JPH04187987A - Melting vessel for induction furnace and melting method for different kinds of metals - Google Patents

Melting vessel for induction furnace and melting method for different kinds of metals

Info

Publication number
JPH04187987A
JPH04187987A JP31746390A JP31746390A JPH04187987A JP H04187987 A JPH04187987 A JP H04187987A JP 31746390 A JP31746390 A JP 31746390A JP 31746390 A JP31746390 A JP 31746390A JP H04187987 A JPH04187987 A JP H04187987A
Authority
JP
Japan
Prior art keywords
layer
metal
mica
melting
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31746390A
Other languages
Japanese (ja)
Inventor
Osami Noguchi
野口 修身
Kozo Takahashi
高橋 孝造
Eiji Amada
天田 英司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP31746390A priority Critical patent/JPH04187987A/en
Publication of JPH04187987A publication Critical patent/JPH04187987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE:To provide a melting vessel capable of continuously melting a plurality of kinds of metals by a method wherein the melting vessel comprises a mica layer formed of mica sheets laminated on the inner side of a thick base layer formed of a refractory material and a thin surface layer laminated on the inner side of the mica layer and formed of a refractory material. CONSTITUTION:A melting vessel 20 comprises a base layer 22, a mica layer 24, and a surface layer 26. When a plurality of kinds of metals different in a composition are continuously molten, after a first metal is molten in the melt vessel 20, a second metal having a different composition is molten. In this case, the surface layer 26 is broken and removed from the melt vessel 20, and the mica layer 24 is shaved off from the base layer 22. A new mica lay sheet is adhered and stuck to the base layer 20 to form a mica layer 24, and after a prebaked cupform surface layer 26 is engaged and fixed in an adhered state, a second metal is molten, and in a subsequent metal also, the aboves are repeated. Since the mica sheet insulates a metal, though a molten metal soaks into the surface layer 26, it does not soak into the base layer 22. As a result, a plurality of kinds of metals needing purity but different in a composition can be continuously molten.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄心を用いないるつぼ型(コアレス型)等の
誘導炉における溶解槽(通常、コイル内側のアスベスト
板等の内側に形設される内張りの部分(炉壁)をいうも
のとする)と、該溶解槽を用いた異種金属の溶解方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a melting tank (usually formed inside an asbestos plate or the like inside a coil) in an induction furnace such as a crucible type (coreless type) that does not use an iron core. The present invention relates to a method for melting dissimilar metals using the melting tank.

[従来の技術] 従来のるつぼ型等の誘導炉に用いられていた溶解槽につ
いて、第2図を参照して説明する。
[Prior Art] A melting tank used in a conventional crucible-type induction furnace will be described with reference to FIG.

同図において符号2は、炉殻4中に配設されたコイルで
あり、その両端は図示しない交流電源に接続されている
。コイル2の内周部には、アスベスト6を介して、上面
が開口した有底円筒状の溶解槽8が配設され、溶解槽8
の下端部は耐火層IOに埋設されている。この溶解槽8
はマグネシアを主成分とする耐火材により形成されてい
る。
In the figure, reference numeral 2 denotes a coil disposed in the furnace shell 4, both ends of which are connected to an AC power source (not shown). A cylindrical melting tank 8 with an open top and a bottom is disposed on the inner circumference of the coil 2 with the asbestos 6 interposed therebetween.
The lower end of is buried in the refractory layer IO. This dissolution tank 8
is made of a refractory material whose main component is magnesia.

金属を溶解する場合には、上記溶解槽8中に被加熱体た
る金属を入れ、コイル2に所定の周波数の交流を通電す
れば、電磁誘導作用によって生じる渦電流損による発熱
により、金属は溶解する。
When melting metal, place the metal to be heated in the melting tank 8 and apply an alternating current of a predetermined frequency to the coil 2. The metal will melt due to heat generated by eddy current loss caused by electromagnetic induction. do.

[発明が解決しようとする課題] 上記の如き従来の溶解槽を用いて異なる組成の複数種の
金属を連続的に溶解する場合には、溶解槽に付着した前
溶解時の金属を洗い流すため、共金で溶解槽を洗う方法
が採られる。即ち、共金となる金属を溶解槽8に入れて
一度溶解し、この溶解した金属で溶解槽8の内壁に付着
した前溶解時の金属を洗い流し、しかる後目的の金属の
溶解を行う。
[Problems to be Solved by the Invention] When multiple types of metals with different compositions are continuously melted using the conventional melting tank as described above, in order to wash away the metals that adhered to the melting tank during pre-melting, The method used is to wash the dissolution tank with common metal. That is, a metal to be used as a co-metal is placed in the melting tank 8 and melted once, and the melted metal is used to wash away the metal adhered to the inner wall of the melting tank 8 during the pre-melting process, and then the target metal is melted.

しかしながら、上記の方法では、貴重な金属や電力等を
余分に消費し、時間、費用がかかるという欠陥が存した
。また、上記方法では純度を要する金属、例えば純コバ
ルトや純ニッケル等を溶解する場合には用いることがで
きない。なぜなら、金属を溶解槽8中で溶解した場合、
溶解した金属の一部が溶解槽8の内部に染み込むため、
共金で溶解槽8の内側表面を洗浄しても溶解槽8の内部
に染み込んだ前溶解時の金属を完全に除去できオ、この
残留金属が目的の金属の溶解時に溶解槽8から染み出し
て目的の金属に混入するfこめである。
However, the above method has the disadvantage that it consumes valuable metals, electricity, etc., and is time-consuming and expensive. Furthermore, the above method cannot be used to melt metals that require purity, such as pure cobalt and pure nickel. This is because when metal is melted in the melting tank 8,
Because some of the melted metal seeps into the melting tank 8,
Even if the inner surface of the melting tank 8 is cleaned with co-metal, the metal that has seeped into the inside of the melting tank 8 during the pre-melting process can be completely removed, and this residual metal will seep out from the melting tank 8 when the target metal is melted. This is the waste that gets mixed into the target metal.

上記の欠陥を補う方法として、溶解WI8を一度壊して
除去し几復興びライニングして溶解槽8を形成する方法
や、炉殻4ごと炉体を交換する方法等かあるが、いずれ
も時間及び費用かかかりすぎるというデメリットを伴う
As a method to compensate for the above defects, there are methods such as breaking and removing the melting WI 8, rebuilding it and lining it to form the melting tank 8, and replacing the furnace body together with the furnace shell 4, but both methods require time and effort. It has the disadvantage of being too expensive.

本発明は、このような課題を解決することを目的とする
ものである。
The present invention aims to solve such problems.

[課題を解決するための手段] 第1請求項の発明は、コイルの内側に立設される溶解槽
を、耐火材から成る厚肉の基層と、前記基層の内側に積
層されるマイカ板より成るマイカ層と、前記マイカ層の
内側に積層される耐火材から成る薄肉の表層とより形成
したことを特徴とする誘導炉の溶解槽である。
[Means for Solving the Problems] In the first aspect of the invention, the melting tank installed inside the coil is made of a thick base layer made of a refractory material and a mica plate laminated inside the base layer. This is a melting tank for an induction furnace, characterized in that it is formed of a mica layer made of the above mica layer, and a thin surface layer made of a refractory material laminated inside the mica layer.

第2請求項の発明は、第1請求項記載の溶解槽において
第1の金属を溶解させた後、第1の金属と組成の異なる
第2の金属を溶解させる場合、溶解槽よりマイカ層及び
表層を除去した後、基層に再びマイカ層及び表層を被着
形成して溶解槽を修復し、その後第2の金属を溶解させ
るようにした異種金属の溶解方法である。
The invention of claim 2 provides that when a second metal having a different composition from the first metal is melted after melting the first metal in the melting tank described in claim 1, the mica layer and This is a dissimilar metal melting method in which after the surface layer is removed, a mica layer and a surface layer are deposited on the base layer again to repair the melting tank, and then the second metal is melted.

第3請求項の発明は、請求項1記載の溶解槽において、
特定金属を溶解する場合には溶解槽より表層及びマイカ
層を除去した状態で溶解を行い、特定金属と組成の異な
る非特定金属を溶解する場合には基層にマイカ層及び表
層を被着形成して溶解槽を修復した状態で溶解を行うよ
うにした異種金属の溶解方法である。
The invention of claim 3 is the dissolution tank according to claim 1,
When melting specific metals, the surface layer and mica layer are removed from the melting tank, and when melting non-specific metals that have a different composition from the specific metal, the mica layer and surface layer are deposited on the base layer. This is a method of melting dissimilar metals in which melting is performed with the melting tank repaired.

[作用 ] 第1請求項の溶解槽においては、金属溶解時、溶解した
金属がマイカ層で絶縁されて基層に染み込まず、また基
層内に残留金属がある場合にもその残留金属がマイカ層
で絶縁されて、表層に染み出すことがない。また、表層
は薄肉であるため、作成にコストがかからない。
[Function] In the melting tank of the first claim, when metal is melted, the molten metal is insulated by the mica layer and does not penetrate into the base layer, and even if there is residual metal in the base layer, the residual metal is absorbed by the mica layer. It is insulated and does not seep into the surface layer. Furthermore, since the surface layer is thin, it is inexpensive to produce.

[実施例] 本発明に係る誘導炉の溶解槽を第1図を参照して説明す
る。なお、同図において第2図の構成要素と同一の構成
要素には同一の符号を付したので、その説明を省略する
[Example] A melting tank for an induction furnace according to the present invention will be described with reference to FIG. Components in this figure that are the same as those in FIG. 2 are designated by the same reference numerals, so their explanations will be omitted.

同図において符号20は本実施例に係る溶解槽てあり、
基層22と、マイカ層24と、表層26とにより構成さ
れている。
In the figure, reference numeral 20 indicates a dissolution tank according to this embodiment,
It is composed of a base layer 22, a mica layer 24, and a surface layer 26.

基層22は、第2図における溶解槽8と同様、アスベス
ト6の内側に、上面が開口した有底円筒状に形成されて
配設されており、その下端部は耐火層10に埋設されて
いる。この基層22は、マグネシア等よりなる耐火材よ
りなり、その肉厚は従来の溶解槽と同程度に、即ち構造
体としての強度を保つ程度の厚さに形成されている。
Similar to the dissolution tank 8 in FIG. . The base layer 22 is made of a refractory material such as magnesia, and is formed to have the same thickness as a conventional melting tank, that is, to maintain the strength of the structure.

マイカ層24は、厚さ1R11弱のマイカ(雲母)板よ
りなり、前記基層22の内側に密接して積層されている
The mica layer 24 is made of a mica plate with a thickness of just under 1R11, and is laminated closely inside the base layer 22.

表層26は、基層22と同様の耐火材よりなり、その肉
厚は前記基層22に比して薄く形成され、前記マイカ層
24の内側に密接して積層されている。そしてこの表層
26の内側面が溶解槽2oの内側面になる。
The surface layer 26 is made of the same refractory material as the base layer 22, has a thinner wall thickness than the base layer 22, and is closely laminated inside the mica layer 24. The inner surface of this surface layer 26 becomes the inner surface of the dissolving tank 2o.

上記構成よりなる溶解槽20を用いて単一の金属を溶解
する方法は、従来と全く同様であり、コイル2に所定の
周波数の交流を通電することにより行なわれる。
The method of melting a single metal using the melting tank 20 having the above configuration is completely the same as the conventional method, and is carried out by passing an alternating current of a predetermined frequency through the coil 2.

次に溶解槽20を用いて組成の異なる複数種の金属(純
度を要するもの)を連続的に溶解する場合について説明
する。
Next, a case will be described in which a plurality of metals (requiring purity) having different compositions are continuously melted using the melting tank 20.

最初の金属(以下、「第1の金属」という)を溶解槽2
0中で溶解した後、組成の異なる次の金属(以下、「第
2の金属」という)を溶解する場合には、まず溶解槽2
0から表層26を壊して除去し、次にマイカ層24を基
層20から削ぎ落とす。次に再び基層20に新たなマイ
カ板を密着させて貼着し、マイカ層24を形成する。こ
のマイカ層24に予め焼成しておいたカップ状の表層2
6を嵌入し、密着した状態で固定して、再び第1図の状
態に修復する。
The first metal (hereinafter referred to as "first metal") is melted into the melting tank 2.
After melting in the melting tank 2, when melting the next metal with a different composition (hereinafter referred to as "second metal"), first melt the metal in the melting tank 2.
The surface layer 26 is broken down and removed from the base layer 20, and the mica layer 24 is then scraped off from the base layer 20. Next, a new mica plate is closely attached to the base layer 20 again to form a mica layer 24. A cup-shaped surface layer 2 that has been fired in advance on this mica layer 24
6, and fix it in a tight state, and restore it to the state shown in FIG. 1 again.

しかる後第2の金属の溶解を第1の金属の溶解と同様に
行い、以下、次の金属についても上記と同様のことを繰
り返す。
Thereafter, the second metal is melted in the same manner as the first metal, and the same process as above is repeated for the next metal.

本実施例に係る溶解層20では、マイカ板か金属を絶縁
(隔離)する作用を持つfコめ、溶解槽20内で溶解し
1こ金属は表層26の内部には染み込んでも基層22の
内部には染み込むことかない。このため、基層22から
前溶解時の金属が染み出すことはなく、純度を要する金
属の溶解を確実に行うことが出来る。まに、マイカ(雲
母)は耐熱性か強く、マイカ層24が基層22及び表層
26に溶着することはなく、基層22及び表層26が熱
膨張してもマイカ層との間ですべりを生じるたt1溶解
槽20が溶解熱により損傷することはない。
In the dissolving layer 20 according to this embodiment, the mica plate has the function of insulating (separating) the metal. It never really sinks in. Therefore, the metal during pre-melting does not seep out from the base layer 22, and metals that require purity can be reliably melted. In addition, mica (mica) has strong heat resistance, so the mica layer 24 will not weld to the base layer 22 and the surface layer 26, and even if the base layer 22 and the surface layer 26 expand thermally, slipping will occur between the mica layer and the mica layer. The t1 melting tank 20 will not be damaged by the heat of melting.

さらに、表層26は構造体としての強度を持つ必要がな
く、基層22に比べて薄いものでよいため、溶解槽20
の修復には費用がそれほどかからず、又その修復も容易
である。
Furthermore, since the surface layer 26 does not need to have strength as a structure and may be thinner than the base layer 22, the melting tank 26
It is not very expensive to repair, and it is also easy to repair.

なお、上g己の説明では、溶解する金属が変わるごとに
マイカ層24及び表層26を新たなものに取り替える方
法を示したが、特定のよく溶解することかある金属(以
下、「特定金属」という)かある場合には、特定金属を
溶解するときには、いつも、溶解槽20からマイカ層2
4及び表層26を除去した状態、即ち基層22のみの状
態で溶解を行えばよい。そして、特定金属と組成の異な
る金属(非特定金属)を溶解するときには、マイカ層2
4及び表層26を修復した状態で溶解を行うようにすれ
ばよい。その結果、特定金属が基層22に染み込むこと
となるが、特定金属を溶解するときには基層22に染み
込んだ特定金属が染み出しても何ら問題はなく、非特定
金属を溶解するときにはマイカ層24により基層22に
染み込んだ特定金属は絶縁されているため、混入は起こ
らない。こうすることにより、マイカ層24及び表層2
6を修復する手間と費用を省くことかできる。
In addition, in my explanation above, I showed how to replace the mica layer 24 and the surface layer 26 with new ones each time the metal to be melted changes, but if the mica layer 24 and the surface layer 26 are replaced with new ones each time the metal to be melted changes, In some cases, when melting a specific metal, the mica layer 2 is always removed from the melting tank 20.
4 and the surface layer 26 have been removed, that is, only the base layer 22 may be melted. When melting a metal (non-specific metal) that has a different composition from the specific metal, the mica layer 2
4 and the surface layer 26 are repaired, the melting may be performed. As a result, the specific metal will seep into the base layer 22. However, when melting the specific metal, there is no problem even if the specific metal that has soaked into the base layer 22 seeps out. When melting non-specific metals, the mica layer 24 Since the specific metal soaked into 22 is insulated, no contamination occurs. By doing this, the mica layer 24 and the surface layer 2
It is possible to save the effort and expense of repairing 6.

[発明の効果] 第1請求項の溶解層を第2請求項若しくは第3請求項の
方法で使用することにより、簡易且つ低コストで、純度
を要する異なる組成の複数種の金属を連続的に溶解する
ことのできる効果が得られる。
[Effect of the invention] By using the dissolving layer of the first claim in the method of the second or third claim, it is possible to continuously produce multiple types of metals with different compositions that require purity easily and at low cost. The effect of dissolving is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は従
来の誘導炉の溶解室を示す縦断面図である。 2・・・・・コイル、20・・・・・溶解槽、22・・
・・・基層、24・・・・・マイカ層、26・・・・・
表層。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing a melting chamber of a conventional induction furnace. 2...Coil, 20...Dissolution tank, 22...
... Base layer, 24 ... Mica layer, 26 ...
surface.

Claims (3)

【特許請求の範囲】[Claims] (1)コイルの内側に立設される溶解槽を、耐火材から
成る厚肉の基層と、前記基層の内側に積層されるマイカ
板より成るマイカ層と、前記マイカ層の内側に積層され
る耐火材から成る薄肉の表層とより形成したことを特徴
とする誘導炉の溶解槽。
(1) A melting tank installed inside the coil is made of a thick base layer made of a refractory material, a mica layer made of a mica plate laminated inside the base layer, and a mica layer laminated inside the mica layer. A melting tank for an induction furnace characterized by being formed with a thin surface layer made of refractory material.
(2)請求項1記載の溶解槽において第1の金属を溶解
させた後、第1の金属と組成の異なる第2の金属を溶解
させる場合、溶解槽より表層及びマイカ層を除去した後
、基層に再びマイカ層及び表層を被着形成して溶解槽を
修復し、その後第2の金属を溶解させるようにした異種
金属の溶解方法。
(2) When dissolving a second metal having a different composition from the first metal after melting the first metal in the melting tank according to claim 1, after removing the surface layer and the mica layer from the melting tank, A method for melting dissimilar metals, in which a mica layer and a surface layer are deposited on the base layer again to repair the melting tank, and then a second metal is melted.
(3)請求項1記載の溶解槽において、特定金属を溶解
する場合には溶解槽より表層及びマイカ層を除去した状
態で溶解を行い、特定金属と組成の異なる非特定金属を
溶解する場合には基層にマイカ層及び表層を被着形成し
て溶解槽を修復した状態で溶解を行うようにした異種金
属の溶解方法。
(3) In the melting tank according to claim 1, when specific metals are melted, the surface layer and mica layer are removed from the melting tank, and when non-specific metals having a different composition from the specific metals are melted. This is a method of melting dissimilar metals in which a mica layer and a surface layer are deposited on the base layer and the melting tank is repaired before melting.
JP31746390A 1990-11-21 1990-11-21 Melting vessel for induction furnace and melting method for different kinds of metals Pending JPH04187987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31746390A JPH04187987A (en) 1990-11-21 1990-11-21 Melting vessel for induction furnace and melting method for different kinds of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31746390A JPH04187987A (en) 1990-11-21 1990-11-21 Melting vessel for induction furnace and melting method for different kinds of metals

Publications (1)

Publication Number Publication Date
JPH04187987A true JPH04187987A (en) 1992-07-06

Family

ID=18088508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31746390A Pending JPH04187987A (en) 1990-11-21 1990-11-21 Melting vessel for induction furnace and melting method for different kinds of metals

Country Status (1)

Country Link
JP (1) JPH04187987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049870A (en) * 2014-08-29 2016-04-11 ナブテスコオートモーティブ株式会社 Compressed air drying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049870A (en) * 2014-08-29 2016-04-11 ナブテスコオートモーティブ株式会社 Compressed air drying system

Similar Documents

Publication Publication Date Title
KR101904839B1 (en) Apparatus and method for heating a blank for hot stamping
JPH0720288A (en) Glass fusion processing method
JPS6168888A (en) Cooling cage as crucible for melting by high frequency electromagnetic induction
EP0364472A1 (en) Method and device for heating a workpiece
US2481962A (en) Manufacture of laminated articles
JPH04187987A (en) Melting vessel for induction furnace and melting method for different kinds of metals
US3350494A (en) Induction furnace
KR20160113579A (en) Method for producing a completely or partially enameled component
EP0847061B1 (en) Method of melting treatment of radioactive miscellaneous solid wastes
JPH03174329A (en) Melting apparatus
JP4434946B2 (en) Electromagnetic devices for interfacial agitation by fusing two-phase systems, especially to promote metallurgical and high temperature chemical processes
US1967754A (en) Method of preparing laminated metal
JPH0763895A (en) Melting treatment for radioactive miscellaneous solid waste
JPH05322451A (en) Method for cold crucible levitation melting
JP3252355B2 (en) Melt solidification method of waste by induction heating
JP3331154B2 (en) Insulation plate for induction heating coil
JP7259227B2 (en) Melting equipment
JP2973162B2 (en) Hot plate for molten metal container
JPH0625815A (en) Sink roll for hot dipping
JPH0248420A (en) Method and equipment for thermally melting corrosive material
SU962330A1 (en) Furnace for hot aluminizing of products in melt
JP2001041661A (en) Cold crucible induction melting device
JPH10206027A (en) Cold crucible induction melting crucible
JPH06100953A (en) Method for producing complex steel ingot and apparatus therefor
JP2973163B2 (en) Hot plate for molten metal container