JPH04187779A - Formation of corrosion and wear resistant composite film on surface of metallic base material - Google Patents

Formation of corrosion and wear resistant composite film on surface of metallic base material

Info

Publication number
JPH04187779A
JPH04187779A JP31576790A JP31576790A JPH04187779A JP H04187779 A JPH04187779 A JP H04187779A JP 31576790 A JP31576790 A JP 31576790A JP 31576790 A JP31576790 A JP 31576790A JP H04187779 A JPH04187779 A JP H04187779A
Authority
JP
Japan
Prior art keywords
base material
corrosion
metal
layer
metallic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31576790A
Other languages
Japanese (ja)
Inventor
Isamu Kayano
榧野 勇
Satoshi Tsuru
鶴 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KORYO ENG KK
Mitsubishi Heavy Industries Ltd
Original Assignee
KORYO ENG KK
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KORYO ENG KK, Mitsubishi Heavy Industries Ltd filed Critical KORYO ENG KK
Priority to JP31576790A priority Critical patent/JPH04187779A/en
Publication of JPH04187779A publication Critical patent/JPH04187779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To improve the corrosion and wear resistances of a metallic base material as a low-grade material bar forming a thermally sprayed layer on the surface of the base material, depositing a metal in the micropores in the layer by electroless plating and sealing the micropores. CONSTITUTION:An electrically nonconductive material such as Al2O3, AlN or SiO2 or an electrically conductive material such as Ni, Cr, Al, TiN or TiC is thermally sprayed on the surface of a metallic base material such as carbon steel as a low-grade material to form a thermally sprayed layer. A metal such as Ni, Pb or Cu is then deposited in the micropores in the layer by electroless plating and the micropores are sealed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属基材の表面に耐食・耐摩耗性複合皮膜を形
成させる方法に関し2 腐食性、摩耗性高温雰囲気中で
使用される配管、弁、タンク等の構成材料の製造に有利
に適用しつる同方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming a corrosion-resistant and wear-resistant composite film on the surface of a metal substrate. 2. Piping used in a corrosive and abrasive high-temperature atmosphere; The present invention relates to a method which can be advantageously applied to the manufacture of constituent materials for valves, tanks, etc.

〔従来の技術〕[Conventional technology]

従来、腐食性、摩耗性高温雰囲気中で摩耗特性を要求さ
れる場合には高ニッケル・クロム基合金、ステン)/ス
鋼などが使用されてい乙。
Conventionally, high nickel-chromium based alloys, stainless steels, etc. have been used when wear characteristics are required in corrosive and abrasive high-temperature atmospheres.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高温下での腐食性および摩耗性環境において、従来の高
級材料に代るものとし7て炭素鋼なとパ)低級材料に耐
食耐摩耗性溶射皮膜の被覆し−こ゛耐食性、耐摩耗性機
能をもたらオー、l!′が考λられているが、1ユの場
合の問題点と1,7て溶射被眼成分そのものは耐食性を
も−)もの6゛)溶射皮膜特有の微細な孔のため腐食性
溶液が金属基材パ、到達し、その結果、金属基材の腐食
ひいては溶射被膜の剥離を起こす二とがあげられる一1
従−1て腐食性溶液が溶射被膜に浸透1.でも耐久性に
乏し2い金属基材を防食(、得る皮膜の@ IJ’2お
5Lび製?シフ方法の開発が待たれでも)だ。
In corrosive and abrasive environments at high temperatures, carbon steel can be used as an alternative to traditional high-grade materials. Bring it on, l! ' has been considered, but there are problems in the case of 1 U, and 1, 7, the thermal spray coating component itself is corrosion resistant. The metal particles reach the base material, resulting in corrosion of the metal base material and peeling of the sprayed coating.
1. Corrosive solution penetrates into the sprayed coating. However, it is good for corrosion protection of metal substrates that lack durability (IJ'2 and 5L are the most durable).

また従来、溶射層内に存在する空隙(孔)4満たす(封
孔)手段として、常温な(、・L、 1 (10℃程度
までは樹脂等1.−よる有筬物封孔処理/・(なされて
いるが、使用環境が高温になる場合(を適用が困難であ
った。
Conventionally, as a means of filling (sealing) the voids (pores) 4 existing in the sprayed layer, a reed material sealing process using resin, etc. 1. (Although it has been done, it was difficult to apply it when the usage environment becomes high temperature).

本発明は上記技術水準に2み、低級金属基材を腐食性、
摩耗性高温雰囲気中でも耐食性、耐摩耗性にすることが
できる方法を提供しようとするものである。
The present invention is based on the above-mentioned state of the art.
The purpose is to provide a method that can provide corrosion resistance and wear resistance even in an abrasive high-temperature atmosphere.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は金属基材の表面に、非導電性材料又は導電性材
料を溶射して溶射層を形成させた後、該溶射層の微細孔
内に無電解めっきにより金属を析出させて封孔すること
を特徴とする金属基材表面への耐食・耐摩耗性複合皮膜
の形成方法である。
The present invention involves spraying a non-conductive material or a conductive material onto the surface of a metal base material to form a sprayed layer, and then depositing metal into the fine pores of the sprayed layer by electroless plating to seal the pores. This is a method for forming a corrosion-resistant and wear-resistant composite film on the surface of a metal substrate.

本発明でいう非導電性材料としてはAl2O3。The non-conductive material used in the present invention is Al2O3.

A1□03・MgO、AIN 、 MgO、MgO・S
iL 、 2Mg0・SiL 、 5i02. SiC
、5iC−5i3N1. BN 。
A1□03・MgO, AIN, MgO, MgO・S
iL, 2Mg0・SiL, 5i02. SiC
, 5iC-5i3N1. BN.

ZrO2,Si3N、 、 ZrO□・Sin、などが
あげられ、導電性材料としてはFe、 Cr、 Ni 
、 Zn、 Mo。
Examples include ZrO2, Si3N, ZrO□・Sin, etc., and conductive materials include Fe, Cr, Ni
, Zn, Mo.

Ta、W、A1などの金属、低合金鋼、°ステンレス鋼
(例えば18Cr−88i)、アルミニウム青銅、黄銅
などの合金、TiN 、 Tic 、 TlB2 、 
Cr2O3゜Cr3C2,B4C、WC、ZrLなどの
セラミックスがあげられ、無電解めっきに使用する金属
としてはNi 、 Pb 、 Cu 、 Pt 、 A
g 、 Auなどがあげられる。
Metals such as Ta, W, A1, low alloy steel, stainless steel (e.g. 18Cr-88i), alloys such as aluminum bronze, brass, TiN, Tic, TlB2,
Examples include ceramics such as Cr2O3゜Cr3C2, B4C, WC, and ZrL, and metals used for electroless plating include Ni, Pb, Cu, Pt, and A.
Examples include g, Au, etc.

無電解めっきとしては90℃で行う高温タイプめっき浴
、60℃又は30℃で行う低温タイプめっき浴が使用さ
れ、それらの−例をあげると下表のものがある。
For electroless plating, high-temperature plating baths carried out at 90°C and low-temperature plating baths carried out at 60°C or 30°C are used, examples of which are shown in the table below.

高温タイプのめっき浴 低温タイプのめっき浴 〔作用〕 本発明の耐食耐摩耗性複合皮膜は上記のように構成され
ており、最表層の耐摩耗性溶射皮膜のだめに摩耗が抑制
されるとともに、金属基材付近の溶射皮膜中の微細な空
隙は耐食性の金属めっきで満たされているため外部から
浸透する腐食性溶液を遮蔽して耐食性の乏しい金属基材
への到達を防止する。
High-temperature type plating bath Low-temperature type plating bath [Function] The corrosion-resistant and wear-resistant composite coating of the present invention is constructed as described above, and wear is suppressed in the outermost layer of the wear-resistant thermal sprayed coating, and the metal The fine voids in the sprayed coating near the base material are filled with corrosion-resistant metal plating, which blocks corrosive solutions from penetrating from the outside and prevents them from reaching the metal base material, which has poor corrosion resistance.

〔実施例〕〔Example〕

次に、本発明の実施例を第1図、第2図および第3図に
より説明する。
Next, embodiments of the present invention will be described with reference to FIGS. 1, 2, and 3.

第1図は耐食耐摩耗性複合被膜の形成方法に関する工程
図であり詳細に説明すると次のとおりである。
FIG. 1 is a process diagram relating to a method for forming a corrosion-resistant and wear-resistant composite coating, and the details will be explained as follows.

まず、金属基材には炭素鋼などの低級材料を用い、これ
をブラスト処理により粗面化したのち、耐摩耗性の金属
、合金又はセラミックス材料を溶射する。
First, a low-grade material such as carbon steel is used as the metal base material, and after roughening the surface by blasting, a wear-resistant metal, alloy, or ceramic material is thermally sprayed.

次に溶射層内の微細な空隙を塞ぐた狛耐食性がありかつ
緻密層を形成しやすいニッケル等の金属の無電解めっき
処理を行なう。ここで無電解めっきは通常60℃又は9
0℃の高温でめっきが成長することから、溶射層内の金
属基材側から順次めっきするため、溶射層の金属基材部
と表層部に温度差を設けるよう工夫されている。
Next, electroless plating of a metal such as nickel, which has corrosion resistance and is easy to form a dense layer, is performed to close the minute voids in the sprayed layer. Here, electroless plating is usually 60℃ or 9℃.
Since plating grows at a high temperature of 0° C., in order to sequentially plate from the metal base material side in the sprayed layer, it is devised to provide a temperature difference between the metal base portion and the surface layer of the sprayed layer.

すなわち、常温の無電解めっき液中に供試体を浸漬させ
溶射層内に充分にめっき液を含浸させたのち、一定時間
金属基材側を60℃又は90℃の無電解めっき条件に昇
温する。この含浸〜昇温をくり返すことにより目的のめ
っき層を金属基材側から成長させる。この間、溶射層外
部のめっき液は例えば20〜25℃の常温に調整してお
き、溶射層の外部からめっきが成長しないようにする必
要がある。
That is, after immersing the specimen in an electroless plating solution at room temperature and sufficiently impregnating the plating solution into the sprayed layer, the metal substrate side is heated to 60°C or 90°C under electroless plating conditions for a certain period of time. . By repeating this process of impregnation and temperature rise, the desired plating layer is grown from the metal base material side. During this time, it is necessary to adjust the plating solution outside the sprayed layer to a normal temperature of, for example, 20 to 25°C to prevent the plating from growing from outside the sprayed layer.

実施例として無電解めっきによる反応式と液条件等をニ
ッケルの場合で説明する。
As an example, the reaction formula and liquid conditions for electroless plating will be explained using nickel.

Nl”+H2PO□→ Nl+ H4F[]3−+ 2
8”還元材  析出ニッケル めっき条件(添加剤省略) 低温タイプ 高温タイプ 硫酸ニッケル     2625 (g/β) 次亜リン酸      1121 (g/Iり pH(−)6〜74.5〜5.5 温度 (t)      60     90第2図、
第3図には管及び板状の場合の無電解めっき手法の一実
施例を示す。
Nl”+H2PO□→ Nl+ H4F[]3-+ 2
8" Reducing agent Precipitated nickel plating conditions (additives omitted) Low temperature type High temperature type Nickel sulfate 2625 (g/β) Hypophosphorous acid 1121 (g/I pH (-) 6-74.5-5.5 Temperature ( t) 60 90Figure 2,
FIG. 3 shows an example of an electroless plating method for pipes and plates.

第2図は管外表面に金属、合金又はセラミックス溶射し
たのちの無電解めっきの場合を示す。
FIG. 2 shows the case of electroless plating after spraying a metal, alloy, or ceramic on the outer surface of the tube.

第2図において、1は管(金属基材)、2は溶射層、3
はプラグ、4は容器、5は熱電対(1)、6はチラー、
7はヒータ、8は攪拌機、9は無電解めっき液、10は
温調器(1)、11は温調器(2)、12はヒータ電源
、13はチラー電源、14はモータ、15はタイマー、
19は熱電対(2)である。
In Fig. 2, 1 is a tube (metal base material), 2 is a sprayed layer, and 3
is the plug, 4 is the container, 5 is the thermocouple (1), 6 is the chiller,
7 is a heater, 8 is a stirrer, 9 is an electroless plating solution, 10 is a temperature controller (1), 11 is a temperature controller (2), 12 is a heater power supply, 13 is a chiller power supply, 14 is a motor, 15 is a timer ,
19 is a thermocouple (2).

ここで、管lに施工された溶射層2の金属基材側から順
次めっきするため、金属基材側のみをめっき条件を満足
させるため内部からヒータ7により加熱する。また溶射
層の表層部は逆にめっきのできない条件とするた約、め
っき液を冷却する。
Here, in order to sequentially plate the thermal sprayed layer 2 applied to the pipe 1 from the metal base material side, only the metal base material side is heated from the inside by the heater 7 in order to satisfy the plating conditions. On the other hand, the surface layer of the sprayed layer is kept under conditions that do not permit plating, and the plating solution is cooled.

それぞれの温度の調整は溶射層の内部と外部は別々に行
う。
Each temperature is adjusted separately for the inside and outside of the sprayed layer.

第3図は板状の場合の実施例を示す。FIG. 3 shows an embodiment in the case of a plate shape.

第3図において、17は金属板、16はクランプであり
、その他の符号は第2図と同じものを示す。
In FIG. 3, 17 is a metal plate, 16 is a clamp, and other symbols are the same as in FIG. 2.

この場合は架設のめっき槽の底部として供試体を用いる
か、又は金属基材裏面をシールする必要がある。
In this case, it is necessary to use the specimen as the bottom of an erected plating bath, or to seal the back surface of the metal substrate.

〔発明の効果〕〔Effect of the invention〕

本発明により、低級材料を耐食耐摩耗性を備えた材料と
することができるとともに高温環境下での使用が可能と
なり価格の点からも適用範囲が大巾に拡大する。
According to the present invention, a low-grade material can be made into a material with corrosion resistance and wear resistance, and it can also be used in a high-temperature environment, which greatly expands the range of applications in terms of cost.

又溶射膜の密着力向上にも寄与し、かつ封孔技術の発展
にも寄与する。
It also contributes to improving the adhesion of thermally sprayed films and to the development of pore sealing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の工程図表、第2図及び第3図は本発明
方法を実施する装置の概略図である。
FIG. 1 is a process diagram of the present invention, and FIGS. 2 and 3 are schematic diagrams of an apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  金属基材の表面に、非導電性材料又は導電性材料を溶
射して溶射層を形成させた後、該溶射層の微細孔内に無
電解めっきにより金属を析出させて封孔することを特徴
とする金属基材表面への耐食・耐摩耗性複合皮膜の形成
方法。
It is characterized by forming a sprayed layer by spraying a non-conductive material or a conductive material onto the surface of a metal base material, and then depositing metal into the fine pores of the sprayed layer by electroless plating to seal the pores. A method for forming a corrosion-resistant and wear-resistant composite film on the surface of a metal substrate.
JP31576790A 1990-11-22 1990-11-22 Formation of corrosion and wear resistant composite film on surface of metallic base material Pending JPH04187779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31576790A JPH04187779A (en) 1990-11-22 1990-11-22 Formation of corrosion and wear resistant composite film on surface of metallic base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31576790A JPH04187779A (en) 1990-11-22 1990-11-22 Formation of corrosion and wear resistant composite film on surface of metallic base material

Publications (1)

Publication Number Publication Date
JPH04187779A true JPH04187779A (en) 1992-07-06

Family

ID=18069302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31576790A Pending JPH04187779A (en) 1990-11-22 1990-11-22 Formation of corrosion and wear resistant composite film on surface of metallic base material

Country Status (1)

Country Link
JP (1) JPH04187779A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289038A2 (en) * 2001-08-29 2003-03-05 Araco Kabushiki Kaisha Manufacturing method of anti-corrosive multi-layered structure material
US8482132B2 (en) * 2009-10-08 2013-07-09 International Business Machines Corporation Pad bonding employing a self-aligned plated liner for adhesion enhancement
CN110055483A (en) * 2019-06-10 2019-07-26 河海大学 A method of improving titanium nitride-titanium oxide composite coating corrosion resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289038A2 (en) * 2001-08-29 2003-03-05 Araco Kabushiki Kaisha Manufacturing method of anti-corrosive multi-layered structure material
JP2003073847A (en) * 2001-08-29 2003-03-12 Araco Corp Method for manufacturing bilayer structural material with corrosion resistance
EP1289038A3 (en) * 2001-08-29 2004-01-07 Araco Kabushiki Kaisha Manufacturing method of anti-corrosive multi-layered structure material
US6737104B2 (en) 2001-08-29 2004-05-18 Araco Kabushiki Kaisha Manufacturing method of anti-corrosive multi-layered structure material
US8482132B2 (en) * 2009-10-08 2013-07-09 International Business Machines Corporation Pad bonding employing a self-aligned plated liner for adhesion enhancement
CN110055483A (en) * 2019-06-10 2019-07-26 河海大学 A method of improving titanium nitride-titanium oxide composite coating corrosion resistance
CN110055483B (en) * 2019-06-10 2021-04-09 河海大学 Method for improving corrosion resistance of titanium nitride-titanium oxide composite coating

Similar Documents

Publication Publication Date Title
CN1986213B (en) Antiwear magnetic coating and its making process
CN109182996B (en) Tungsten alloy coating preparation equipment and method
WO1997032053A1 (en) A method of forming spray deposit
CN104987134B (en) Method for preparing nickel coating on ceramic surface by using in-situ reduction method
JP3898082B2 (en) Method for producing composite metal and composite metal member
CN109652798A (en) A kind of preparation method of Sintered NdFeB magnet surface composite coating
JPH04187779A (en) Formation of corrosion and wear resistant composite film on surface of metallic base material
Allahyarzadeh et al. Electrodeposition on superalloy substrates: a review
JPS6117912B2 (en)
JPH0243352A (en) Production of member for molten metal bath
KR20160146471A (en) Film-forming structure on work and film-forming method on work
JPS61127872A (en) Improved corrosion resistant coating
JP3081765B2 (en) Carbon member and method of manufacturing the same
Hao et al. Electroless Ni–P coating on W–Cu composite via three different activation processes
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
CN108315737A (en) A kind of composite coating preparation process based on cutting tool
CN101532156B (en) Method for producing austenitic stainless steel heat-resistant anticorrosive electric heater
JPH03277779A (en) Production of composite coating film
JPS5822375A (en) Superhard coating metal material and preparation thereof
JPS59166681A (en) Corrosion resistant member
Taniuchi et al. Chemical vapor deposition of Si3N4 onto metal substrates
JPH02221364A (en) Non-oxide ceramic coating material
CN117587389A (en) Preparation method of aluminum oxide-based anti-corrosion coating on surface of 310S stainless steel
JPH01118355A (en) Coated die and core for aluminum die casting
JPS5841934B2 (en) Mold for continuous steel casting