JPH04187542A - Method for preparing glass-ceramic solidified product by hydrothermal hot press - Google Patents

Method for preparing glass-ceramic solidified product by hydrothermal hot press

Info

Publication number
JPH04187542A
JPH04187542A JP2314813A JP31481390A JPH04187542A JP H04187542 A JPH04187542 A JP H04187542A JP 2314813 A JP2314813 A JP 2314813A JP 31481390 A JP31481390 A JP 31481390A JP H04187542 A JPH04187542 A JP H04187542A
Authority
JP
Japan
Prior art keywords
glass
hot press
hydrothermal hot
solidified product
hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2314813A
Other languages
Japanese (ja)
Other versions
JP3170593B2 (en
Inventor
Koji Ioku
洪二 井奥
Mamoru Nishioka
守 西岡
Kazumichi Yanagisawa
柳沢 和道
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP31481390A priority Critical patent/JP3170593B2/en
Publication of JPH04187542A publication Critical patent/JPH04187542A/en
Application granted granted Critical
Publication of JP3170593B2 publication Critical patent/JP3170593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To prepare a glass-ceramic solidified product exhibiting excellent compression strength and biological activity and suitable as an intraosseous implant material by mixing water with the powder of glass comprising SiO2, CaO, Na2O and P2O5 in a specific ratio, and subsequently subjecting the mixture to a hydrothermal hot press treatment. CONSTITUTION:Glass having a composition comprising 40-72mol% of SiO, 0-50mol% of CaO, 5-43mol% of Na2O, and 1-6mol% of P2O5 is prepared and crushed. The glass powder prepared thus is mixed with water, and the mixture 1 is charged in a hydrothermal hot press device, pressed with two pistons 2 and simultaneously heated with a heater 5 to prepare a glass-ceramic solidified product. The hydrothermal hot press is preferably performed under a pressure of approximately 20-100 Pa at a temperature of approximately 120-400 deg.C at a heating rate of approximately 1-70 deg.C/min.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水熱ホットプレスによるガラスセラミックス
固化体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a glass-ceramic solidified body by hydrothermal hot pressing.

〔従来の技術〕[Conventional technology]

「水熱」条件とは、100°Cより高い温度て水か存在
するような条件を言い、水熱ホットプレスとは、第1図
に示すような装置内に「水を混合した試料」を充填し、
これを2つのピストンて挟んで加圧し、同時に100°
Cより高い温度に加熱し、それにより試料を物理的又は
化学的に変質又は変化させて固化させる方法を言う。固
化した塊は固化体と呼ばれ、新たな用途に使用される。
"Hydrothermal" conditions refer to conditions in which water is present at a temperature higher than 100°C, and hydrothermal hot press refers to conditions in which a "sample mixed with water" is placed in a device as shown in Figure 1. Fill and
Pressure is applied by sandwiching this between two pistons, and the angle is 100° at the same time.
A method of heating a sample to a temperature higher than C to physically or chemically alter or change the sample and solidify it. The solidified mass is called a solidified material, and is used for new purposes.

ところで、粉末から固化した塊を製造する方法として焼
結法かある。水熱ホットプレスは焼結法に比へ低温で固
化した塊を製造できる利点かある。
Incidentally, there is a sintering method as a method for producing a solidified lump from powder. Hydrothermal hot pressing has the advantage of producing a solidified mass at a lower temperature than the sintering method.

本発明者らの一部は、他の発明者と共に、先に、試料と
して、放射性廃棄物をガラス粉体に混合したものを使用
し、これに更に水を混合して水熱ホットプレスにより固
化し、得られた固化体を廃棄物として貯蔵する試みを提
案した。
Some of the present inventors, along with other inventors, first used a sample of radioactive waste mixed with glass powder, then mixed this with water and solidified it using a hydrothermal hot press. We then proposed an attempt to store the solidified material as waste.

その後、本発明者らは、試料として、ガラス粉体だけを
使用し、これに水を混合して水熱ホットプレスにより固
化させる方法で1個のガラス状の固化体を製造し、これ
を新規で有用な用途に使用しようとする試験を行なった
Thereafter, the present inventors used only glass powder as a sample, mixed it with water, and solidified it using a hydrothermal hot press to produce a glass-like solidified body, and created a new glass-like solidified body. We conducted tests to try to use it for useful purposes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、得られたガラス状固化体は、圧縮強度が
満足されないという問題点を有していた。
However, the obtained vitrified solidified body had a problem in that the compressive strength was not satisfied.

圧縮強度が不足していると、ガラス状固化体に新規で有
用な用途は見出せない。
If the compressive strength is insufficient, new and useful uses cannot be found for the vitrified solidified product.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、鋭意研究の結果、試料として下記に示す
特定の組成を有するガラス粉体を使用すると、得られた
ガラス状固化体は、内部に結晶化した部分を有するガラ
スセラミックスの1種てあり、これが高い圧縮強度を有
することを見出し、本発明を成すに至った。
As a result of intensive research, the present inventors found that when a glass powder having the specific composition shown below is used as a sample, the obtained glassy solidified body is a type of glass ceramic having a crystallized part inside. It has been discovered that this has high compressive strength, and the present invention has been completed.

よって、本発明は、 [次の組成。Therefore, the present invention [The following composition.

Si Oa   40〜72 mol%(40〜60 
mol%)CaOO〜50 mol%(15〜30 m
ol%)Na205〜43IIIO1%(5〜30mo
l%)P20s   1〜6  mol% (かっこ内の数値は好ましい範囲)を有するガラスの粉
体と水との混合物を、水熱ホットプレスにより固化させ
る、ことを特徴とするガラスセラミックス固化体の製造
方法」を提供する。
SiOa 40-72 mol% (40-60
mol%) CaOO~50 mol% (15~30 m
ol%) Na205~43IIIO1% (5~30mo
1%) P20s 1 to 6 mol% (values in parentheses are preferred ranges) A mixture of glass powder and water is solidified by hydrothermal hot pressing. method”.

〔作用〕[Effect]

本発明で使用する上述の特定の組成(場合により、本発
明の目的を損なわない限り、少量の他の成分を含んでい
ても差し支えない)を有するガラスは、生体活性材料と
して公知である。従って、本発明の製法で得られる固化
体は、生体活性を示すのて、骨内インブラントに有用で
ある。
Glasses having the above-mentioned specific compositions used in the present invention (optionally containing small amounts of other components as long as they do not defeat the purpose of the present invention) are known as bioactive materials. Therefore, the solidified product obtained by the production method of the present invention exhibits bioactivity and is useful for intraosseous implants.

しかも、既述のように、本発明の固化体は、圧縮強度が
高いのて、骨内インブラントに加工した場合、十分にそ
の役目を果たすことかできる。
Furthermore, as described above, the solidified material of the present invention has high compressive strength, and therefore, when processed into an intraosseous implant, it can fully fulfill its role.

本発明を実施するには、特定の組成を有するガラスを入
手した後、10〜200μm程度の粉体に粉砕する。
To carry out the present invention, glass having a specific composition is obtained and then ground into powder of approximately 10 to 200 μm.

この粉体100重量%を試料とし、これに5〜30重量
%重量%水を混合し、得られた混合物をホットプレス装
置に充填する。水は中性のものに限らず、pH4〜lO
程度の水でも構わない。
A sample of 100% by weight of this powder is mixed with 5 to 30% by weight of water, and the resulting mixture is filled into a hot press device. Water is not limited to neutral water, but has a pH of 4 to 10
A small amount of water is fine.

水熱ホットプレスの適当な条件は、次の通りである。圧
力は20〜100 MPa程度で十分である。温度は1
20〜400℃程度で十分であり、400℃より上げて
も無駄であり、好ましくは300〜350℃である。昇
温速度は、1℃/分〜70℃/分程度で十分であり、好
ましくは1’C/分〜lO℃/分である。
Suitable conditions for hydrothermal hot pressing are as follows. A pressure of about 20 to 100 MPa is sufficient. temperature is 1
A temperature of about 20 to 400°C is sufficient, and it is wasteful to raise the temperature above 400°C, and the temperature is preferably 300 to 350°C. A temperature increase rate of about 1°C/min to 70°C/min is sufficient, preferably 1'C/min to 10°C/min.

時間はlO分〜5時間程度十分であり、5時間より長く
実行しても無駄である。
The time required is approximately 10 minutes to 5 hours, and there is no point in running the process for longer than 5 hours.

これらの条件を選択することによって、析出する結晶の
大きさと形をコントロールすることかできる。例えば、
昇温速度を遅くすると、結晶が太き(なり、針状結晶の
長さか長(なるみそうすると、固化体の機械的強度は向
上する。反対に昇温速度を速くすると、析出する結晶は
小さくなり、形状は多面体又は球状になる。
By selecting these conditions, the size and shape of the precipitated crystals can be controlled. for example,
If the heating rate is slowed down, the crystals will become thicker, and the length of the needle-like crystals will be increased.This will improve the mechanical strength of the solidified product.On the other hand, if the heating rate is increased, the precipitated crystals will become smaller. , the shape becomes polyhedral or spherical.

以下、実施例により本発明をより具体的に説明するが、
本発明はこれに限られるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to this.

〔実施例13 生体活性ガラス(出発原料)として市販されている次の
組成:5iOt    46.1  mol%Ca0 
  26.9 Naz o’   24.4 P2O52,6 を有するガラス(商品名、ニコン5E51)を用意し、
これを75μ(200メツシユ)以下の粒径になるまで
粉砕した。
[Example 13 The following composition commercially available as bioactive glass (starting material): 5iOt 46.1 mol% Ca0
Prepare a glass (trade name, Nikon 5E51) having 26.9 Nazo' 24.4 P2O52,6,
This was ground to a particle size of 75μ (200 mesh) or less.

得られたガラス粉体4.Ogに対し20重量%の蒸留水
を加えて十分に混合し、これを試料とし、この試料を第
1図に示す水熱ホットプレス装置に充填し、圧力=50
MPa、温度= 200〜350°C1昇温速度=2°
C/分、時間22時間の条件で、水熱ホットプレスを行
ない、固化体を製造した。
Obtained glass powder 4. Add 20% by weight of distilled water to Og, mix thoroughly, use this as a sample, fill the hydrothermal hot press device shown in Figure 1, and press at a pressure of 50.
MPa, temperature = 200-350°C1 heating rate = 2°
Hydrothermal hot pressing was performed under the conditions of C/min and 22 hours to produce a solidified product.

尚、第1図の装置は、試料ケース(3)中の試料から放
出された水を空間(4)内に保存できる構造になってい
る。
The apparatus shown in FIG. 1 has a structure in which water released from the sample in the sample case (3) can be stored in the space (4).

〔比較例1〕 出発原料として、瓶ガラスなどに使用される最も汎用的
なソーダライムガラス(組成は下記の通り)を用意した
[Comparative Example 1] As a starting material, soda lime glass (composition is as follows), which is the most commonly used glass bottle, was prepared.

5in274.Omol% Ca0    1.9 Na20  18.5 P20S   0.0  (セロ) Btus   1.2 J!0   1.3 A120,3.1 ニコン5E51の代わりにこのガラスを使用する外は実
施例1と全く同様にして、固化体を製造した。
5in274. Omol% Ca0 1.9 Na20 18.5 P20S 0.0 (Cero) Btus 1.2 J! 0 1.3 A120, 3.1 A solidified body was produced in exactly the same manner as in Example 1 except that this glass was used instead of Nikon 5E51.

〔評価〕〔evaluation〕

実施例1及び比較例】て製造した固化体について、嵩密
度(単位はg−an−2)の測定、析出相の同定、微構
造の観察を行なった後、マイクロビッカース硬度計によ
り硬度(単位はGPa)を、万能試験機により圧縮強度
(単位はM Pa)をそれぞれ測定した。
[Example 1 and Comparative Example] After measuring the bulk density (unit: g-an-2), identifying the precipitated phase, and observing the microstructure, the hardness (unit: g-an-2) was measured using a micro-Vickers hardness meter. (GPa) and compressive strength (unit: MPa) were measured using a universal testing machine.

この結果を次の第1表に示す。The results are shown in Table 1 below.

第1表(*温度はホットプレスの1条件)更に実施例1
の固化体について粉末X線回折法(XRD)で分析した
ところ、固化体はガラスセラミソつてあり、Na2Ca
2(Si(L)s或いはNaCaJS++O*(ペクト
ライト)の結晶体を含むことか認められた。また、35
0 ’Cてホットプレスした実施例1の固化体について
、破断面を走査型電子穎微鏡で観察したところ、釣鉤3
×3μmの針状結晶か認められた。この針状結晶は上記
結晶体と推定される。
Table 1 (*Temperature is one condition of hot press) Furthermore, Example 1
When the solidified material was analyzed by powder X-ray diffraction (XRD), it was found that the solidified material was composed of glass ceramics and contained Na2Ca.
It was recognized that it contained crystals of 2(Si(L)s or NaCaJS++O* (pectolite).
When the fracture surface of the solidified material of Example 1 hot-pressed at 0'C was observed with a scanning electronic microscope, it was found that the fishing hook 3
Needle-shaped crystals of ×3 μm were observed. This needle-like crystal is presumed to be the above-mentioned crystal.

それに対して、比較例1の固化体には、そのような結晶
体又は針状結晶は認められなかった。
On the other hand, such crystals or needle-like crystals were not observed in the solidified product of Comparative Example 1.

従って、実施例1の固化体の圧縮強度か比較例1に比へ
て高いのは、上記結晶体又は針状結晶の存在によるもの
と推定される。
Therefore, it is presumed that the reason why the compressive strength of the solidified material of Example 1 is higher than that of Comparative Example 1 is due to the presence of the crystals or needle-like crystals.

〔実施例2〕 次の組成 :S!0252.1  mol%CaO23
,8 Na20  21.5 P20s   2.6 を有するガラスを用意し、以下、実施例1と同様にして
固化体を製造したところ、はぼ同等の機械的特性を有す
るガラスセラミックス固化体か得られた。
[Example 2] The following composition: S! 0252.1 mol%CaO23
, 8 Na20 21.5 P20s 2.6 was prepared and a solidified body was produced in the same manner as in Example 1. A glass ceramic solidified body having almost the same mechanical properties was obtained. .

〔発明の効果〕〔Effect of the invention〕

U上の通り、本発明に従って、特定の組成を有するガラ
スを試料として使用することにより、圧縮強度の高い同
化体か得られる。
As mentioned above, according to the present invention, by using a glass having a specific composition as a sample, an assimilate with high compressive strength can be obtained.

また、水熱ホットプレスの条件を選択することにより、
得られる固化体の物性をコントロールすることかできる
In addition, by selecting the hydrothermal hot press conditions,
The physical properties of the resulting solidified product can be controlled.

更に、本発明により製造された固化体は、生体活性を示
すことから、骨内インブラント材料として有用である。
Furthermore, the solidified material produced according to the present invention exhibits bioactivity and is therefore useful as an intraosseous implant material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、代表的な水熱ホットプレス装置の縦断面を示
す概念図である。 〔主要部分の符号の説明〕 1  試料 2− ピストン 3− 試料ケース 4− 水の逃げ空間 5  ヒーター 6  測温用熱電対孔 7− ピストン押し棒 8  グランドパソキング
FIG. 1 is a conceptual diagram showing a longitudinal section of a typical hydrothermal hot press apparatus. [Explanation of symbols of main parts] 1 Sample 2 - Piston 3 - Sample case 4 - Water escape space 5 Heater 6 Temperature measurement thermocouple hole 7 - Piston push rod 8 Grand Paso King

Claims (1)

【特許請求の範囲】 下記組成を有するガラスの粉体と水との混合物を、水熱
ホットプレスにより固化させる、ことを特徴とするガラ
スセラミックス固化体の製造方法。 記 SiO_240〜72mol% CaO0〜50 Na_2O5〜43 P_2O_51〜6
[Claims] A method for producing a solidified glass-ceramic body, which comprises solidifying a mixture of glass powder and water having the following composition by hydrothermal hot pressing. SiO_240-72 mol% CaO0-50 Na_2O5-43 P_2O_51-6
JP31481390A 1990-11-20 1990-11-20 Method for producing solidified glass ceramics by hydrothermal hot pressing Expired - Fee Related JP3170593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31481390A JP3170593B2 (en) 1990-11-20 1990-11-20 Method for producing solidified glass ceramics by hydrothermal hot pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31481390A JP3170593B2 (en) 1990-11-20 1990-11-20 Method for producing solidified glass ceramics by hydrothermal hot pressing

Publications (2)

Publication Number Publication Date
JPH04187542A true JPH04187542A (en) 1992-07-06
JP3170593B2 JP3170593B2 (en) 2001-05-28

Family

ID=18057911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31481390A Expired - Fee Related JP3170593B2 (en) 1990-11-20 1990-11-20 Method for producing solidified glass ceramics by hydrothermal hot pressing

Country Status (1)

Country Link
JP (1) JP3170593B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233664A (en) * 2000-02-22 2001-08-28 Advance Co Ltd Ceramic having dense texture
JP2014083504A (en) * 2012-10-24 2014-05-12 Ohara Inc Photocatalyst component and method for manufacturing the same
CN106430985A (en) * 2016-08-09 2017-02-22 桂林电子科技大学 Hydrothermal preparation method for microcrystalline glass powder
CN111065610A (en) * 2017-07-14 2020-04-24 欧文斯-布洛克威玻璃容器有限公司 Soda-lime-silica glass ceramic
JP2020142200A (en) * 2019-03-07 2020-09-10 三菱マテリアル株式会社 Waste glass treatment method and treatment apparatus
JP2021509312A (en) * 2017-12-20 2021-03-25 プガチ, アンドレイPUGACH, Andrey Bone implant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233664A (en) * 2000-02-22 2001-08-28 Advance Co Ltd Ceramic having dense texture
JP2014083504A (en) * 2012-10-24 2014-05-12 Ohara Inc Photocatalyst component and method for manufacturing the same
CN106430985A (en) * 2016-08-09 2017-02-22 桂林电子科技大学 Hydrothermal preparation method for microcrystalline glass powder
CN106430985B (en) * 2016-08-09 2019-01-18 桂林电子科技大学 A kind of hydrothermal preparing process of microcrystalline glass powder
CN111065610A (en) * 2017-07-14 2020-04-24 欧文斯-布洛克威玻璃容器有限公司 Soda-lime-silica glass ceramic
CN111065610B (en) * 2017-07-14 2022-07-05 欧文斯-布洛克威玻璃容器有限公司 Soda-lime-silica glass ceramic
JP2021509312A (en) * 2017-12-20 2021-03-25 プガチ, アンドレイPUGACH, Andrey Bone implant
JP2020142200A (en) * 2019-03-07 2020-09-10 三菱マテリアル株式会社 Waste glass treatment method and treatment apparatus

Also Published As

Publication number Publication date
JP3170593B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
Palakurthy et al. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste
Youness et al. Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass
Lin et al. Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: Elasticity and structure
Li et al. An investigation of bioactive glass powders by sol‐gel processing
Ebisawa et al. Bioactivity of ferrimagnetic glass-ceramics in the system FeO Fe2O3 CaO SiO2
Salman et al. The role of strontium and potassium on crystallization and bioactivity of Na2O–CaO–P2O5–SiO2 glasses
Abulyazied et al. Synthesis, structural and biomedical characterization of hydroxyapatite/borosilicate bioactive glass nanocomposites
Srivastava et al. In vitro bioactivity and physical–mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass-ceramics
Arango-Ospina et al. Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media
Kansal et al. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses
Cannillo et al. Potassium-based composition for a bioactive glass
Salman et al. The crystallization behaviour and bioactivity of wollastonite glass-ceramic based on Na2O–K2O–CaO–SiO2–F glass system
Xie et al. Preparation and characterization of low temperature heat-treated 45S5 bioactive glass-ceramic analogues
Abushanab et al. Evaluation of the dynamic behavior, elastic properties, and in vitro bioactivity of some borophosphosilicate glasses for orthopedic applications
Li et al. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass–ceramics
Samudrala et al. Synthesis, characterization and cytocompatibility of ZrO2 doped borosilicate bioglasses
Lin et al. Preparation and characterization of novel alkali‐activated nano silica cements for biomedical application
Tripathi et al. Preparation and characterization of Li 2 O–CaO–Al 2 O 3–P 2 O 5–SiO 2 glasses as bioactive material
Harabi et al. Effect of TiO2 additions on densification and mechanical properties of new mulltifunction resistant porcelains using economic raw materials
Al-Wafi et al. Characterization and in vitro bioactivity study of a new glass ceramic from mica/apatite glass mixtures
Li et al. Sintering and mechanical properties of lithium disilicate glass-ceramics prepared by sol-gel method
Singh et al. In vitro evaluation of bioactivity of CaO–SiO2–P2O5–Na2O–Fe2O3 glasses
JPH04187542A (en) Method for preparing glass-ceramic solidified product by hydrothermal hot press
Goudouri et al. Towards the synthesis of an experimental bioactive dental ceramic. Part I: Crystallinity characterization and bioactive behavior evaluation
Panah et al. Bioactivity and biodegradability of high temperature sintered 58S ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350