JPH04189263A - Winding molding method of spherical body - Google Patents

Winding molding method of spherical body

Info

Publication number
JPH04189263A
JPH04189263A JP31559990A JP31559990A JPH04189263A JP H04189263 A JPH04189263 A JP H04189263A JP 31559990 A JP31559990 A JP 31559990A JP 31559990 A JP31559990 A JP 31559990A JP H04189263 A JPH04189263 A JP H04189263A
Authority
JP
Japan
Prior art keywords
revolution
core ball
angle
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31559990A
Other languages
Japanese (ja)
Inventor
Sohei Suzuki
鈴木 壮兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31559990A priority Critical patent/JPH04189263A/en
Publication of JPH04189263A publication Critical patent/JPH04189263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To uniform the fiber strength on a spherical body by feeding and winding a fiber on a core ball by a horizontal rotating port horizontally rotated at a high speed around the core ball by a main shaft, and making the revolution angle satisfy a specified condition. CONSTITUTION:A winding is applied to a core ball 1 to form a spherical body, in which a middle speed rotation is given to the core ball 1 by an upward open-sided shaft 3 within a vertical surface extending through a spherical center 2, and the angle formed by the open-sided shaft 3 to the crossing line between a horizontal surface extending through the spherical center 2 the vertical surface is a revolution angle Q. A low speed revolution is given to the core ball 1 so that the revolution angle Q is changed by 0-90 deg. 1 by a revolution shaft 5. A fiber 8 is fed and wound on the core ball 1 by a horizontal rotating port 7 horizontally rotated at a high speed by a main shaft 6 around the core ball 1 within the horizontal surface, so that the scheme N=k sin A is satisfied, when the integrated number of winding of the fiber 8 is N and the proportional constant is k at the time of increasing the revolution angle Q by 0-A deg.. Thus, the fiber strength on the core ball 1 can be uniformed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、球形体のワインディング成形法に関する0 〔従来の技術〕 従来の球形体のワインディング成形法においては、芯球
上の繊維密度を一定にすることができないものであった
(41!!公昭38− 、t 2192゛号公報参照)
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a winding molding method for a spherical body. [Prior Art] In the conventional winding molding method for a spherical body, the fiber density on the core sphere is kept constant. (Refer to Publication No. 41!! Publication No. 1973-, No. 2192)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の球形体のワインディング成形法においては、芯球
上の繊維密度を一定にすることができなかったので、芯
球上の強度を一様にすることができないという問題点が
あった。
In the conventional winding molding method of a spherical body, the fiber density on the core sphere could not be made constant, so there was a problem that the strength on the core sphere could not be made uniform.

本発明は、この問題点を解消し、芯球上の繊維強度を一
様にすることのできるワインディング成形法を提供する
ことを目的としている。
An object of the present invention is to provide a winding molding method that can solve this problem and make the fiber strength on the core sphere uniform.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の球形体のワインデ
ィング成形法においては、 球形体の芯となるべき芯球にその球心を通る鉛直面内上
向きの片持軸によって中速自転を与え、片持軸が球心を
通る水平面と前記鉛直面との交線に対してなす角を公転
角Qとし、公転軸によって芯球に対し球心まわシに公転
角Qがゼロ近傍から90度まで変化するように低速公転
を与え、前記水平面内で芯球のまわシを主軸により高速
水平回転をさせられる水平回転口によって芯球上に繊維
を送り出し巻きつけ、公転角Qがゼロ近傍からA′!で
増加する迄の繊維の積算巻数=iNとし比例定数ikと
するとき、Nw−m k 5inAなる関係を有せしめ
るものである。
In order to achieve the above object, in the method of winding a spherical body according to the present invention, a core sphere, which is to be the core of a spherical body, is given medium-speed rotation by a cantilever shaft extending upward in a vertical plane passing through the spherical center, The angle that the cantilever axis makes with the intersection line of the horizontal plane passing through the spherical center and the vertical plane is the revolution angle Q, and the revolution angle Q around the spherical center with respect to the core ball is from near zero to 90 degrees by the revolution axis. The core sphere is rotated at a low speed so as to change, and the core sphere is rotated horizontally at high speed by the main axis in the horizontal plane, and the fiber is sent out and wound around the core sphere, and the revolution angle Q changes from near zero to A'. ! When the cumulative number of turns of the fiber until it increases is iN and the proportionality constant ik, the following relationship is established: Nw - m k 5inA.

〔作用〕[Effect]

公転角Aに対応する芯球1上の周長け、芯球1の半径f
:rとすれば、2fr 5inAである0従って、この
周上の繊維密度fは、 f  −N/2 フjrsinA −k 5inA / 2gr sin A−に/2でr 故に、  f−k / 27rr −一定となる。
The circumferential length on the core sphere 1 corresponding to the revolution angle A, the radius f of the core sphere 1
:r, then 2fr 5inA is 0 Therefore, the fiber density f on this circumference is: f - N/2 It becomes constant.

〔実施例〕〔Example〕

実施例について図面全参照して説明すると、芯球)1に
ワイ・ディングを施して球形体を成形するものである。
The embodiment will be described with reference to all the drawings.A core sphere 1 is widened to form a spherical body.

球心2を通り鉛直面内の上向きの片持軸3によって、芯
球1に中速自転、例えば10〜12rpmの自転を与え
る。片持軸3はモータ9によシ回転させられるフレキシ
ブルシャフト10によって回転させられる。
A cantilever shaft 3 passing through the ball center 2 and pointing upward in a vertical plane gives the core ball 1 medium-speed rotation, for example, 10 to 12 rpm. The cantilever shaft 3 is rotated by a flexible shaft 10 which is rotated by a motor 9.

片持軸3が、球心2を通る水平面と前記鉛直面とのなす
交m4に対してなす角を公転角Qとする。
The angle that the cantilever shaft 3 makes with respect to the intersection m4 between the horizontal plane passing through the spherical center 2 and the vertical plane is defined as the revolution angle Q.

片持軸3を支持する公転軸5によって、芯球1に対し、
公転角Qがゼロ近傍、例えば10度から90度迄増加す
るように、低速回転、例えば2rpmを与える。公転軸
5は、ステッピングモータシステム11によってステッ
ピングが与えられる。
With respect to the core sphere 1, by the revolution axis 5 supporting the cantilever axis 3,
A low speed rotation, for example, 2 rpm, is applied so that the revolution angle Q increases from near zero, for example, 10 degrees to 90 degrees. The revolution axis 5 is given stepping by a stepping motor system 11 .

前記水平面内で芯球1のまわりを主軸6によって高速水
平回転、例えば6 Orpmさせられる水平回転ロアに
よって、芯球1上に繊維8を送シ出し巻きつける。主軸
6はモータ9によって回転させられる。樹脂12が含浸
させられた繊維13は、主軸6の中を通シ、水平回転ロ
アから繊維8として送り出される。公転角Qの状態では
、繊維8はBCDEの範囲内に巻きつけられることにな
る。
The fibers 8 are fed and wound onto the core sphere 1 by a horizontal rotating lower which is horizontally rotated at high speed, for example, 6 Orpm, around the core sphere 1 by the main shaft 6 in the horizontal plane. The main shaft 6 is rotated by a motor 9. The fibers 13 impregnated with the resin 12 are passed through the main shaft 6 and sent out as fibers 8 from the horizontal rotating lower. At the revolution angle Q, the fiber 8 is wound within the range of BCDE.

芯球1は、公転軸5によシスチッピングさせられ、揺動
させられる。
The core sphere 1 is sys-chipped and oscillated by the revolution axis 5.

この揺動によシ公転角Qは、公転サイクルを行なう。公
転サイクルは、公転角Qがゼロ近傍、例えば10度から
増加して90度に至る増角半サイクルと、90度から反
転してゼロ近傍まで減少する減角反サイクルとから成る
。この1公転サイクルが反復されるものである。
Due to this rocking, the revolution angle Q performs a revolution cycle. The revolution cycle consists of an increasing half cycle in which the revolution angle Q increases from near zero, for example 10 degrees, and reaches 90 degrees, and a decreasing angle inverse cycle, in which the revolution angle Q reverses from 90 degrees and decreases to near zero. This one revolution cycle is repeated.

主軸6に同期して回転する円板状の制御板14f。A disc-shaped control plate 14f rotates in synchronization with the main shaft 6.

備える。制御板14は、下から見て例えば時計式に回転
し、その1回転は1公転サイクルに対応させられる。制
御板14の下面には、周に沿って信号がしるされる。こ
の信号の角度記号は、例えば第3図の如くする。信号を
感知するセンサ15を備え、このセンサ15はステッピ
ングモータシステム11に接続される。制御板14の回
転につれて信号がセンサ15を通ると、センサ15がそ
の信号を感知してステッピングモータシステム11を作
動させ、公転軸5fニスチツピングさせる。信号GIO
がセンサ15を通る時点で公転角Qが10度になるよう
にステッピングモータシステム11を調節する。
Be prepared. The control plate 14 rotates, for example, in a clockwise manner when viewed from below, and one revolution corresponds to one revolution cycle. On the lower surface of the control board 14, signals are marked along the circumference. The angle symbol of this signal is, for example, as shown in FIG. A sensor 15 for sensing signals is provided, and this sensor 15 is connected to the stepping motor system 11. As the control board 14 rotates, a signal passes through the sensor 15, and the sensor 15 detects the signal and operates the stepping motor system 11, thereby causing the revolution axis 5f to tip. Signal GIO
The stepping motor system 11 is adjusted so that the revolution angle Q becomes 10 degrees when the rotation angle Q passes the sensor 15.

制御板14は主軸6に同期しているので、繊維8の積算
巻数は制御板14の回転角に比例する。
Since the control plate 14 is synchronized with the main shaft 6, the cumulative number of turns of the fiber 8 is proportional to the rotation angle of the control plate 14.

制御板14の時計式の順転が進み、信−4−20がセン
サ15を通る迄に積算巻数がksinjQ度になるよう
に信号20の位#を設定する。信号20がセンサ15を
通りた時、その信号によシスチッピングモータシステム
11にステッピングを与え、公転角Qを30[にする。
The clockwise rotation of the control board 14 progresses, and the digit # of the signal 20 is set so that the cumulative number of turns becomes ksinjQ degrees until the signal 4-20 passes the sensor 15. When the signal 20 passes through the sensor 15, the signal gives stepping to the system chipping motor system 11, making the revolution angle Q 30[.

信号30がセンサ15を通る迄に積算巻数がk s i
n 2QliIになるように信号30の位置を設定する
。信号30がセンサ15を通る時信号によってステッピ
ングモータシステム11はステッピングをし、公転角Q
は40度となる。
Until the signal 30 passes through the sensor 15, the cumulative number of turns is k s i
Set the position of the signal 30 so that n2QliI. When the signal 30 passes through the sensor 15, the stepping motor system 11 steps according to the signal, and the revolution angle Q
is 40 degrees.

制御板14の回転につれて、同様にして進む。As the control plate 14 rotates, the process proceeds in a similar manner.

信号F90がセンサ15を通る迄の積算巻数はksin
80度となシ、信号G90がセンサ15全通る迄の積算
巻数はksin90度となるように、信号F90、G9
0の位置を設定する。
The cumulative number of turns until the signal F90 passes through the sensor 15 is ksin
The signals F90 and G9 are adjusted so that the cumulative number of turns until the signal G90 passes through all the sensors 15 is ksin90 degrees.
Set the 0 position.

ここ迄で増角半サイクルは終シ、積算巻数はkである。Up to this point, the angle increasing half cycle has ended and the cumulative number of turns is k.

信号G90はセンサ15に反転信号を出し、ステッピン
グモータシステム11のステッピングは逆転に転じ、公
転角80度にステッピングして減角半サイクルが始まシ
、新しく巻数を積算する。
The signal G90 outputs a reversal signal to the sensor 15, and the stepping motor system 11 reverses its stepping, steps to a revolution angle of 80 degrees, starts a decrementing angle half cycle, and newly accumulates the number of turns.

信号80がセンサ15通過迄の積算巻数は、k(sin
90度−5in80度)であり、信号80がセンサ15
を通る時公転角70Mにステッピングをする。信号70
がセンサ15通過迄の積算巻数は、k(sin90度−
5in 70度)であり、センサ15の信号70通過で
公転角60度にステッピングをする。
The cumulative number of turns until the signal 80 passes the sensor 15 is k (sin
90 degrees - 5 in 80 degrees), and the signal 80 is the sensor 15
When passing through, it steps to a revolution angle of 70M. signal 70
The cumulative number of turns until it passes the sensor 15 is k (sin90 degrees -
5 inches 70 degrees), and when the sensor 15 signal 70 passes, the revolution angle is stepped to 60 degrees.

このようにして減角半サイクルが進む。In this way, the angle reduction half cycle progresses.

信号20がセンサ15通過迄の積算巻数は、k(sin
9Q度−5in20度)、センサ15の信号20通過で
公転角10度にステッピングをする。信号F10通過迄
の積算巻数はk(sin90度−5in 10度)、信
号G10通過迄の積算巻数はk(sin90度−5in
 Q度)である。
The cumulative number of turns until the signal 20 passes the sensor 15 is k (sin
9Q degrees - 5 in 20 degrees), stepping to a revolution angle of 10 degrees when signal 20 of sensor 15 passes. The cumulative number of turns until the signal F10 passes is k (sin 90 degrees - 5 in 10 degrees), and the cumulative number of turns until the signal G10 passes is k (sin 90 degrees - 5 in
degree).

ここで、減角半サイクルが終わる。減角半サイクルでの
積算巻数はkである。
At this point, the angle reduction half cycle ends. The cumulative number of turns in a half cycle of decreasing angle is k.

信号G10通過でセンサ15は反転信号を発し、ステッ
ピングモータシステム11は順転に転じ、増角半サイク
ルが再び始まり、公転角20度にステッピングをする。
When the signal G10 passes, the sensor 15 issues a reversal signal, and the stepping motor system 11 starts rotating forward, and the angle increase half cycle begins again, stepping to a revolution angle of 20 degrees.

このように、公転サイクルが反復され、N−ksinQ
なる条件を満たすワインデーイングカ;なされるもので
ある。
In this way, the revolution cycle is repeated and N-ksinQ
winemaking that satisfies the conditions;

叙上の記載では便宜上10度ステップで説明したが、1
度ステップでも、更にこま力iいステップでも、同様に
実施できるものであり、繊維8のロービングは相当に太
いのでステップをこまかくすることによシ、殆ど連続的
に公転角Qを変化させたと同様の結果が得られる。
In the description above, I explained in 10 degree steps for convenience, but 1
It can be carried out in the same way with a degree step or even a finer step.Since the roving of the fiber 8 is quite thick, by making the step finer, it is the same as changing the revolution angle Q almost continuously. The result is obtained.

本実施例では、公転角Qt90度から逆転させたが、逆
転させないで100度と進め、170度のステップで逆
転させるようにしても差支えない。
In this embodiment, the revolution angle Qt is reversed from 90 degrees, but it is also possible to proceed to 100 degrees without reversing and then reverse in steps of 170 degrees.

モータ9、主軸6、制御板14等・との間の連動は原理
的に歯車を示しであるが、その構成は適宜で・あり、ま
た歯車によらなくとも差支えない。
In principle, the interlocking between the motor 9, the main shaft 6, the control plate 14, etc. is shown as a gear, but the structure may be any suitable and may not be based on a gear.

x7ツピングモータシステム11については周知である
のでその説明を省略する。
Since the x7 topping motor system 11 is well known, its explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

球形体上の繊維密度が一定になるワインディング成形法
が得られるものであシ、従って球形体上の強度が一様で
ある球形体が得られる効果がある。
This method provides a winding molding method in which the fiber density on the spherical body is constant, and therefore has the effect of obtaining a spherical body with uniform strength on the spherical body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正面図であり、一部を切欠いて示し、第2図は
側面図である。第3図は制御板の底面図である0 図において、1は芯球、2は球心、3は片持軸、4は交
線、5は公転軸、6は主軸、7は水平回転口、8は繊維
である0
FIG. 1 is a front view with a part cut away, and FIG. 2 is a side view. Figure 3 is a bottom view of the control board. In the figure, 1 is the core ball, 2 is the ball center, 3 is the cantilever axis, 4 is the intersection line, 5 is the revolution axis, 6 is the main axis, and 7 is the horizontal rotation port. , 8 is fiber 0

Claims (1)

【特許請求の範囲】 1 球形体の芯となるべき芯球(1)に、その球心(2
)を通る鉛直面内上向きの片持軸(3)によつて、中速
自転を与え、 片持軸(3)が、球心(2)を通る水平面と前記鉛直面
との交線(4)に対してなす角を公転角Qとし、 公転軸(5)によつて、芯球(1)に対し、球心(2)
まわりに公転角Qがゼロ近傍から90度まで変化するよ
うに、低速公転を与え、 前記水平面内で芯球(1)のまわりを主軸(6)により
高速水平回転をさせられる水平回転口(7)によつて、
芯球(1)上に繊維(8)を送り出し巻きつけ、 公転角Qがゼロ近傍からAまで増加する迄の繊維(8)
の積算巻数をNとし、比例定数をkとするとき、 N=ksinA なる関係を有せしめることを特徴とする球形体のワイン
ディング成形法
[Scope of Claims] 1. A core sphere (1) that is to be the core of a spherical body has its center (2
) The cantilever shaft (3) points upward in the vertical plane, giving medium-speed rotation, and the cantilever shaft (3) passes through the center of the ball (2) at the intersection line (4) of the horizontal plane passing through the vertical plane and said vertical plane. ) is the revolution angle Q, and the revolution axis (5) makes the center of the ball (1) the center of the ball (2).
A horizontal rotation port (7) is provided with a low-speed revolution so that the revolution angle Q changes from near zero to 90 degrees, and is caused to rotate at high speed horizontally around the core sphere (1) in the horizontal plane by the main axis (6). ),
The fiber (8) is sent out and wound around the core ball (1) until the revolution angle Q increases from near zero to A.
A winding forming method for a spherical body characterized by having the following relationship: N=ksinA, where the cumulative number of turns is N and the constant of proportionality is k.
JP31559990A 1990-11-20 1990-11-20 Winding molding method of spherical body Pending JPH04189263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31559990A JPH04189263A (en) 1990-11-20 1990-11-20 Winding molding method of spherical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31559990A JPH04189263A (en) 1990-11-20 1990-11-20 Winding molding method of spherical body

Publications (1)

Publication Number Publication Date
JPH04189263A true JPH04189263A (en) 1992-07-07

Family

ID=18067293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31559990A Pending JPH04189263A (en) 1990-11-20 1990-11-20 Winding molding method of spherical body

Country Status (1)

Country Link
JP (1) JPH04189263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020103825B4 (en) 2020-02-13 2023-03-09 Gerhard Schoppel Process for machine winding of a spherical ball of wool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020103825B4 (en) 2020-02-13 2023-03-09 Gerhard Schoppel Process for machine winding of a spherical ball of wool

Similar Documents

Publication Publication Date Title
JPH04189263A (en) Winding molding method of spherical body
JPH09243833A (en) Optical fiber drawing device
US3904339A (en) Apparatus for depositing materials on surfaces of revolution
CN203930510U (en) Torch integrated turntable for laser instrument angular setting
JPH09142707A (en) Uniform speed unwinding drive control method for eccentric web roll
JPH08277139A (en) Production of glass fiber and its device
JP2003292334A (en) Method and apparatus for producing optical fiber
JPH09276932A (en) Method for coiling wire and device therefor
JPS591143A (en) Lens centering machine
JP2606252B2 (en) Method of forming laminated T-tube made of FRP
JP2606253B2 (en) Method of forming laminated T-tube made of FRP
JPH02156101A (en) Method and apparatus for measuring angle of inversion for spacer for supporting optical fiber
JP2606251B2 (en) Method of forming laminated T-tube made of FRP
EP1122572A1 (en) Device and method for producing optical cable slot rod
CN209247617U (en) On-line measuring device is fixed for flexible circuit board in one kind
JP2000047079A (en) Slot inversion detection of s-z slot cable, production of s-z slot cable and apparatus therefor
SU905027A1 (en) Method of dressing worm-type gear-grinding wheel by roller
JPS63163171A (en) Anemoscope/anemometer
SU233804A1 (en) DEVICE FOR CONTROL OF ANGLES
JPS5777531A (en) Centrifugal molding method of resin pipe having trapezoidal section with reinforcing fiber therein
JPS6125007A (en) Deflected part displaying method of cable sheath
IT8968118A1 (en) DEVICE FOR REGULATING THE STOP OF THE SHEETS IN THE FOLDING POCKETS FOR FOLDING MACHINES
SU1142303A1 (en) Method of monitoring process of shaping complicated mould shell
JP2884821B2 (en) Roof winding control method in roving machine
JP2003321244A (en) Optical fiber winding method and optical fiber winding apparatus