JPH04188118A - Nonlinear optical material - Google Patents

Nonlinear optical material

Info

Publication number
JPH04188118A
JPH04188118A JP31872190A JP31872190A JPH04188118A JP H04188118 A JPH04188118 A JP H04188118A JP 31872190 A JP31872190 A JP 31872190A JP 31872190 A JP31872190 A JP 31872190A JP H04188118 A JPH04188118 A JP H04188118A
Authority
JP
Japan
Prior art keywords
nonlinear optical
electron
optical material
organic compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31872190A
Other languages
Japanese (ja)
Inventor
Katsuya Wakita
克也 脇田
Nobuo Sonoda
園田 信雄
Takashi Minemoto
尚 峯本
Tatsuro Kawamura
達朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31872190A priority Critical patent/JPH04188118A/en
Publication of JPH04188118A publication Critical patent/JPH04188118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain nonlinear optical material having short absorption edge and large nonlinear optical characteristic by using a specific organic compound. CONSTITUTION:The organic compound shown in the formula I, peclon (N- nitrophenyl hydroxylamine ammonium salt) is used. Because this organic compound has short pi-conjugate length, the absorption edge is short and there is little fear to absorb output higher harmonics, and because the construction is of intermolecular salt, the crystallizing condition is stable and the crystal is easily made. Hereby, nonlinear optical material having large nonlinear optical characteristic and short absorption edge can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高速光スイッチや光メモリその他の各種光素子
への応用が可能な非線形光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonlinear optical material that can be applied to high-speed optical switches, optical memories, and various other optical devices.

[従来の技術] 近年、光デバイスに有用なフォトニクス材料として、大
きな非線形光学効果を示し、且つ高速応答する材料がも
とめられており、広く探索研究がおこなわれている。こ
のような材料としては、格子の振動が関与する無機化合
物結晶よりも、π電子糸を有する有機化合物の方がすぐ
れているとされ、その設計指針としては、π電子共役系
を有する分子に強い電子供与性(ドナー性)置換基と電
子求引性(アクセプター性)置換基を導入する方法が有
力かつ一般的であった。
[Prior Art] In recent years, there has been a demand for materials that exhibit large nonlinear optical effects and have high-speed response as photonics materials useful for optical devices, and exploration research is being carried out extensively. Organic compounds with π-electron threads are said to be better as such materials than inorganic compound crystals that involve lattice vibrations, and the design guidelines for such materials include The method of introducing an electron-donating (donor) substituent and an electron-withdrawing (acceptor) substituent has been effective and common.

また、非線形光学特性を示す有機化合物を高分子化合物
中に導入させる手法としては、大きな双極子モーメント
、を待った分子をその非線形光学特性をより効率よく発
現させるために、電界を印加しなから配向制御し、結晶
化させる方法、結晶性ポリマー中で高分子と共に結晶化
させる方法(特開平1−274122.特開平1−18
8835)、高分子の側鎖に非線形光学材料を導入させ
る方法、高分子鎖との間で化学反応を起こさせ、高分子
鎖間にクロスリンキングさせる方法がとられている。
In addition, as a method for introducing organic compounds that exhibit nonlinear optical properties into polymer compounds, in order to more efficiently express the nonlinear optical properties of molecules that have a large dipole moment, we orient them without applying an electric field. A method of controlling and crystallizing, a method of crystallizing together with a polymer in a crystalline polymer (JP-A-1-274122, JP-A-1-18
8835), a method in which a nonlinear optical material is introduced into the side chain of a polymer, and a method in which a chemical reaction is caused between the polymer chains to cause cross-linking between the polymer chains.

[発明が解決しようとする課題] しかし、非線形光学特性を大きく発現させるためにπ電
子共役系を有する有機化合物に強い電子供与性及び電子
求引性置換基を導入した有機化合物においては結晶化が
難しいことや、結晶かできても、大きな双極子モーメン
トを持つことでその双極子モーメントを打ち消し合うよ
うに結晶化か起こり非線形光学特性が発現しなくなると
いった課題があった。
[Problems to be Solved by the Invention] However, in organic compounds having strong electron-donating and electron-withdrawing substituents introduced into organic compounds having a π-electron conjugated system in order to significantly develop nonlinear optical properties, crystallization is difficult. It was difficult, and even if a crystal could be formed, it had a large dipole moment, which caused crystallization to cancel out the dipole moments, resulting in the nonlinear optical properties not being expressed.

また、大きな非線形光学特性を持たせる為に分子内での
共役長を伸ばすことによる吸収端の長波長化といった課
題が存在した。吸収端が長波長化すると、例えば、出力
側の高調波を吸収してしまって出力が低下してしまうな
どの欠点が出てくる。
Additionally, in order to provide large nonlinear optical properties, there was the issue of increasing the wavelength of the absorption edge by increasing the conjugation length within the molecule. When the wavelength of the absorption edge becomes longer, disadvantages arise such as, for example, harmonics on the output side are absorbed, resulting in a decrease in output.

本発明は非線形光学特性が高く、吸収端の短い非線形光
学材料を提供することを目的とする。
An object of the present invention is to provide a nonlinear optical material with high nonlinear optical properties and a short absorption edge.

[課題を解決するための手段] 本発明は上記課題を解決するために次の構成を有するも
のである。
[Means for Solving the Problems] In order to solve the above problems, the present invention has the following configuration.

(1)化学式 で示される化合物からなる非線形光学材料。(1) Chemical formula A nonlinear optical material consisting of the compound shown in

(2)化学式 で示される化合物と、電子供与性置換基及び電子求引性
置換基を備えたπ電子共役系有機化合物との組成物から
なる非線形光学材料。
(2) A nonlinear optical material comprising a composition of a compound represented by the chemical formula and a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent.

(3)π電子共役系有機化合物が芳香環もしくは複素芳
香環化合物である前記第2項に記載の非線形光学材料。
(3) The nonlinear optical material according to item 2 above, wherein the π-electron conjugated organic compound is an aromatic ring or a heteroaromatic ring compound.

(4)電子求引性置換基がシアノ基である前記第2項に
記載の非線形光学材料。
(4) The nonlinear optical material according to item 2 above, wherein the electron-withdrawing substituent is a cyano group.

(5)化学式 で示される化合物が高分子化合物中に分散されてなる非
線形光学材料。
(5) A nonlinear optical material in which a compound represented by the chemical formula is dispersed in a polymer compound.

(6)高分子化合物がポリエチレンオキサイドである前
記第5項に記載の1線形光学材料。
(6) The one-linear optical material according to item 5 above, wherein the polymer compound is polyethylene oxide.

[作用] 本発明の上記化学式で示される有機化合物は短いπ共役
長を有するので、吸収端が短くなり、従って出力される
高調波を吸収するおそれが少な(なり、大きな非線形光
学特性を発現させることかできる。また上記化学式で示
される有機化合物は分子内塩の構造をとっているために
、結晶状態が安定で結晶が作製しやすくなる。
[Function] Since the organic compound represented by the above chemical formula of the present invention has a short π conjugation length, the absorption edge is shortened, and there is therefore less risk of absorbing output harmonics (which results in the development of large nonlinear optical properties). Furthermore, since the organic compound represented by the above chemical formula has an inner salt structure, the crystal state is stable and crystals can be easily produced.

さらに、本発明の第2ならびに第3の発明においては、
分子レベルでは大きな非線形光学特性が期待されるにも
かかわらず、結晶が中心対称構造を持つために非線形光
学特性を示さない電子供与性置換基及び電子求引性置換
基を備えたπ電子共役系有機化合物であっても、上記化
学式で示される化合物と複合化させ組成物とする事によ
り、中心対称構造を持たない結晶構造に変化させ、高い
非線形光学特性を有する組成物からなる非線形光学材料
を得ることができる。
Furthermore, in the second and third aspects of the present invention,
A π-electron conjugated system with electron-donating and electron-withdrawing substituents that does not exhibit nonlinear optical properties because the crystal has a centrosymmetric structure, although it is expected to have significant nonlinear optical properties at the molecular level. Even if it is an organic compound, by compounding it with the compound represented by the above chemical formula to form a composition, it can be changed to a crystal structure that does not have a centrosymmetric structure, and a nonlinear optical material made of a composition that has high nonlinear optical properties can be created. Obtainable.

第4の発明においては、電子求引性置換基がシアノ基で
あるπ電子共役系有機化合物を用いるので、より吸収端
の短波長化が容易になる。
In the fourth invention, since a π-electron conjugated organic compound in which the electron-withdrawing substituent is a cyano group is used, it becomes easier to shorten the wavelength of the absorption edge.

また、第5ならびに第6番目の発明においては高分子化
合物中に均一分散させることにより、この非線形光学材
料を用いる際の成形性を向上させることが可能である。
Furthermore, in the fifth and sixth inventions, it is possible to improve the moldability when using this nonlinear optical material by uniformly dispersing it in a polymer compound.

特に、コーティングやスピンコードなども適用できるの
で均一な薄膜状成形物も容易に作製できる。この際にも
、上記化学式の有機化合物の吸収端が短いこと、分子内
塩構造を持つことにより組成物の結晶安定性を高くし、
吸収端の短波長化が可能になる。
In particular, since coatings, spin cords, etc. can also be applied, uniform thin film-like molded products can be easily produced. In this case, the organic compound of the above chemical formula has a short absorption edge and an inner salt structure, which increases the crystal stability of the composition.
It becomes possible to shorten the wavelength of the absorption edge.

また、さらに、第6番目の発明においては高分子化合物
として親水性のポリエチレンオキサイドを使用している
ので、前述の有機化合物の分散が一層容易になる。
Furthermore, in the sixth invention, hydrophilic polyethylene oxide is used as the polymer compound, so that the above-mentioned organic compound can be further easily dispersed.

[実施例] 本発明の前記化学式で示される有機化合物であるクペロ
ン(N−ニトロソフェニルヒドロキシルアミンアンモニ
ウム塩)は良好な非線形光学特性を示すので、クペロン
単独で非線形光学材料とすることもできる。
[Example] Since cuperone (N-nitrosophenylhydroxylamine ammonium salt), which is an organic compound represented by the above chemical formula of the present invention, exhibits good nonlinear optical properties, cuperone alone can be used as a nonlinear optical material.

また、電子供与性置換基及び電子求引性置換基を備えた
π電子共役系有機化合物と複合化させて組成物として用
い、両者の非線形光学特性を良好に発現させることもで
きる。
In addition, it can be used as a composition in a composite with a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent, and the nonlinear optical properties of both can be expressed well.

電子供与性置換基としては、例えば−0H1−〇CH1
−OCOCH3、−NH2、−N(CH3) 2 、N
 HCOCHa 、CH3などのアルキル基、 C: 
6Hsなどのアリール基などが挙げられる。
As the electron-donating substituent, for example, -0H1-〇CH1
-OCOCH3, -NH2, -N(CH3)2,N
Alkyl group such as HCOCHa, CH3, C:
Examples include aryl groups such as 6Hs.

また、電子求引性置換基としては、例えば、−NH3、
−CF3、−CC11−NO2、−CN、−CHol−
COCH3、−CO2C2H5、−COOH,−8o2
CH3、−8o3H,−F。
In addition, examples of electron-withdrawing substituents include -NH3,
-CF3, -CC11-NO2, -CN, -CHol-
COCH3, -CO2C2H5, -COOH, -8o2
CH3, -8o3H, -F.

−CI、 Br、  I、  CH2CI、  CH=
CHNO2などが挙げられる。
-CI, Br, I, CH2CI, CH=
Examples include CHNO2.

電子供与性置換基及び電子求引性置換基を備えたπ電子
共役系有機化合物としては、例えば、p−ニトロアニリ
ン、N−(p−ニトロフェニル)エチレンジアミン、ジ
(p−二トロフェニル)エチレンジアミン等のニトロア
ニリン系化合物誘導体の他に、p−シアノアニリン等の
シアノアニリン系化合物誘導体などの電子供与性置換基
及び電子求引性置換基を有する芳香環化合物や、電子供
与性置換基及び電子求引性置換基を備えたスチルベン系
化合物誘導体やベンザルアセトフェノン誘導体等の共役
オレフィン化合物、電子供与性置換基及び電子求引性置
換基を備えたベンゾオキサジアゾール誘導体やニトロピ
リジン誘導体等の複素環化合物、ベンジリデンアニリン
誘導体等の芳香環を有するシッフベース化合物等が挙げ
られる。
Examples of the π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent include p-nitroaniline, N-(p-nitrophenyl)ethylenediamine, and di(p-nitrophenyl)ethylenediamine. In addition to nitroaniline compound derivatives such as p-cyanoaniline, aromatic ring compounds having electron-donating substituents and electron-withdrawing substituents, Conjugated olefin compounds such as stilbene compound derivatives and benzalacetophenone derivatives with an electron-withdrawing substituent; complex compounds such as benzoxadiazole derivatives and nitropyridine derivatives with an electron-donating substituent and an electron-withdrawing substituent; Examples include ring compounds and Schiff base compounds having an aromatic ring such as benzylidene aniline derivatives.

具体的には、電子供与性置換基及び電子求引性置換基を
備えた1、4置換ナフタレン誘導体、4−シメチルアミ
ノー4−スチルベン、3−(4−メトキシフェニル)−
1−(4−アミノフェニル)−2−プロペン−1−オン
、電子供与性置換基及び電子求引性置換基を備えたカル
コン誘導体、4−ニトロ−7−クロロベンゾオキサジア
ゾール、4° −二トロペンジリデン−3−アセチルア
ミノ−4−メトキシアニリン、N−(4−ピリジニルメ
チレン)−4−ジメチルアミノベンゼナミン・ジメチル
スルフェート、N−[2−(5−ニトロベンジリデン)
] −]4−メトキシベンゼナミン及びこれらの類似化
合物が適用可能である。
Specifically, 1,4-substituted naphthalene derivatives with an electron-donating substituent and an electron-withdrawing substituent, 4-dimethylamino-4-stilbene, 3-(4-methoxyphenyl)-
1-(4-aminophenyl)-2-propen-1-one, chalcone derivative with electron-donating and electron-withdrawing substituents, 4-nitro-7-chlorobenzoxadiazole, 4° - Nitropenzylidene-3-acetylamino-4-methoxyaniline, N-(4-pyridinylmethylene)-4-dimethylaminobenzenamine dimethylsulfate, N-[2-(5-nitrobenzylidene)
]-]4-methoxybenzenamine and similar compounds thereof are applicable.

前記化学式で示されるクペロンと電子供与性置換基及び
電子求引性置換基を備えたπ電子共役系有機化合物との
組成物における両者の配合割合は、前者20〜80モル
%に対し後者80〜20モル%の範囲が好ましい。
In a composition of cuperone represented by the above chemical formula and a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent, the proportion of both is 20 to 80 mol% for the former and 80 to 80 mol% for the latter. A range of 20 mol% is preferred.

この組成物は通常クペロンと電子供与性置換基及び電子
求引性置換基を備えたπ電子共役系有機化合物とを混合
し、溶融させて結晶とする事により調整される。
This composition is usually prepared by mixing cuperone and a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent, and melting the mixture to form a crystal.

前記化学式で示される化合物クペロン、あるいはクペロ
ンと電子供与性置換基及び電子求引性置換基を備えたπ
電子共役系有機化合物とからなる組成物を高分子化合物
に分散させる場合には、クペロン、あるいはクペロンと
電子供与性置換基及び電子求引性置換基を備えたπ電子
共役系有機化合物とからなる組成物の配合割合は、通常
5〜20重量%程度である。
The compound cuperone represented by the above chemical formula, or π containing cuperone and an electron-donating substituent and an electron-withdrawing substituent
When dispersing a composition consisting of an electron-conjugated organic compound in a polymer compound, cuperone, or a composition consisting of cuperone and a π-electron-conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent. The blending ratio of the composition is usually about 5 to 20% by weight.

これらを分散させる高分子化合物としては、ポリエチレ
ンオキサイド、ポリビニルアルコール、ポリメタクリル
酸メチル、ポリビニルアセタール、エポキシ樹脂などが
好ましく、その他、水ないし溶媒に可溶性の合成樹脂な
どの高分子化合物が適用できる。
As the polymer compound for dispersing these, polyethylene oxide, polyvinyl alcohol, polymethyl methacrylate, polyvinyl acetal, epoxy resin, etc. are preferable, and other polymer compounds such as synthetic resins soluble in water or solvents can be used.

クペロン、あるいはクペロンと電子供与性置換基及び電
子求引性置換基を備えたπ電子共役系有機化合物とから
なる組成物を高分子化合物に分散させるには、通常は、
これらの共通の溶媒を用いて溶液状にして配合すること
が均一な分散ができるので好ましい。
In order to disperse cuperone or a composition consisting of cuperone and a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent in a polymer compound, usually,
It is preferable to formulate a solution using these common solvents and blend them, since uniform dispersion can be achieved.

以下に具体的な実施例を用いて本発明をさらに詳細に説
明する。
The present invention will be explained in more detail below using specific examples.

実施例1 白色粉末結晶状のクペロン(C6H9N302)(和光
紬薬、特級)にNd:YAGレーザ−(1064nm)
を入射すると尿素と同程度のSHG (第2次高調波発
生)が観測された。第1図に示す様に紫外・可視分光分
析の測定結果から、この吸収端は370nmであった。
Example 1 Nd:YAG laser (1064 nm) was applied to white powder crystalline Cuperon (C6H9N302) (Wako Tsumugi Pharmaceutical, special grade).
When urea was injected, SHG (second harmonic generation) comparable to that of urea was observed. As shown in FIG. 1, the absorption edge was 370 nm from the measurement results of ultraviolet/visible spectroscopy.

従って、出力される532nmの波長の第2次高調波が
吸収されるおそれがなく、良好な非線形光学特性を有す
ることがわかった。
Therefore, it was found that there is no fear that the second harmonic of the wavelength of 532 nm that is output is absorbed, and that it has good nonlinear optical characteristics.

実施例2 白色粉末結晶状のクペロンをp−シアノアニリンとモル
比1:1で150°C〜160℃に加熱し混合溶融させ
た後、冷却固化さた。得られた組成物にNd:YAGレ
ーザーを入射すると、尿素の数倍程度のSHGが観測さ
れた。単独での結晶が白色であるのに対し、複合化させ
た物質が淡黄色に着色したことから分子間で新たな相互
作用が起きたものと考える。第2図に得られた結晶の紫
外・可視分光分析結果を示した。
Example 2 Cuperone in the form of white powder crystal was mixed and melted with p-cyanoaniline at a molar ratio of 1:1 at 150°C to 160°C, and then cooled and solidified. When the resulting composition was irradiated with a Nd:YAG laser, several times as much SHG as urea was observed. While the crystals alone are white, the composite material is pale yellow, suggesting that a new interaction has occurred between the molecules. FIG. 2 shows the results of ultraviolet/visible spectroscopic analysis of the obtained crystals.

実施例3 ポリエチレンオキサイド(以下PEOと略称する)5g
を100m lのメタノール中に撹拌しながら溶解させ
、均一なPEO溶液とした。このPEO溶液中に白色粉
末結晶状のクペロン1gを溶解させ、均一な溶液状態と
した後、ガラス基板上にスピンコードし、60℃で加熱
してメタノールを蒸発させた。得られたPEO,/クペ
ロンの薄膜に、Nd二YAGレーザーを入射したところ
、SHGが観測された。溶媒であるメタノールを蒸発さ
せる際に、電界を印加しながらおこなうと、さらにクペ
ロン分子の配向性が向上し、より大きなSHGが観測さ
れ得る。
Example 3 5 g of polyethylene oxide (hereinafter abbreviated as PEO)
was dissolved in 100 ml of methanol with stirring to obtain a homogeneous PEO solution. 1 g of cuperone in the form of a white powder crystal was dissolved in this PEO solution to form a uniform solution, which was then spin-coded onto a glass substrate and heated at 60° C. to evaporate methanol. When a Nd2YAG laser was applied to the obtained PEO/cuperon thin film, SHG was observed. If methanol, which is a solvent, is evaporated while applying an electric field, the orientation of cuperone molecules is further improved, and a larger SHG can be observed.

実施例4 白色粉末結晶状のクペロンを蒸着装置の坩堝に入れ、1
O−7Torrの真空下で100℃で加熱気化させると
ともにガラス基板上に蒸着した。
Example 4 White powdered crystalline cuperone was put into a crucible of a vapor deposition device, and 1
It was vaporized by heating at 100° C. under a vacuum of O-7 Torr and was deposited on a glass substrate.

(膜厚1μm)。(Film thickness 1 μm).

得られた非線形光学材料薄膜にNd:YAGレーザーを
入射したところ、SHGが観測された。
When a Nd:YAG laser was applied to the obtained nonlinear optical material thin film, SHG was observed.

[発明の効果コ 本発明は前記化学式で示される有機化合物からなる非線
形光学材料を用いたので、吸収端が短くなり、大きな非
線形光学特性を発現させることができる非線形光学材料
を提供できる。また上記化学式で示される有機化合物は
分子内塩の構造をとっているために、結晶状態が安定で
結晶が作製しやすくなる。
[Effects of the Invention] Since the present invention uses a nonlinear optical material made of an organic compound represented by the above chemical formula, it is possible to provide a nonlinear optical material that has a short absorption edge and can exhibit large nonlinear optical characteristics. Furthermore, since the organic compound represented by the above chemical formula has an inner salt structure, the crystal state is stable and crystals can be easily produced.

さらに、本発明の第2ならびに第3の発明においては、
分子レベルでは大きな非線形光学特性が期待されるにも
かかわらず、結晶が中心対称構造を持つために非線形光
学特性を示さない電子供与性置換基及び電子求引性置換
基を備えたπ電子共役系有機化合物であっても、前記化
学式で示される化合物と複合化させ組成物とする事によ
り、高い非線形光学特性を有する非線形光学材料を提供
することができる。
Furthermore, in the second and third aspects of the present invention,
A π-electron conjugated system with electron-donating and electron-withdrawing substituents that does not exhibit nonlinear optical properties because the crystal has a centrosymmetric structure, although it is expected to have significant nonlinear optical properties at the molecular level. Even if it is an organic compound, a nonlinear optical material having high nonlinear optical properties can be provided by compounding it with a compound represented by the above chemical formula to form a composition.

第4の発明においては、電子求引性置換基がシアノ基で
あるπ電子共役系有機化合物を用いるので、より吸収端
の短波長化が容易になる。
In the fourth invention, since a π-electron conjugated organic compound in which the electron-withdrawing substituent is a cyano group is used, it becomes easier to shorten the wavelength of the absorption edge.

また、第5ならびに第6番目の発明においては高分子化
合物中に均一分散させることによりこの非線形光学材料
を用いる際の成形性を向上させることが可能になる。こ
の際にも、上記化学式の有機化合物の吸収端が短いこと
、分子内塩構造を持つことにより組成物の結晶安定性を
高くし、吸収端の短波長化が可能になる。
Furthermore, in the fifth and sixth inventions, it is possible to improve the moldability when using this nonlinear optical material by uniformly dispersing it in a polymer compound. In this case, the organic compound having the above chemical formula has a short absorption edge and has an inner salt structure, thereby increasing the crystal stability of the composition and making it possible to shorten the wavelength of the absorption edge.

また、さらに、第6番目の発明においては高分子化合物
として親水性のポリエチレンオキサイドを使用している
ので、前述の有機化合物の分散が一層容易になる。
Furthermore, in the sixth invention, hydrophilic polyethylene oxide is used as the polymer compound, so that the above-mentioned organic compound can be further easily dispersed.

本発明の非線形光学材料は、非線形光学特性が優れてい
るので、光スィッチ、光メモリなどの各種光素子に適用
できる。
Since the nonlinear optical material of the present invention has excellent nonlinear optical properties, it can be applied to various optical devices such as optical switches and optical memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクペロンの紫外・可視分光分析結果を示す図で
ある。 第2図はクペロンとp−シアノアニリン組成物の紫外・
可視分光分析結果を示す図である。 特許出願人 松下電器産業株式会社 代理人の氏名 弁理士 池内寛幸 ほか1名第1図
FIG. 1 is a diagram showing the results of ultraviolet/visible spectroscopic analysis of Cuperon. Figure 2 shows the ultraviolet radiation of cuperone and p-cyanoaniline composition.
FIG. 3 is a diagram showing visible spectroscopic analysis results. Patent applicant: Matsushita Electric Industrial Co., Ltd. Name of agent: Patent attorney Hiroyuki Ikeuchi and one other person Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)化学式 ▲数式、化学式、表等があります▼ で示される化合物からなる非線形光学材料。(1) Chemical formula ▲Contains mathematical formulas, chemical formulas, tables, etc.▼ A nonlinear optical material consisting of the compound shown in (2)化学式 ▲数式、化学式、表等があります▼ で示される化合物と、電子供与性置換基及び電子求引性
置換基を備えたπ電子共役系有機化合物との組成物から
なる非線形光学材料。
(2) Nonlinear optical material consisting of a composition of a compound represented by the chemical formula ▲ Numerical formula, chemical formula, table, etc. ▼ and a π-electron conjugated organic compound having an electron-donating substituent and an electron-withdrawing substituent .
(3)π電子共役系有機化合物が芳香環もしくは複素芳
香環化合物である請求項2に記載の非線形光学材料。
(3) The nonlinear optical material according to claim 2, wherein the π-electron conjugated organic compound is an aromatic ring or a heteroaromatic ring compound.
(4)電子求引性置換基がシアノ基である請求項2に記
載の非線形光学材料。
(4) The nonlinear optical material according to claim 2, wherein the electron-withdrawing substituent is a cyano group.
(5)化学式 ▲数式、化学式、表等があります▼ で示される化合物が高分子化合物中に分散されてなる非
線形光学材料。
(5) A nonlinear optical material in which a compound represented by the chemical formula ▲Mathematical formula, chemical formula, table, etc.▼ is dispersed in a polymer compound.
(6)高分子化合物がポリエチレンオキサイドである請
求項5に記載の非線形光学材料。
(6) The nonlinear optical material according to claim 5, wherein the polymer compound is polyethylene oxide.
JP31872190A 1990-11-22 1990-11-22 Nonlinear optical material Pending JPH04188118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31872190A JPH04188118A (en) 1990-11-22 1990-11-22 Nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31872190A JPH04188118A (en) 1990-11-22 1990-11-22 Nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH04188118A true JPH04188118A (en) 1992-07-06

Family

ID=18102224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31872190A Pending JPH04188118A (en) 1990-11-22 1990-11-22 Nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH04188118A (en)

Similar Documents

Publication Publication Date Title
Yoon et al. Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets
Zhao et al. The important role of the bromo group in improving the properties of organic nonlinear optical materials
Luo et al. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials
Tirelli et al. New terthiophene derivatives for ultrahigh molecular weight polyethylene-based absorption polarizers
JPH04188118A (en) Nonlinear optical material
JPH03149282A (en) Nonlinear optical material composition and its manufacture
JP2545646B2 (en) Non-linear optical material
Manikandan et al. Synthesis, growth, structural, and optical properties of benzotriazolium oxalate dihydrate (BTO) single crystal
Shalini et al. 4-Dimethylamino pyridinium p-chlorophenolate a novel third order nonlinear optical single crystal: growth and characterization
Suresh et al. Synthesis, growth, structural, optical and electrical properties of novel organic single crystal: p-toluidinium salicylate
JP2742697B2 (en) Material for organic nonlinear optical element and organic nonlinear optical thin film using the same
JPS6160638A (en) Organic nonlinear optical material
JPH0432822A (en) Nonlinear optical material containing aromatic ring
JPH0342638A (en) Organic nonlinear optical material
JPH03274531A (en) Nonlinear optical material
Morley Nonlinear optical properties of organic molecules. Part 15. Calculation of the structure and hyperpolarisabilities of arylalkenes containing weak donors and acceptors
JPH04133037A (en) Composition of nonlinear optical material
JPH03123324A (en) Nonlinear optical material
JPH0273236A (en) Organic material exhibiting nonlinear optical effect
JPH0490517A (en) Nonlinear optical material having conjugated chain
JPH0215246A (en) Organic nonlinear optical material
JPH02221939A (en) Production of nonlinear optical material composition and optical thin film
JPH01163723A (en) Organic nonlinear optical material
JPH03211535A (en) Organic nonlinear optical material
JPH05127203A (en) Cubic optical nonlinear material