JPH0418945B2 - - Google Patents

Info

Publication number
JPH0418945B2
JPH0418945B2 JP16196784A JP16196784A JPH0418945B2 JP H0418945 B2 JPH0418945 B2 JP H0418945B2 JP 16196784 A JP16196784 A JP 16196784A JP 16196784 A JP16196784 A JP 16196784A JP H0418945 B2 JPH0418945 B2 JP H0418945B2
Authority
JP
Japan
Prior art keywords
welding
oscillation
groove
welding current
welding torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16196784A
Other languages
Japanese (ja)
Other versions
JPS6138784A (en
Inventor
Keiichi Hokaku
Hiroshi Kondo
Masami Une
Kenji Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP16196784A priority Critical patent/JPS6138784A/en
Publication of JPS6138784A publication Critical patent/JPS6138784A/en
Publication of JPH0418945B2 publication Critical patent/JPH0418945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、消耗電極を供給する溶接トーチを
開先の幅方向に揺動させながら溶接線をアークな
らい溶接するべくした溶接開先追従方法に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a welding groove tracking method for welding a welding line along an arc while swinging a welding torch that supplies a consumable electrode in the width direction of the groove. It is related to.

(従来技術) 例えば溶接トーチの揺動中心から左側への半周
期の溶接電流検出値の積分値と右側への半周期の
溶接電流検出値の積分値とが等しくなるように、
溶接トーチの揺動中心を開先幅方向に位置制御す
るようにしたものがある。
(Prior art) For example, the integral value of the welding current detection value for a half cycle to the left from the center of swing of the welding torch is equal to the integral value of the welding current detection value for a half cycle to the right.
There is one in which the position of the center of swing of the welding torch is controlled in the width direction of the groove.

しかしながら、消耗電極は送給路中で曲げられ
ていると溶接トーチから突き出されたときは、曲
げられていない場合に比べその先端とワークとの
空間距離が変わつて来るので溶接電流も変化す
る。また、消耗電極に給電するため溶接トーチ内
に設けられているチツプの内径は、所定位置にお
いて消耗電極の外径に適合したやや大きい目にな
るように作られているが、摩耗によつてチツプの
内径が大きくなると給電点位置が変わり、溶接電
流の変化が起り得る。そして、このような溶接電
流の変化は、一様なものでなく消耗電極の送給に
伴つて変動するので、検出した溶接電流のパター
ンは複雑なものであるため、溶接電流を検出して
演算処理し、開先追従を行う場合の障害になつて
いる。
However, when the consumable electrode is bent in the feed path and protruded from the welding torch, the spatial distance between its tip and the workpiece changes compared to when it is not bent, and the welding current also changes. In addition, the inner diameter of the tip provided in the welding torch to supply power to the consumable electrode is made to be slightly larger than the outer diameter of the consumable electrode at a predetermined position, but the tip may become damaged due to wear. When the inner diameter of the welding tube becomes larger, the position of the feeding point changes, which may cause a change in the welding current. Since such changes in welding current are not uniform and fluctuate as the consumable electrode is fed, the pattern of the detected welding current is complex, so it is necessary to detect and calculate the welding current. This has become an obstacle for processing and groove tracking.

(解決しようとする課題) この発明は前述事情に鑑みてなされたものであ
り、前記揺動中に検出した溶接電流値に基いて溶
接トーチの揺動中心を位置制御し、開先に追従さ
せるにあたり、消耗電極の曲りや給電点位置の変
動に伴うノイズを含む溶接電流の変動の影響を受
けることなく、精度のよい追従を行わせようとす
るものである。
(Problem to be Solved) This invention was made in view of the above-mentioned circumstances, and controls the position of the swing center of the welding torch based on the welding current value detected during the swing, so as to follow the groove. In doing so, the aim is to perform accurate tracking without being affected by fluctuations in the welding current, including noise due to bending of the consumable electrode or fluctuations in the position of the feed point.

(課題を解決するための手段) この発明は、前記溶接電流検出値を演算処理す
るにあたり、検出した溶接電流のパターンを数式
化し、こと数式についての前記揺動の一端から前
記揺動中心までの1/4周期の積分値と前記揺動中
心から前記揺動の他の一端までの1/4周期の積分
値を求め、これら積分値の差の関数として表わさ
れる制御量によつて前記揺動中心を開先幅方向に
位置制御することにより、前記溶接トーチを開先
に追従させるようにしたものである。
(Means for Solving the Problems) In calculating the detected welding current value, the present invention converts the detected welding current pattern into a mathematical formula, and calculates the pattern from one end of the oscillation to the center of the oscillation based on the mathematical formula. The integral value of the 1/4 period and the integral value of the 1/4 period from the center of the oscillation to the other end of the oscillation are determined, and the oscillation is controlled by the control amount expressed as a function of the difference between these integral values. By controlling the position of the center in the groove width direction, the welding torch is made to follow the groove.

(作用) 検出した溶接電流値は、第7図aのようにノイ
ズを含んだ複雑な変動パターンをもつているが、
演算処理には第7図bのような数式が使われるの
で、溶接トーチの揺動による変化だけを含んだ溶
接電流値が使われる。
(Function) Although the detected welding current value has a complicated fluctuation pattern containing noise as shown in Figure 7a,
Since the mathematical formula shown in FIG. 7b is used in the calculation process, a welding current value that includes only changes due to swinging of the welding torch is used.

(実施例) 第2図のような水平V開先GをもつたワークW
に対して多関節ロボツトRで溶接トーチTを揺動
させながら、揺動中心OSCの両側における揺動
の1/4周期の溶接電流値の積分値を比較して溶接
トーチTを開先Gに追従させて溶接し、溶接ビー
ドBdを形成させるようにした溶接開先追従方法
での実施例について説明する。
(Example) Workpiece W with a horizontal V groove G as shown in Fig. 2
While the welding torch T is oscillated by the articulated robot R, the integral value of the welding current value for 1/4 period of the oscillation on both sides of the oscillation center OSC is compared, and the welding torch T is moved to the groove G. An embodiment of a welding groove tracking method will be described in which welding is performed following the welding groove to form a weld bead Bd.

この実施例では、第3図に示すように、溶接ト
ーチTは揺動経路Pを画き、1回目の揺動、2
回目の揺動、3回目の揺動…N回目の揺動
へと揺動しながら、溶接速度VNで開先方向GDに
添つて溶接して行く。
In this embodiment, as shown in FIG. 3, the welding torch T draws a swing path P, and
The welding is carried out along the groove direction GD at the welding speed V N while oscillating from the 3rd oscillation to the 3rd oscillation to the Nth oscillation.

ここで、N回目の揺動について、図上の左端か
ら揺動中心OSCまでの1/4周期をNa、揺動中心
OSCから図上右端までの1/4周期をNb、右端から
揺動中心OSCまでの1/4周期をNc、揺動中心OSC
から左端までの1/4周期をNdと呼ぶ。
Here, for the Nth oscillation, 1/4 period from the left end on the diagram to the oscillation center OSC is Na, the oscillation center
Nb is the 1/4 period from OSC to the right end of the diagram, Nc is the 1/4 period from the right end to the swing center OSC, and is the swing center OSC.
The 1/4 period from to the left end is called Nd.

そして、このような溶接トーチTの揺動と溶接
進行方向GDへの移動は、第4図のように最終腕
先に溶接トーチTを取り付けたロボツトRの関節
角α1〜α5を制御することによつて行われる。
溶接トーチTには、図示しないモーターによつて
駆動される消耗電極送給装置Rによつて消耗電極
Eが送給され、消耗電極Eには、溶接電源1から
溶接トーチTの図示しないチツプを通して溶接電
流Iが供給される。
The swinging and movement of the welding torch T in the welding direction GD is controlled by controlling the joint angles α1 to α5 of the robot R, which has the welding torch T attached to the end of its final arm, as shown in Fig. 4. It is done by folding.
A consumable electrode E is fed to the welding torch T by a consumable electrode feeder R driven by a motor (not shown), and a consumable electrode E is fed from a welding power source 1 through a chip (not shown) of the welding torch T. A welding current I is supplied.

溶接電源Iから溶接トーチTへの電気配線上に
は電流センサ2が設けられており、電流センサ2
の出力は、ローパスフイルタ3、サンプルホール
ド回路4、A/Dコンバータ5、ポート6を通し
てバス7に接続される。また、バス7にはマイク
ロコンピユータ8およびインターフエース9を通
じてロボツトRの各関節軸駆動用サーボ回路10
〜14が接続されている。なお、マイクロコンピ
ユータ8は、図示しないCPU、ROM、RAMか
らなる公知のもので、この溶接開先追従に関する
プログラムを内蔵し、演算を行い、かつそのデー
タを格納する。このような電流センサ2〜サーボ
回路14で制御装置15が構成されている。そし
て、サーボ回路10〜14は、ロボツトRの各関
節角α1〜α5を制御するα1軸モータ16〜α
5軸モータ20にそれぞれ接続されている。ま
た、操作部21がバス7に接続されている。
A current sensor 2 is provided on the electrical wiring from the welding power source I to the welding torch T.
The output of is connected to a bus 7 through a low pass filter 3, a sample hold circuit 4, an A/D converter 5, and a port 6. In addition, the bus 7 is connected to a servo circuit 10 for driving each joint axis of the robot R through a microcomputer 8 and an interface 9.
~14 are connected. The microcomputer 8 is a well-known device consisting of a CPU, ROM, and RAM (not shown), and contains a program related to this welding groove tracking, performs calculations, and stores the data. The current sensor 2 to the servo circuit 14 constitute a control device 15. The servo circuits 10 to 14 operate α1-axis motors 16 to α that control each joint angle α1 to α5 of the robot R.
Each is connected to a five-axis motor 20. Further, an operation section 21 is connected to the bus 7.

ここで、この溶接開先追従方法の背景となる一
般的な作用について説明する。例えばN回目の揺
動が始まるに当り、第5図のように割込がかか
ると、溶接トーチTの揺動中、揺動周期を適宜分
割した各期間(図示せず)中に溶接電流値を適宜
回数サンプルし、平均してその期間の溶接電流検
出値Intとして図示しないRAMに取り込む。そし
て、溶接トーチTが揺動の一端に来て、これらの
溶接電流検出値の積分され、その結果、1/4周期
Naに関する積分値ANa、1/4周期Nbに関する積
分値BNbは第6図の通りになる。ただし、この
図では溶接電流Iは不規則な変動を含まない理想
的な姿で描かれている。そして、ANbからBN
を減算して得た差Cの関数f(C)として、溶接トー
チTの揺動中心の位置制御量を演算し、更にロボ
ツトRの各関節軸α1〜α5の駆動量が演算され
て出力し、割込みの処理が終る。
Here, the general operation behind this welding groove tracking method will be explained. For example, when an interruption occurs as shown in FIG. 5 at the start of the Nth oscillation, the welding current value will be is sampled an appropriate number of times, and the average value is taken into a RAM (not shown) as the detected welding current value Int for that period. Then, when the welding torch T comes to one end of the oscillation, these welding current detection values are integrated, and as a result, 1/4 period
The integral value A N a regarding Na and the integral value B N b regarding 1/4 period Nb are as shown in FIG. However, in this figure, the welding current I is depicted in an ideal form without irregular fluctuations. And from A N b to B N b
As a function f(C) of the difference C obtained by subtracting , the position control amount of the swing center of the welding torch T is calculated, and furthermore, the drive amount of each joint axis α1 to α5 of the robot R is calculated and output. , the interrupt processing ends.

ここで、次の割込みがかかり、この出力によ
りロボツトRは溶接トーチTを揺動させながら溶
接を行わせ、同時に前述同様、溶接電流を検出す
る。このような動作の繰返しにより、溶接トーチ
Tを開先Gに追従せしめて溶接ビードBdを形成
させる。
Here, the next interrupt is generated, and this output causes the robot R to perform welding while swinging the welding torch T, and at the same time detect the welding current as described above. By repeating such operations, the welding torch T is made to follow the groove G and a weld bead Bd is formed.

以下、この発明にかかる作用について説明す
る。N回目の揺動が始まるに当り、第1図のよう
に割込みがかかると、溶接電流検出、検出した
溶接電流を適宜回数サンプリングと平均、溶接電
流検出値の格納と言う各ステツプを揺動の半周期
について行う点は、前述の通りである。
The effects of this invention will be explained below. When an interruption occurs as shown in Figure 1 when the Nth oscillation begins, each step of oscillation is performed: detecting the welding current, sampling and averaging the detected welding current an appropriate number of times, and storing the detected welding current value. The points performed regarding the half cycle are as described above.

一方、マイクロコンピユータ8には、3次式で
式化する、4次式で近似させるなどのプログラム
が書き込まれており、操作部21で数式化の次数
を3に選ぶと与えられた時間tに対して f(t)=at3+bt2+ct+d なる演算を行うプログラムの実行ができるように
なる。そして、誤差率もまた操作部21で例えば
誤差を5%に選ぶと、前式f(t)の演算結果が、
検出された溶接電流値と5%の誤差範囲で一致す
るよう、前式の定数a、b、c、dが求められる
ようになる。この定数a、b、c、dを求める演
算は、公知の最小自乗法にる収束演算によるもの
であり、このような演算法をマイクロコンピユー
タ8のプログラムにすることは公知のことであ
る。
On the other hand, the microcomputer 8 is programmed with programs such as formulating a formula using a cubic equation or approximating it using a quaternary equation. On the other hand, it becomes possible to execute a program that performs the calculation f(t)=at 3 +bt 2 +ct+d. Then, if the error rate is also selected to be, for example, 5% using the operation unit 21, the calculation result of the previous formula f(t) becomes
The constants a, b, c, and d in the above equation are determined so that they match the detected welding current value within an error range of 5%. The calculations for determining the constants a, b, c, and d are based on convergence calculations based on the well-known method of least squares, and it is well known to program the microcomputer 8 using such calculation methods.

前述数式化の次数および誤差率は、装置15の
動作に先立つて選択されているので、前述格納し
た溶接電流検出値Intの中から代表的に適宜何点
かのものが選ばれると前式のf(t)が与えられ
その検出した時間tに応じて前述演算がなされ、
定数a、b、c、dが決定されるので、溶接電流
の時間に対する関係を規定する式f(t)が決定
される。つまり、第7図aのような不規則な変動
を含む溶接電流検出値のパターンが、同図bのよ
うな不規則な変動を含まない曲線で表わされるよ
うになる。
Since the order and error rate of the above-mentioned formula are selected before the operation of the device 15, when a number of representative points are appropriately selected from the welding current detection values Int stored above, the above equation is f(t) is given and the above calculation is performed according to the detected time t,
Since the constants a, b, c, and d are determined, the equation f(t) that defines the relationship between welding current and time is determined. In other words, the pattern of the detected welding current value that includes irregular fluctuations as shown in FIG. 7a is now represented by a curve that does not include irregular fluctuations as shown in FIG. 7b.

そこで、この数式f(t)=at3+bt3+ct+dに
対して、N回目の揺動中の1/4周期Naおよび
Nbについて積分し、積分値A′NaおよびB′Nbを
求め、更にA′NaからB′Nbを減算して差C′を求め
る。そして、この差Cの関数として溶接トーチT
の揺動中心の位置制御量が演算され、更にロボツ
トRの各関節軸α1〜α5の駆動量が演算され
る。この各関節軸α1〜α5の駆動量が出力され
たところで割込み処理が終る。
Therefore, for this formula f(t) = at 3 + bt 3 + ct + d, 1/4 period Na and
Integrate with respect to Nb to obtain integral values A' N a and B' N b, and further subtract B' N b from A' N a to find the difference C'. Then, as a function of this difference C, the welding torch T
The position control amount of the swing center of the robot R is calculated, and the drive amount of each of the joint axes α1 to α5 of the robot R is calculated. The interrupt process ends when the drive amount of each of the joint axes α1 to α5 is output.

ここで、次の割込みがかかり、先の割込み
で得た出力によつて、ロボツトRは溶接トーチT
にN+1回目の揺動N+1を行わせて溶接を行
う。このような動作の繰返しにより、溶接トーチ
Tを正確に開先Gに追従せしめて溶接ビードBd
を形成し、開先Gの端に到る。
At this point, the next interrupt occurs, and the robot R uses the welding torch T based on the output obtained from the previous interrupt.
Welding is performed by causing N+1 to perform the N+1 oscillation. By repeating these operations, the welding torch T can be made to accurately follow the groove G and weld bead Bd.
, and reaches the end of the groove G.

(他の実施例) 他の実施例として、溶接電流検出値Intは、揺
動周期中、適宜間欠的にだけ検出して取り込むこ
と、揺動幅中の適宜位置において検出し、取り込
むようにすることができる。
(Other Embodiments) As another embodiment, the welding current detection value Int may be detected and captured only intermittently during the oscillation cycle, or may be detected and captured at appropriate positions within the oscillation width. be able to.

また水平隅肉など他の形状の開先についての開
先追従についても実施できる。
It is also possible to perform groove tracking for grooves of other shapes such as horizontal fillets.

また、使用される数式も3次式に限ることはな
く、4次式およびその他の数式とすることがで
き、このような数式化についても最小自乗法以外
の係数決定方法によることができる。
Furthermore, the formula used is not limited to a cubic formula, but can be a quaternary formula or other formulas, and such formulas can also be expressed by coefficient determination methods other than the least squares method.

また、N回目の揺動の半周期の揺動中心にお
ける溶接電流検出値をW(t)Nとし、K回の揺
動の平均値 1/KKN=1 W(t)N-Kまたはウエート を持たせた平均値 KN=1 2-KW(t)N-Kをもとに、 次数を決定する等の方法がある。
In addition, the welding current detection value at the center of the half cycle of the Nth oscillation is W(t)N, and the average value of the K oscillations is 1/K KN=1 W(t) NK or weight There is a method such as determining the order based on the average value KN=1 2 -K W(t) NK .

(効果) 以上の通り、この発明は、検出した溶接電流か
ら、消耗電極の曲りや給電点の位置変動に伴うノ
イズおよびその他のノイズを含まない、溶接電流
を表わすような数式化を行い、この数式によつて
演算処理を行うので、精度のよい溶接開先追従が
行えると言う効果がある。従つて、基準値を定め
る場合、そのため幾つかの振動についてサンプリ
ングを行ういわゆる学習と言うような面倒な動作
がいらなくなると言う効果もある。
(Effects) As described above, the present invention converts the detected welding current into a mathematical formula that expresses the welding current without including noise caused by bending of the consumable electrode or positional fluctuation of the power feeding point, and other noises. Since the arithmetic processing is performed using mathematical formulas, there is an effect that accurate welding groove tracking can be performed. Therefore, when determining the reference value, there is an effect that there is no need for a troublesome operation such as so-called learning in which sampling is performed for several vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すものであつて、
第1図はフロー図、第2図は概略図、第3図は模
式図、第4図はブロツク図、第5図はフロー図、
第6図は模式図、第7図は模式図である。 これらの図面において、Eは消耗電極、Tは溶
接トーチ、Gは開先、Wはワーク、OSは揺動方
向、S11〜S30は演算処理のステツプであ
る。
The drawings show embodiments of the invention,
Figure 1 is a flow diagram, Figure 2 is a schematic diagram, Figure 3 is a schematic diagram, Figure 4 is a block diagram, Figure 5 is a flow diagram,
FIG. 6 is a schematic diagram, and FIG. 7 is a schematic diagram. In these drawings, E is a consumable electrode, T is a welding torch, G is a groove, W is a workpiece, OS is a swing direction, and S11 to S30 are steps of calculation processing.

Claims (1)

【特許請求の範囲】 1 消耗電極を供給する溶接トーチを開先の幅方
向に揺動させながら溶接線をアークならい溶接す
るべくした溶接開先追従方法において、 前記溶接トーチの揺動中に検出した溶接電流か
ら、この溶接電流のパターンを数式化し、この数
式についての前記揺動の一端から前記揺動中心ま
での1/4周期の積分値と前記揺動中心から前記揺
動の他の一端までの1/4周期の積分値を求め、こ
れら積分値の差の関数として表わされる制御量に
よつて前記揺動中心を開先幅方向に位置制御する
ことにより、前記溶接トーチを開先に追従させる
ようにした、前記溶接開先追従方法。
[Scope of Claims] 1. In a welding groove tracking method in which a welding line is welded along an arc while a welding torch that supplies a consumable electrode is oscillated in the width direction of the groove, detection is made while the welding torch is oscillating. From the welding current obtained, the pattern of this welding current is expressed mathematically, and the integral value of the 1/4 period from one end of the oscillation to the oscillation center and the other end of the oscillation from the oscillation center are calculated using this mathematical expression. By determining the integral value of the 1/4 period of The method for following a welding groove.
JP16196784A 1984-07-31 1984-07-31 Method for following up welding groove Granted JPS6138784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16196784A JPS6138784A (en) 1984-07-31 1984-07-31 Method for following up welding groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16196784A JPS6138784A (en) 1984-07-31 1984-07-31 Method for following up welding groove

Publications (2)

Publication Number Publication Date
JPS6138784A JPS6138784A (en) 1986-02-24
JPH0418945B2 true JPH0418945B2 (en) 1992-03-30

Family

ID=15745478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16196784A Granted JPS6138784A (en) 1984-07-31 1984-07-31 Method for following up welding groove

Country Status (1)

Country Link
JP (1) JPS6138784A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183976A (en) * 2008-02-06 2009-08-20 Panasonic Corp Welding control method and welding device
JP5081134B2 (en) * 2008-11-18 2012-11-21 株式会社ダイヘン Method for setting scanning parameter of arc sensor for robot and apparatus for setting copying parameter of arc sensor for robot

Also Published As

Publication number Publication date
JPS6138784A (en) 1986-02-24

Similar Documents

Publication Publication Date Title
US4336440A (en) Weld tracking/electronic arc sensing system
JPH0252592B2 (en)
JP2006247693A (en) Method for controlling aiming position of wire and position controller
US4608481A (en) Method of automatically controlling height of a weld bead
JPH0418945B2 (en)
US6150631A (en) Method of detecting root gap and arc welding method using the former
EP0354969A1 (en) Weaving welding method
US4785155A (en) Automatic welding machine path correction system
KR101615903B1 (en) Automatic welding control device
JPH0413066B2 (en)
JPH0420711B2 (en)
JP2017068391A (en) Numerical control device and method for compensating for lost motion of numerical control device
JPH07266210A (en) Brazed part grinding robot
Nayak et al. An adaptive real-time intelligent seam tracking system
JPH0343173A (en) Robot positioning method and control device
JPH0639066B2 (en) Control method for industrial robot
JPH06324732A (en) Teaching point tracing type device with operation program correction device
JP2734258B2 (en) Robot trajectory correction device
JPS6096369A (en) Method for automatically controlling torch in arc welding
JPS60130471A (en) Method and device for following up weld line
JPS6133773A (en) Method for following up welding groove
JP2507412B2 (en) Machining line teaching method
KR920006680B1 (en) Welding wire pursuit device
JPH04123884A (en) Follow-up controller of three dimensional laser beam machine
JPH0511825A (en) Correction device for track of robot