JPH04189525A - Injection molding machine - Google Patents

Injection molding machine

Info

Publication number
JPH04189525A
JPH04189525A JP31777390A JP31777390A JPH04189525A JP H04189525 A JPH04189525 A JP H04189525A JP 31777390 A JP31777390 A JP 31777390A JP 31777390 A JP31777390 A JP 31777390A JP H04189525 A JPH04189525 A JP H04189525A
Authority
JP
Japan
Prior art keywords
hydraulic
injection
pressure
screw
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31777390A
Other languages
Japanese (ja)
Other versions
JP2804169B2 (en
Inventor
Hiroki Kuramoto
蔵本 浩樹
Masaki Yoshii
吉井 正樹
Yasuo Amano
泰雄 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2317773A priority Critical patent/JP2804169B2/en
Publication of JPH04189525A publication Critical patent/JPH04189525A/en
Application granted granted Critical
Publication of JP2804169B2 publication Critical patent/JP2804169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • B29C2045/5068Drive means therefor mechanical drive means in series with hydraulic drive means for axially movable screw

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To perform precise control of an injection speed and dwell pressure, by a method wherein an injection unit part is constituted in combination of a motor-driven servomotor and a hydraulic mechanism and the injection speed and dwell pressure are controlled respectively by the motor-driven servomotor and hydraulic mechanism. CONSTITUTION:A hydraulic cylinder 3 and screw 1 are moved forward, by a method wherein a forward movement of a screw 1 in an injection process transmits a rotation of an electric servomotor 2 to a gear 7, ball screw 5 and ball nut 6, a hydraulic piston 4 is moved forward and an outflow of oil within the hydraulic cylinder 3 is stopped. The rotation of the motor--driven servomotor 2 is stopped at a changeover position of injection-dwelling and at a dwell process, dwell pressure is controlled by an inflow and outflow of the oil to and from the hydraulic cylinder 3. Control of the dwell pressure is performed through pressure control by passing the oil from a hydraulic oil source 8 through a hydraulic servomotor 9. Precise control of a forward movement speed of the screw 1 and dwell pressure can be performed by the above respectively by adjustment of a number of revolutions of the electric servomotor 2 in the injection process and pressure adjustment of the hydraulic pressure mechanism in the dwell process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラスチック成形品を製造するための射出成形
機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an injection molding machine for manufacturing plastic molded products.

〔従来の技術〕[Conventional technology]

従来、プラスチック射出成形機における封圧機構は射出
シリンダー内のスクリューを射出ユニット部に設けた油
圧機構あるいは電動サーボモータにより駆動前進させ、
射出速度および保圧力を油圧あるいはモータ回転数によ
り制御している。従来の射出成形機における射出ユニッ
ト部の概略図を油圧駆動に関して第4図に、また電動サ
ーボモータ駆動に関して第5図に示す。ここでは樹脂の
可塑化に用いられるスクリュー回転装置は省略した。第
4図に示すように油圧駆動では油圧シリンダー3内への
油の流出入によりスクリュー1を前進させ射出速度、保
圧力を与える。そして、射出速度、保圧力の制御は油圧
源8からの油を油圧サーボ弁9を通して流量および圧力
調整により行っている。一方、第5図に示すように電動
サーボモータ駆動では電動サーボモータ2の回転を歯車
7を通してボールねじ5に伝え、ポールナツト6と連結
したスクリュー1を前進させて射出速度、保圧力を与え
る5そして、射出速度、保圧力の制御は電動サーボモー
タ2の回転数調整により行っている。
Conventionally, the sealing mechanism in a plastic injection molding machine drives a screw in the injection cylinder forward by a hydraulic mechanism or an electric servo motor provided in the injection unit.
Injection speed and holding force are controlled by hydraulic pressure or motor rotation speed. A schematic diagram of an injection unit in a conventional injection molding machine is shown in FIG. 4 for hydraulic drive, and FIG. 5 for electric servo motor drive. Here, the screw rotating device used for plasticizing the resin was omitted. As shown in FIG. 4, in hydraulic drive, the screw 1 is advanced by the flow of oil into and out of the hydraulic cylinder 3 to provide injection speed and holding pressure. The injection speed and holding pressure are controlled by adjusting the flow rate and pressure of oil from a hydraulic source 8 through a hydraulic servo valve 9. On the other hand, as shown in FIG. 5, in the electric servo motor drive, the rotation of the electric servo motor 2 is transmitted to the ball screw 5 through the gear 7, and the screw 1 connected to the pole nut 6 is advanced to provide the injection speed and holding force. , injection speed, and holding force are controlled by adjusting the rotation speed of the electric servo motor 2.

これらの射出速度および保圧力制御を油圧機構あるいは
電動サーボモータそれぞれ単独でより正確に行うために
例えば特開昭61−439412に記載の方法などが考
案されている。
In order to control the injection speed and holding pressure more accurately by using a hydraulic mechanism or an electric servo motor independently, a method such as that described in Japanese Patent Laid-Open No. 61-439412 has been devised.

(発明が解決しようとする課題〕 上記従来技術において、油圧機構による速度制御は油圧
サーボ弁の流量制御により行われるが、この場合フィー
ドバックにより制御を行うため応答が遅れると正確な制
御ができないという欠点があり、また一定制御を行って
も多少の変動が生じるという問題があった。また、電動
サーボモータによる圧力制御もロードセルからの信号に
よるフィードバックにより行われるため応答性が悪いと
いう欠点があり、また射出−保圧切替え時に圧力変動が
生じるという問題があった。
(Problems to be Solved by the Invention) In the above conventional technology, speed control by the hydraulic mechanism is performed by controlling the flow rate of a hydraulic servo valve, but in this case, control is performed by feedback, so if the response is delayed, accurate control cannot be achieved. There is also the problem that some fluctuations occur even if constant control is performed.Furthermore, the pressure control by the electric servo motor is also performed by feedback from the signal from the load cell, which has the disadvantage of poor responsiveness. There was a problem in that pressure fluctuations occurred when switching between injection and pressure holding.

このように、油圧機構による速度制御および電動サーボ
モータによる圧力制御にはそれぞれ欠点があり、油圧機
構あるいは電動サーボモータそれぞれ単独では速度制御
および圧力制御の両方を正確に行うことができないとい
う問題があった。
As described above, speed control using a hydraulic mechanism and pressure control using an electric servo motor each have their drawbacks, and there is a problem in that it is not possible to accurately control both speed and pressure using either the hydraulic mechanism or the electric servo motor alone. Ta.

本発明は射出ユニット部を電動サーボモータと油圧機構
を組合わせて構成することにより射出速度および保圧力
制御の両方を正確に行うことを目的としており、またこ
れにより高精度なプラスチック成形品を提供することを
目的としている。
The present invention aims to accurately control both injection speed and holding pressure by configuring the injection unit by combining an electric servo motor and a hydraulic mechanism, and thereby provide highly accurate plastic molded products. It is intended to.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、射出成形機の射出ユニット
部を電動サーボモータと油圧機構とを組合わせて構成す
ることにより、射出速度を電動サーボモータの回転数調
整で制御し、保圧力を油圧機構による油圧サーボ弁の圧
力調整で制御したものである。
In order to achieve the above objective, the injection unit of the injection molding machine is configured by combining an electric servo motor and a hydraulic mechanism, so that the injection speed is controlled by adjusting the rotation speed of the electric servo motor, and the holding force is controlled by the hydraulic mechanism. It is controlled by a mechanism that adjusts the pressure of a hydraulic servo valve.

〔作用〕[Effect]

電動サーボモータは回転数調整による速度・位置制御に
適しており、射出時のスクリュー速度(射出速度)の制
御を正確に行うことができる。
Electric servo motors are suitable for speed and position control by adjusting the rotation speed, and can accurately control the screw speed (injection speed) during injection.

また油圧サーボ弁を用いた油圧機構は圧力制御に適して
おり、射出充填後の保圧過程の保圧力制御を応答性よく
正確に行うことができる。
In addition, a hydraulic mechanism using a hydraulic servo valve is suitable for pressure control, and can accurately control the holding pressure in the pressure holding process after injection and filling with good responsiveness.

したがって、射出ユニット部を電動サーボモータと油圧
機構を組合わせて構成し、射出速度を電動サーボモータ
で、また保圧力を油圧機構で制御することにより射出・
保圧過程における射出速度および保圧力の両方をそれぞ
れ正確に制御する二とができ、また射出−保圧切替えを
スムーズに行うことができる。
Therefore, the injection unit is configured by combining an electric servo motor and a hydraulic mechanism, and the injection speed is controlled by the electric servo motor and the holding force is controlled by the hydraulic mechanism.
It is possible to accurately control both the injection speed and the holding force during the pressure holding process, and it is also possible to smoothly switch between injection and holding pressure.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照しながら説明
する。第1図は本発明の一実施例における射出成形機の
射出ユニット部の概略図を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic diagram of an injection unit portion of an injection molding machine according to an embodiment of the present invention.

ここでは樹脂の可塑化に用いられるスクリュー駆動装置
は省略した。射出ユニット部はスクリュー1、電動サー
ボモータ2.油圧シリンダー3.油圧ピストン4.ボー
ルねじ5.ボールナツト6゜歯車7および連結部品から
構成される。本実施例ではスクリュー1と油圧シリンダ
ー3が連結ルー油圧ピストン4とボールねじ5.ポール
ナツト6、が連結した構造となってい−る。射出過程に
おけるスク、リュー1−の前進は電動サーボモータ2の
一回転を歯車7を通してボールねじ5に伝え、ポールナ
ツト6およびこれに連結した油圧ピストン4を前進させ
る。ここでは、ボールねじ5を回転させて、いるが、ポ
ールナツト6を回転させる構造としてもよい。この時、
油圧シリンダー3内の油の流出を止めることにより、油
圧シリンダー3およびそれに連結したスクリュー1が前
進する。そして。
Here, the screw drive device used for plasticizing the resin was omitted. The injection unit consists of a screw 1, an electric servo motor 2. Hydraulic cylinder 3. Hydraulic piston4. Ball screw5. It consists of a ball nut, 6° gear 7, and connecting parts. In this embodiment, a screw 1 and a hydraulic cylinder 3 are connected to a hydraulic piston 4 and a ball screw 5. It has a structure in which pole nuts 6 are connected. The advancement of the screw 1 during the injection process transmits one revolution of the electric servo motor 2 to the ball screw 5 through the gear 7, thereby advancing the pole nut 6 and the hydraulic piston 4 connected thereto. Here, the ball screw 5 is rotated, but a structure in which the pole nut 6 is rotated may also be used. At this time,
By stopping the oil in the hydraulic cylinder 3 from flowing out, the hydraulic cylinder 3 and the screw 1 connected thereto move forward. and.

射出−保圧切替え位置で電動サーボモータ2の回転を止
め、その後の保圧過程では油圧機構つまり油圧シリンダ
ー3への油の流出入により保圧力の調整を行う。保圧力
の制御は油圧源8からの油を油圧サーボ弁9を通して圧
力調整により行う。このように射出過程ではスクリュー
1の前進速度つまり射出速度を電動サーボモータ2の回
転数調整により制御し、保圧過程では保圧力を油圧機構
の圧力調整により制御する。これにより、射出速度およ
び保圧力を正確に制御することができ、また射出−保圧
切替、えをスムーズに行うことができる。
The rotation of the electric servo motor 2 is stopped at the injection-pressure-holding switching position, and in the subsequent pressure-holding process, the holding force is adjusted by flowing oil into and out of the hydraulic mechanism, that is, the hydraulic cylinder 3. The holding pressure is controlled by adjusting the pressure of oil from a hydraulic source 8 through a hydraulic servo valve 9. In this way, in the injection process, the forward speed of the screw 1, that is, the injection speed, is controlled by adjusting the rotational speed of the electric servo motor 2, and in the pressure holding process, the holding force is controlled by adjusting the pressure of the hydraulic mechanism. This makes it possible to accurately control the injection speed and holding pressure, and to smoothly switch between injection and holding pressure.

第2図は本発明の第2の実施例を示す射出成形機の射出
ユニット部の概略図である。本実施例ではスクリュー1
7、と油圧ピストン4が連結し、−油圧シリンダ−3と
ボールねじ5.ポールナツト6が連結した構造となって
いる。射出過程におけるスクリュー1の前進は電動サー
ボモータ2の回転を歯車7を通してボールねじ5に伝え
、ポールナツト6お、よびこれに連結した油圧シリンダ
ー3を前進させる。ここでは、ボールねじ5を回転させ
ているが、ボールナツト6を回転させる構造としてもよ
い。この時、油圧シリンダー3内の油の流出を止めるこ
とにより、油圧ピストン4およびそれに連結したスクリ
ュー1が前進する。そして、射出−保圧切替え位置で電
動サーボモータ2の回転を止め、その後の保圧過程では
油圧機構つまり油圧シリンダー3への油の流出入により
保圧力の調整を行う。保圧力の制御は油圧源8からの油
を油圧サーボ弁9を通して圧力調整により行う。このよ
うに射出過程ではスクリュー1の前進速度つまり射出速
度を電動サーボモータ2の回転数調整により制御し、保
圧過程では保圧力を油圧機構の圧力調整により制御する
FIG. 2 is a schematic diagram of an injection unit section of an injection molding machine showing a second embodiment of the present invention. In this example, screw 1
7, and the hydraulic piston 4 are connected, - the hydraulic cylinder 3 and the ball screw 5. It has a structure in which pole nuts 6 are connected. The advancement of the screw 1 during the injection process transmits the rotation of the electric servo motor 2 to the ball screw 5 through the gear 7, thereby advancing the pole nut 6 and the hydraulic cylinder 3 connected thereto. Although the ball screw 5 is rotated here, a structure in which the ball nut 6 is rotated may also be used. At this time, by stopping the oil in the hydraulic cylinder 3 from flowing out, the hydraulic piston 4 and the screw 1 connected thereto move forward. Then, the rotation of the electric servo motor 2 is stopped at the injection-pressure-holding switching position, and in the subsequent pressure-holding process, the holding force is adjusted by flowing oil into and out of the hydraulic mechanism, that is, the hydraulic cylinder 3. The holding pressure is controlled by adjusting the pressure of oil from a hydraulic source 8 through a hydraulic servo valve 9. In this way, in the injection process, the forward speed of the screw 1, that is, the injection speed, is controlled by adjusting the rotational speed of the electric servo motor 2, and in the pressure holding process, the holding force is controlled by adjusting the pressure of the hydraulic mechanism.

第3図は本発明の第3の実施例を示す射出成形機の射出
ユニット部の概略図である。射出ユニット部はスクリュ
ー1と油圧ピストン4およびボールねじ5.ポールナツ
ト6が連結した構造となっている。そして、ボールねじ
5.ポールナツト6がスライドできるようにその外周部
にスプライン10が設けられている。射出過程における
スクリュー1の前進は電動サーボモータ2の回転を歯車
7を通してボールねじ5に伝え、ポールナツト6を前進
させることによりこれと連結した油圧ピストン4および
イクリュー1が前進する。ここでは、ボールねじ5を回
転させているが、ポールナツト6を回転させる構造とし
てもよい。この時、油圧シリンダー3内の油はバイパス
状態にしておく。
FIG. 3 is a schematic diagram of an injection unit section of an injection molding machine showing a third embodiment of the present invention. The injection unit includes a screw 1, a hydraulic piston 4, and a ball screw 5. It has a structure in which pole nuts 6 are connected. And ball screw 5. A spline 10 is provided on the outer periphery of the pole nut 6 so that it can slide. To advance the screw 1 during the injection process, the rotation of the electric servo motor 2 is transmitted to the ball screw 5 through the gear 7, and by advancing the pole nut 6, the hydraulic piston 4 and the screw 1 connected thereto are advanced. Although the ball screw 5 is rotated here, a structure in which the pole nut 6 is rotated may also be used. At this time, the oil in the hydraulic cylinder 3 is kept in a bypass state.

そして、射出−保圧切替え位置で電動サーボモータ2の
回転を止め、その後の保圧過程では油圧機構つまり油圧
シリンダー3への油の流出入により保圧力の調整を行う
。保圧力の制御は油圧源8からの油を油圧サーボ弁9を
通して圧力調整により行う。この時、油圧機構により圧
力調整を行うと油圧ピストン4およびスクリュー1は前
後し、これに伴いボールねじ5.ポールナツト6がスプ
ライン10によりスライドする。このように射出過程で
はスクリュー1の前進速度つまり射出速度を電動サーボ
モータ2の回転数調整により制御し、保圧過程では保圧
力を油圧機構の圧力調整により制御する。
Then, the rotation of the electric servo motor 2 is stopped at the injection-pressure-holding switching position, and in the subsequent pressure-holding process, the holding force is adjusted by flowing oil into and out of the hydraulic mechanism, that is, the hydraulic cylinder 3. The holding pressure is controlled by adjusting the pressure of oil from a hydraulic source 8 through a hydraulic servo valve 9. At this time, when the pressure is adjusted by the hydraulic mechanism, the hydraulic piston 4 and the screw 1 move back and forth, and accordingly, the ball screw 5. The pole nut 6 slides by the spline 10. In this way, in the injection process, the forward speed of the screw 1, that is, the injection speed, is controlled by adjusting the rotational speed of the electric servo motor 2, and in the pressure holding process, the holding force is controlled by adjusting the pressure of the hydraulic mechanism.

以上、3つの実施例について述べたが、上記したように
射出ユニット部を電動サーボモータと油圧機構を組合わ
せて構成し、射出速度を電動サーボモータで、また保圧
力を油圧機構で制御することにより射出・保圧過程にお
ける射出速度および保圧力の両方をそわぞれ正確に制御
することができ、また射出−保圧切替えをスムーズに行
うことができる。
Three embodiments have been described above, but as described above, the injection unit is configured by combining an electric servo motor and a hydraulic mechanism, and the injection speed is controlled by the electric servo motor and the holding force is controlled by the hydraulic mechanism. This makes it possible to accurately control both the injection speed and the holding force during the injection/holding process, and to smoothly switch between injection and holding pressure.

〔発明の効果〕〔Effect of the invention〕

本発明は、プラスチック射出成形機の射出ユニット部を
電動サーボモータと油圧機構との組合せにより構成し、
射出速度を電動サーボモータで、また保圧力を油圧サー
ボで制御したものである。
The present invention configures an injection unit of a plastic injection molding machine by a combination of an electric servo motor and a hydraulic mechanism,
The injection speed is controlled by an electric servo motor, and the holding force is controlled by a hydraulic servo.

これにより、射出速度および保圧力を正確に制御でき、
また射出−保圧切替えをスムーズに行うことができる。
This allows precise control of injection speed and holding force,
In addition, injection-pressure-holding switching can be performed smoothly.

したがって、この射出成形機は高精密なプラスチック成
形品例えば光ディスク、プラスチックレンズなどの成形
に適している。
Therefore, this injection molding machine is suitable for molding highly precise plastic molded products such as optical discs and plastic lenses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す射出成形機の射出ユ
ニット部の概略図、第2図は本発明の第2実施例を示す
概略図、第3図は本発明の第3実施例を示す概略図、第
4図は従来例における射出成形機の油圧駆動による射出
ユニット部の概略図、第5図は従来例における射出成形
機の電動サーボモータ駆動による射出ユニット部の概略
図である。 1・・・スクリュー、   2・・・電動サーボモータ
。 3・・・油圧シリンダー、 4・・・油圧ピストン、5
・・・ボールねじ、    6・・・ポールナツト、7
・・・歯車、      8・・・油圧源、9・・・油
圧サーボ弁、  10・・・スプライン。 集 /121 集 2 図 纂 3 図 集4− 図
Fig. 1 is a schematic diagram of an injection unit section of an injection molding machine showing a first embodiment of the present invention, Fig. 2 is a schematic diagram showing a second embodiment of the invention, and Fig. 3 is a schematic diagram showing a third embodiment of the invention. A schematic diagram showing an example, FIG. 4 is a schematic diagram of a hydraulically driven injection unit of an injection molding machine in a conventional example, and FIG. 5 is a schematic diagram of an injection unit driven by an electric servo motor of an injection molding machine in a conventional example. be. 1...Screw, 2...Electric servo motor. 3... Hydraulic cylinder, 4... Hydraulic piston, 5
...Ball screw, 6...Pole nut, 7
... Gear, 8 ... Hydraulic power source, 9 ... Hydraulic servo valve, 10 ... Spline. Collection /121 Collection 2 Collection of illustrations 3 Collection of illustrations 4- Diagrams

Claims (1)

【特許請求の範囲】[Claims] 1、プラスチック射出成形機において、射出ユニット部
が電動サーボモータと油圧機構との組合せにより構成さ
れ、射出速度を電動サーボモータで制御し、保圧力を油
圧機構で制御することを特徴とする射出成形機。
1. An injection molding machine for plastic injection molding, characterized in that the injection unit is configured by a combination of an electric servo motor and a hydraulic mechanism, the injection speed is controlled by the electric servo motor, and the holding force is controlled by the hydraulic mechanism. Machine.
JP2317773A 1990-11-26 1990-11-26 Plastic injection molding method Expired - Lifetime JP2804169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317773A JP2804169B2 (en) 1990-11-26 1990-11-26 Plastic injection molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2317773A JP2804169B2 (en) 1990-11-26 1990-11-26 Plastic injection molding method

Publications (2)

Publication Number Publication Date
JPH04189525A true JPH04189525A (en) 1992-07-08
JP2804169B2 JP2804169B2 (en) 1998-09-24

Family

ID=18091891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317773A Expired - Lifetime JP2804169B2 (en) 1990-11-26 1990-11-26 Plastic injection molding method

Country Status (1)

Country Link
JP (1) JP2804169B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760277A1 (en) * 1995-09-01 1997-03-05 Ferromatik Milacron Maschinenbau GmbH Electric drive with hydraulic assist in an injection moulding machine
DE10318958B3 (en) * 2003-04-26 2004-08-05 Krauss-Maffei Kunststofftechnik Gmbh Hybrid injection unit for an injection molding machine, comprises a rotatable and axially movable plastifying worm in a cylinder, primary and secondary electric motors, and a housing
DE102010020573A1 (en) 2010-05-14 2011-11-17 Netstal-Maschinen Ag Method for operating a hybrid drive and hybrid drive

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414421A (en) * 1990-05-07 1992-01-20 Mitsubishi Heavy Ind Ltd Injection apparatus of injection molding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414421A (en) * 1990-05-07 1992-01-20 Mitsubishi Heavy Ind Ltd Injection apparatus of injection molding machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0760277A1 (en) * 1995-09-01 1997-03-05 Ferromatik Milacron Maschinenbau GmbH Electric drive with hydraulic assist in an injection moulding machine
DE10318958B3 (en) * 2003-04-26 2004-08-05 Krauss-Maffei Kunststofftechnik Gmbh Hybrid injection unit for an injection molding machine, comprises a rotatable and axially movable plastifying worm in a cylinder, primary and secondary electric motors, and a housing
EP1473134A2 (en) * 2003-04-26 2004-11-03 Krauss-Maffei Kunststofftechnik GmbH Hybrid injection unit and injection molding machine with a hybrid injection unit
EP1473134A3 (en) * 2003-04-26 2004-12-29 Krauss-Maffei Kunststofftechnik GmbH Hybrid injection unit and injection molding machine with a hybrid injection unit
US7186111B2 (en) 2003-04-26 2007-03-06 Krauss-Maffei Kunststofftechnik Gmbh Hybrid injection unit, and injection molding machine with a hybrid injection unit
DE102010020573A1 (en) 2010-05-14 2011-11-17 Netstal-Maschinen Ag Method for operating a hybrid drive and hybrid drive
JP2013535180A (en) * 2010-05-14 2013-09-09 ネッツタール マシーネン アクチエンゲゼルシャフト Method for operating a hybrid drive and hybrid drive
US9156199B2 (en) 2010-05-14 2015-10-13 Netstal-Maschinen Ag Method for operating a hybrid drive and hybrid drive

Also Published As

Publication number Publication date
JP2804169B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CN1853894B (en) Die clamp unit
US4615669A (en) Injection molding machine
JPS59156726A (en) Controlling method of electric molding machine
JPH0556250B2 (en)
JPH04189525A (en) Injection molding machine
US4828476A (en) Direct-pressure type mold clamping mechanism of an injection-molding machine
JP2003039501A (en) Hot runner device and injection molding machine
JPH029614A (en) Injection compression control method of electrical injection molding machine and apparatus thereof
JPH1128747A (en) Clamping device of molding machine
JPH01314128A (en) Motor driven mold clamping device of injection molding machine and its driving control method
JPH0464492B2 (en)
JPH01192521A (en) Control method of screw of injection molding machine and device
JPH10151650A (en) Control of mold clamping apparatus
JPS61246032A (en) Mold-clamping device in injection molder
JPH0477228A (en) Screw driving device of injection molding machine
JPH0131464Y2 (en)
JPH04290717A (en) Injection molding machine
JPS62117721A (en) Back-pressure controlling system for injection molder by numerical control device
JPH0577287A (en) Material supply controlling device of electrically-driven injection molding machine
JP3258151B2 (en) Control device for gate cutting pin position of injection molding machine
JP3366042B2 (en) Injection control method for servo motor driven injection molding machine and servo motor driven injection molding machine
JPH0628253Y2 (en) Holding pressure control device for electric injection molding machine
JPH10286848A (en) In-line screw type injection molding machine
JPH0324344Y2 (en)
JPH0239787Y2 (en)