1990-11-26 1990-11-26 Hot air drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322024A JPH04190085A (en) 1990-11-26 1990-11-26 Hot air drying method

Publications (1)

Publication Number Publication Date
JPH04190085A true JPH04190085A (en) 1992-07-08

Family

ID=18139071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322024A Pending JPH04190085A (en) 1990-11-26 1990-11-26 Hot air drying method

Country Status (1)

Country Link
JP (1) JPH04190085A (en)

Similar Documents

Publication Publication Date Title
US8372180B2 (en) Process for controlling the moisture content of a supply gas for use in drying a product
JP7410302B2 (en) Recovery of ethylene oxide from sterilization processes
JP5778040B2 (en) Drying device with energy recovery function
EP0686252B1 (en) Method and apparatus for drying of materials containing volatile components
EP3099408B2 (en) System for regenerating an adsorbent in an off-line adsorption chamber
JP2002310595A (en) Cooler
US3766660A (en) Adsorption gas drying method and apparatus
JPH04190085A (en) Hot air drying method
JP2019148001A (en) Hydrogen gas production method and hydrogen gas production facility
US20100139115A1 (en) Valveless regenerative thermal oxidizer for treating closed loop dryer
JPS60238119A (en) Air dehumidification apparatus
JP2008055092A (en) Roll finishing machine and roll finishing method
JP2567300B2 (en) Solvent recovery equipment using dry air
JP2001232109A (en) Device and method for dehydrating and drying sludge
JP3225187B2 (en) Solvent recovery device
KR20150054175A (en) drying apparatus for sludge
JP2001104738A (en) Oxygen concentrator for medical treatment
US20220333862A1 (en) Air drying system and method for drying compressed air using same
JP2946608B2 (en) Organic solvent containing gas adsorption / desorption processing equipment
US4367595A (en) Method and apparatus for drying products, especially corn or piece products
JP5871308B2 (en) Low boiling point solvent recovery method and apparatus
JPH0671650A (en) Method for storing and transferring pellet
JPH0335911B2 (en)
US679065A (en) Process of treating spent grain.
JPS6145484B2 (en)