JPH04187387A - Vibration-proof metallic material - Google Patents

Vibration-proof metallic material

Info

Publication number
JPH04187387A
JPH04187387A JP2316361A JP31636190A JPH04187387A JP H04187387 A JPH04187387 A JP H04187387A JP 2316361 A JP2316361 A JP 2316361A JP 31636190 A JP31636190 A JP 31636190A JP H04187387 A JPH04187387 A JP H04187387A
Authority
JP
Japan
Prior art keywords
vibration
metal
proof
materials
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2316361A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
剛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2316361A priority Critical patent/JPH04187387A/en
Publication of JPH04187387A publication Critical patent/JPH04187387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat resistance and workability by using one of two kinds of metallic materials having specified acoustic impeadance ratio as the central material and performing metallic joining as the other metallic material is used for the upper and lower surfaces as clad material. CONSTITUTION:As one of two kinds of metallic materials wherein an acoustic impeadance ratio to a longitudinal or a transversal wave exceeds 2:1 is used as the central material 1 and the other metallic material is used for the upper and lower surfaces of this central material l as clad material 2, these metals are joined to form vibration-proof metallic material composed of clad material. For example, A as the central material 1 and carbon steel as the clad material 2 on both sides of it are joined. In this case, since the impeadance ratio of steel to Al is 2.7, a loss of energy of 5% is generated. Since this loss of energy acts repeatedly on the longitudinal wave transmitted through vibration-proof metallic material, the vibration is attenuated by the repeated effect. Consequently, this vibration-proof metallic material is excellent in heat resistance and workability because it does not use high polymer material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、振動減衰特性に優れ、かつ良好な加工・成形
性を有する防振金属材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a vibration-proof metal material that has excellent vibration damping characteristics and good workability and formability.

(従来の技術) 最近、工作機械、産業機械等が発する振動や、電車、自
動車などの交通機関が高速で走行したり、あるいは橋梁
などを通過する際に発する騒音等に起因する公害問題が
多発しているが、このような機械や構造体に防振金属材
料を適用することによる振動や騒音の軽減が各方面から
期待されている。
(Prior art) Recently, there have been many pollution problems caused by vibrations emitted by machine tools, industrial machinery, etc., and noise emitted by transportation such as trains and automobiles when they run at high speed or pass over bridges, etc. However, there are expectations from various quarters that vibration and noise can be reduced by applying anti-vibration metal materials to such machines and structures.

一般に、振動を減衰させる方法として次の三つの方法が
考えられる。
Generally, the following three methods can be considered as methods for damping vibrations.

■ オイルダンパーやエアダンパーのように、外部ダン
パーシステムを設けて振動エネルギーを吸収する方法。
■ A method of absorbing vibration energy by installing an external damper system, such as an oil damper or an air damper.

■ 金属材料と金属材料との間に粘弾性高分子材料をは
さむ方法0曲げ振動にともなう粘弾性高分子材料のすり
変形によって振動エネルギーを吸収する方法である。
■ Method of sandwiching a viscoelastic polymer material between metal materials 0 This is a method of absorbing vibration energy through the sliding deformation of the viscoelastic polymer material accompanying bending vibration.

■ 金属材料そのものに大きな減衰能を付与する方法、
これは最適量も脚光を浴びているもので、従来とは全く
異なった発想から生まれた防振合金、吸振合金、制振合
金などと呼ばれている材料を利用して振動エネルギーを
吸収する方法である。
■ A method of imparting large damping capacity to the metal material itself,
This is a method of absorbing vibration energy using materials called anti-vibration alloys, vibration-absorbing alloys, vibration-damping alloys, etc., which were born from a completely different idea from conventional ones. It is.

第2図は金属材料の引張強さと防振係数の関係を示す図
である(「新素材便覧1990J 334頁通産資料調
査会平成2年4月16日発行)、同図において、O印で
示す減衰能が大きく、強度の高い材料が防振合金(吸振
合金、制振合金とも呼ばれる)である。
Figure 2 is a diagram showing the relationship between the tensile strength and vibration damping coefficient of metal materials (New Materials Handbook 1990J, page 334, published by the Japan International Trade and Industry Materials Investigation Committee on April 16, 1990). A material with a large damping capacity and high strength is a vibration-isolating alloy (also called a vibration-absorbing alloy or a vibration-damping alloy).

(発明が解決しようとする課題) 上記従来の振動減衰方法においては次のような欠点があ
る。
(Problems to be Solved by the Invention) The conventional vibration damping method described above has the following drawbacks.

■の方法では、本来振動などの発生がなければ不要な装
置を付加することによって防振を行うものであって、機
械や構造体のコンパクト化、筒素化、低価格化を妨げる
という問題がある。
In method (2), vibration isolation is achieved by adding unnecessary equipment if vibrations do not occur, and this poses the problem of hindering the downsizing, cylindrical design, and cost reduction of machines and structures. be.

■の方法では、2枚の金属板を粘弾性高分子材料で接着
しているので金属板同士の密着性は必ずしも十分ではな
く、一般に深絞り性が悪い、また、粘弾性高分子材料は
電気を通さないのでスポット溶接性が悪く、更に、使用
温度は常温から約120°Cまでで、それを超える。4
!麿では使用できない。
In method (2), two metal plates are bonded using a viscoelastic polymer material, so the adhesion between the metal plates is not necessarily sufficient, and deep drawability is generally poor. Since it does not pass through it, it has poor spot weldability, and furthermore, the operating temperature ranges from room temperature to about 120°C, which exceeds that range. 4
! Cannot be used in Maro.

■の方法により開発された前記の防振合金は、片状黒鉛
鋳鉄、^l −Zn合金を除いていずれも加工、溶接等
により生ずる残留応力のため性能が著しく劣化する。一
方、片状黒鉛鋳鉄、At −Zn合金においては加工や
溶接等が困難であるという問題がある。
The performance of all of the above-mentioned vibration-proof alloys developed by method (1), except flake graphite cast iron and ^l-Zn alloy, is significantly degraded due to residual stress caused by processing, welding, etc. On the other hand, flake graphite cast iron and At-Zn alloys have a problem in that processing, welding, etc. are difficult.

本発明は、上記のような欠点のない加工・成形性に優れ
た防振金属材料を提供することを目的とする。
An object of the present invention is to provide a vibration-proof metal material that is free from the above-mentioned drawbacks and has excellent workability and formability.

(課題を解決するための手段) 本発明の要旨は下記■〜■の防振金属材料にある。(Means for solving problems) The gist of the present invention lies in the following vibration-proof metal materials.

■ 縦波または横波に対する音響インピーダンスの比が
2=1以上の2種類の金属材料の一方の金属を中心材と
し、この中心材の上下面に他方の金属材料を合せ材とし
て金属接合したクラッド材からなる防振金属材料。
■ A cladding material made by metal-bonding two types of metal materials with an acoustic impedance ratio of 2 = 1 or more for longitudinal waves or transverse waves, with one metal as the core material and the other metal material as laminate materials on the upper and lower surfaces of this core material. Anti-vibration metal material made of

■ 中心材の厚みがクラッド材の全厚みの60%以下で
ある前記の記載の防振金属材料。
(2) The vibration-proof metal material as described above, wherein the thickness of the core material is 60% or less of the total thickness of the cladding material.

■ 縦波または横波に対する音響インピーダンスの比が
2:1以上の2種類の金属材料を交互に4層以上重ね合
わせて金属接合した多層クラッド材からなる防振金属材
料。
■ A vibration-proof metal material consisting of a multilayer cladding material made by metal-bonding four or more layers of two types of metal materials with an acoustic impedance ratio of 2:1 or more for longitudinal waves or transverse waves.

■ 2種類の金属材料の接合界面に媒接材を有する前記
■、■または■に記載の防振金属材料。
(2) The vibration-proof metal material according to (1), (2) or (2) above, which has a junction material at the bonding interface of two types of metal materials.

前記の金属材料としては、それぞれ純金属、合金のいず
れを用いてもよい、縦波または横波に対する音響インピ
ーダンスの比が2:1以上になる金属材料の組合せとし
ては、アルミニウムと鯛、アルミニウムとステンレス鋼
、アルミニウムと銅、マグネシウムとチタンなどが挙げ
られる。
The above-mentioned metal materials may be either pure metals or alloys. Combinations of metal materials that provide a ratio of acoustic impedance to longitudinal waves or transverse waves of 2:1 or more include aluminum and sea bream, and aluminum and stainless steel. Examples include steel, aluminum and copper, magnesium and titanium.

第1図は本発明(■の発明)の防振金属材料の一例の構
成を示す説明図て、(a)図は板、ら)図は管の場合で
ある。第1図(a)および(ハ)において、lは中心材
、2は中心材lの両側に接合した合せ材である。
FIG. 1 is an explanatory view showing the structure of an example of the vibration-proof metal material of the present invention (invention (■)), in which (a) is a plate, and (a) is a tube. In FIGS. 1(a) and 1(c), 1 is a central material, and 2 is a laminate joined to both sides of the central material 1.

■の発明は、■の発明において、中心材の厚みをクラッ
ド材の全厚みの60%以下としたもので、これによって
、後述するように、クラッド材を一体の金属として溶接
接合することが容品になる。
Invention (2) is the invention (2) in which the thickness of the core material is 60% or less of the total thickness of the cladding material, which makes it possible to weld and join the cladding material as a single piece of metal, as described later. Become a product.

■の発明は、2種類の金属材料を接合するに当たって、
交互に4層以上重ね合わせたものである。
The invention described in (■) involves the following steps when joining two types of metal materials:
Four or more layers are alternately stacked on top of each other.

■の発明は、2種類の金属材料を接合するに際し、その
界面に他の1種以上の金属材料の層を媒接材とし介在さ
せたものである。
In the invention (2), when two types of metal materials are joined, a layer of one or more other metal materials is interposed at the interface as a mediating material.

媒接材を介在させる目的は、接合すべき上記2種類の金
属材料の組合せによっては接合部で硬くてもろい金属間
化合物あるいは炭化物が析出し、接合強さを著しく低下
させる場合があり、これを防止するためである0例えば
、アルミニウムと炭素鋼あるいはアルミニウムとステン
レス鋼の組合せの場合、前者ではFaA 1等の析出、
また後者てはN1Aj!等の析出により接合性能が著し
く低下することかある。これに対して、例えば、圧延前
に厚さ50μ−〜2ms程度の銅のシートを接合すべき
2種類の金属材料の間に介在させ、圧延後厚さ数tI1
1〜500μm程度の銅層を接合界面に形成させること
によって、上記のような問題を防止することができる。
The purpose of interposing the intermediate material is to prevent hard and brittle intermetallic compounds or carbides that may precipitate at the joint depending on the combination of the two types of metal materials to be joined, which can significantly reduce the joint strength. For example, in the case of a combination of aluminum and carbon steel or aluminum and stainless steel, the former may cause precipitation of FaA 1, etc.
Also, the latter is N1Aj! The bonding performance may be significantly deteriorated due to the precipitation of such substances. On the other hand, for example, before rolling, a copper sheet with a thickness of about 50 μm to 2 ms is interposed between the two types of metal materials to be joined, and after rolling the sheet has a thickness of several tI1.
By forming a copper layer with a thickness of about 1 to 500 μm at the bonding interface, the above problems can be prevented.

(作用) 前記のような構成を有する本発明の防振金属材料が振動
減衰特性に優れ、かつ良好な加工・成形性を有するのは
、以下に述べる作用に基づくものである。
(Function) The reason why the vibration-proof metal material of the present invention having the above-mentioned configuration has excellent vibration damping characteristics and good workability and formability is based on the following functions.

第1表にアルミニウム(八l)と鋼についての音響イン
ピーダンスを示す、Alの縦波に対する音響インピーダ
ンスは16.9X10’kg/−冨・Sであり、鯛のそ
れはおよそ46 X 10”kg/■茸・Sである。従
って、鋼とAlの縦波に対する音響インピーダンスの比
は鋼2.7に対して^ff1lとなる。
Table 1 shows the acoustic impedance of aluminum (8L) and steel.The acoustic impedance of Al to longitudinal waves is 16.9X10'kg/-Tomi・S, and that of sea bream is approximately 46X10''kg/■ Mushroom S. Therefore, the ratio of acoustic impedance to longitudinal waves of steel and Al is 2.7 for steel and ^ff1l.

このAlと鯛とが接合された界面での音響エネルギーの
エネルギー伝達係数は、以下に述べるように、15すな
わち入射エネルギーの全てが反射あるいは透過するので
はなく、両材料の音響インピーダンスの比の値に依存し
て5%程度が熱エネルギーに変わり、エネルギー損失(
ロス)が生ずる。
The energy transfer coefficient of acoustic energy at the interface where Al and the sea bream are bonded is 15, as described below, that is, not all of the incident energy is reflected or transmitted, but the value is the ratio of the acoustic impedance of both materials. Depending on the
loss) occurs.

第3図は相接している2個の半無限な面積をもつ材料l
および2の界面を通して伝わる音響エネルギーを両材料
の音響インピーダンスの比(Z、/Z1、但し、Z、お
よびZ、はそれぞれ材料1および2の音響インピーダン
ス)を横軸にとってあられした図である(「新素材/新
金属と最新製造・加工技術」570頁総合接術出版19
9B、2.29発行)。
Figure 3 shows two adjacent materials with semi-infinite areas.
The acoustic energy transmitted through the interface of materials 1 and 2 is plotted on the horizontal axis with the ratio of the acoustic impedances of both materials (Z, /Z1, where Z and Z are the acoustic impedances of materials 1 and 2, respectively). "New Materials/New Metals and the Latest Manufacturing and Processing Technologies" 570 pages General Junjutsu Publishing 19
9B, published 2.29).

同図において、材料zlをAl、材料2.を鋼とみなす
と、鯛のAlに対するインピーダンスの比は2.7であ
るから、横軸の2.7の点から垂直に引いた破線がエネ
ルギー伝達係数を表す曲線と0.95の点で交わる。す
なわちこの場合は、5%のエネルギーロスが生じている
ことになる。このエネルギーロスが本発明の防振金属材
料を介して伝わる縦波に繰り返し作用するので、その重
畳効果により振動の減衰が生ずるのである1例えば、ア
ルミニウムを中心材としてその両側に炭素鋼を接合した
厚さIOIIMの板において、板厚方向に入射した音波
(縦波)は1秒間に約30万回板の中を往復することに
なる。従って、アルミニウムと炭素鋼との接合界面を1
回通過する毎に5%のエネルギーロスを  生じると、
1 /10000秒でエネルギーをほぼ消耗しつくすこ
とになる。
In the figure, material zl is Al, material 2. When considered as steel, the impedance ratio of sea bream to Al is 2.7, so the dashed line drawn perpendicularly from the 2.7 point on the horizontal axis intersects the curve representing the energy transfer coefficient at the 0.95 point. . That is, in this case, an energy loss of 5% occurs. This energy loss repeatedly acts on the longitudinal waves propagating through the vibration-proof metal material of the present invention, and the superimposed effect causes vibration attenuation.1 For example, when aluminum is used as the core material and carbon steel is bonded to both sides, In a plate having a thickness of IOIIM, a sound wave (longitudinal wave) incident in the thickness direction of the plate reciprocates within the plate approximately 300,000 times per second. Therefore, the bonding interface between aluminum and carbon steel is 1
If there is a 5% energy loss every time it passes,
Almost all energy is consumed in 1/10000 seconds.

上記のように、接合された異なる2種類の金属の界面に
おけるエネルギーロスは、音響インピーダンスの比が2
:1未満であると4%以下となり、防振性が小さ(なる
、従って、本発明では音響インピーダンスの比が2:]
以上の21111の金属を用いることとした。
As mentioned above, the energy loss at the interface between two different types of metals that are joined is due to the acoustic impedance ratio of 2.
: If it is less than 1, it will be 4% or less, and the vibration isolation property will be small (therefore, in the present invention, the acoustic impedance ratio is 2:]
It was decided to use the above metal 21111.

■の発明において、中心材の厚みをクラッド材の全厚み
に対して60%以下としたのは、このクラッド材を用い
て溶接接合によりある部材を組み立てる場合、中心材の
厚みが60%を超えると溶接が困難となるからである。
In invention (2), the thickness of the core material is set to be 60% or less of the total thickness of the cladding material, because when a certain member is assembled by welding using this cladding material, the thickness of the core material exceeds 60%. This is because welding becomes difficult.

第4図は溶接の際の接合状態の一例を模式的に示した図
で、(a)図は全板厚が比較的厚い場合、(b)図は中
心材1の層厚が比較的薄いかあるいは全板厚が比較的薄
い場合であるが、この図から推察されるように、中心材
1の厚みが全厚みに対して大きすぎなければ(60%を
超えなければ)合せ材のみを溶接することによって必要
な強度を得ることが可能であり、また、中心材の比率が
低いかあるいは全板厚が薄い場合は中心材による溶接金
属の希釈等の影響が小さくなるため、一体の金属として
の溶接が可能である。
Figure 4 is a diagram schematically showing an example of the joining state during welding, where (a) the total plate thickness is relatively thick, and (b) the core material 1 has a relatively thin layer thickness. Or, if the total plate thickness is relatively thin, as can be inferred from this figure, if the thickness of the core material 1 is too large (over 60%) of the total thickness, only the laminate material can be used. It is possible to obtain the necessary strength by welding, and if the ratio of the core material is low or the total plate thickness is thin, the effect of dilution of the weld metal by the core material will be reduced, so welding can be done as a single piece of metal. Welding is possible.

本発明の防振金属材料を製造するには、用いる2種類の
金属材料に応じて、圧延法、その他従来用いられている
クラッド材の製造方法のいずれを用いてもよい。
In order to manufacture the vibration-proof metal material of the present invention, any of the rolling method and other conventional methods for manufacturing cladding materials may be used depending on the two types of metal materials used.

(実施例1) 第2表に示す化学成分および寸法を有する純アルミニウ
ムと炭素鋼を用い、第5図に示す構造の組立スラブを作
製した。同図において、4は純アルミニウム、5は炭素
鋼であり、aは16欄m、 bは17@園である。なお
、接合面は純アルミニウム、炭素鋼とも研磨している。
(Example 1) An assembled slab having the structure shown in FIG. 5 was manufactured using pure aluminum and carbon steel having the chemical composition and dimensions shown in Table 2. In the figure, 4 is pure aluminum, 5 is carbon steel, a is column 16 m, and b is column 17@en. The joint surfaces of both pure aluminum and carbon steel are polished.

用いた材料の音響インピーダンスは、純アルミニウムが
16.9X10’kgI−” ・s 、炭素鋼が46.
0X10’kg/m”・Sで、炭素鋼と純アルミニウム
の音響インピーダンスの比は2.7である。
The acoustic impedance of the materials used was 16.9 x 10'kgI-''·s for pure aluminum and 46.
At 0×10′kg/m”·S, the acoustic impedance ratio of carbon steel and pure aluminum is 2.7.

この組立スラブ(厚さ50−園、輻1100mm、長さ
1500−)を550℃で3時間加熱した後、圧下比5
で圧延し、厚さ10mm、輻1300as、長さ500
0m−のクラッド鋼板(本発明の防振金属材料)とした
After heating this assembled slab (thickness: 50mm, diameter: 1100mm, length: 1500mm) at 550°C for 3 hours, the reduction ratio was 5.
Rolled to a thickness of 10 mm, a radius of 1300 as, and a length of 500 mm.
A 0m-thick clad steel plate (vibration-proof metal material of the present invention) was used.

この鋼板について、純アルミニウムと炭素鋼との20℃
における接合強さ、衝撃に対する音響効果および片持梁
での振動減衰状況を調査した。比較材としては厚さ10
mmの炭素鋼板を用いた。
Regarding this steel plate, 20℃ of pure aluminum and carbon steel
We investigated the joint strength, acoustic effects against impact, and vibration damping status of the cantilever beam. Thickness 10 for comparison material
A carbon steel plate of mm was used.

接合強さの測定は、JIS G 0601に規定された
せん断強さ試験に従って行った。
The bonding strength was measured according to the shear strength test specified in JIS G 0601.

衝撃に対する音響効果の測定では、第6図に示すように
、前記のクラッド鋼板および比較材を用いて一片lが3
00mmの、1面のみが開放された立方体を溶接接合に
より作製し、所定の重さの落下物をA面の中心′部直上
1mの位置から自然落下させ、開放された面の前方1m
の位置Pで衝撃音を測定した。
In measuring the acoustic effect against impact, as shown in Fig. 6, one piece of the clad steel plate and the comparative material were
A cube with a diameter of 00 mm and only one side open is made by welding and a falling object of a predetermined weight is allowed to fall naturally from a position 1 m directly above the center of side A, and a cube 1 m in front of the open side is made.
Impact sound was measured at position P.

片持梁での振動減衰状況は、前記のクラッド鋼板および
比較材から厚さ10麟1、輻30m1、長さ20〇−■
の試験片を切り出し、その一端をバイスで固定゛   
し、その振動減衰曲線を測定した。
The vibration damping condition of the cantilever beam is determined from the above-mentioned clad steel plate and comparative material: thickness 10mm, diameter 30m1, length 20〇-■
Cut out a test piece and fix one end in a vise.
Then, its vibration damping curve was measured.

調査の結果、純アルミニウムと炭素鋼の接合強さは14
.3kgf/讃、lで、十分の強さを有していた。
As a result of the investigation, the bond strength between pure aluminum and carbon steel is 14
.. It had sufficient strength at 3 kgf/l.

衝撃に対する音響効果の測定結果を第7図に、片持梁で
の振動減衰状況を第8図((a)図は比較材、伽)図は
本発明材)に示す。
Fig. 7 shows the measurement results of the acoustic effect against impact, and Fig. 8 shows the vibration damping state of the cantilever beam (Fig.

第7図(衝撃に対する音響効果)から、本発明のクラッ
ド鋼板は炭素鋼板に較べ衝撃音がかなり低くなっている
ことがわかる。また、第8図(片持梁での振動減衰状況
)から明らかなように、振動の減衰に要する時間も本発
明のクラッド鋼板4板(Q))図)では著しく短かった
From FIG. 7 (acoustic effect on impact), it can be seen that the clad steel plate of the present invention has significantly lower impact noise than the carbon steel plate. Furthermore, as is clear from FIG. 8 (vibration damping situation with a cantilever beam), the time required for vibration damping was also significantly shorter in the clad steel plate 4 of the present invention (Fig. 4 (Q))).

(実施例2) 第3表に示す化学成分および音響インピーダンスを有す
る金属材料を用いて第9図(a)〜(e)に示す防振金
属材料(本発明例)を作製し、中心材と合せ材の接合強
さおよび衝撃に対する音響効果を調査した。なお、第3
表の阻1〜5は第9図の(a)図〜(e)図にそれぞれ
対応し、(a)図、(b1図および(d)図においては
、11、lよおよび!、はいずれも3 mm。
(Example 2) The vibration-proof metal materials (examples of the present invention) shown in FIGS. 9(a) to (e) were produced using metal materials having the chemical components and acoustic impedance shown in Table 3, and the core material and The joint strength of the laminates and the acoustic effects against impact were investigated. In addition, the third
Numbers 1 to 5 in the table correspond to figures (a) to (e) in Figure 9, respectively, and in figures (a), (b1, and (d)), 11, 1, and ! Also 3 mm.

(C)図および(e)図においては、!5.12、I!
、、14および1.はいずれも2−である、また、本発
明例Na 1およびNa4では媒接材を使用した(第4
表参照)。
In figures (C) and (e), ! 5.12, I!
, , 14 and 1. are both 2-. In addition, in the present invention examples Na 1 and Na 4, a medium junction material was used (the 4th
(see table).

接合強さの測定は実施例1と同じ方法で行った。The bonding strength was measured using the same method as in Example 1.

衝撃に対する音響効果の測定も実施例Iと同じ条件で行
ったが、落下物の重量は250gのみとした。
The measurement of the acoustic effect on impact was also carried out under the same conditions as in Example I, except that the weight of the falling object was only 250 g.

調査結果を第4表に示す、同表から明らかなように、接
合強さはいずれも満足すべき価を示し、衝撃に対する音
響効果(衝撃音)もそれぞれ比較材(同表の右欄に記載
)に較べてかなり低い値を示した。
The results of the investigation are shown in Table 4. As is clear from the table, the bonding strength of all of them showed satisfactory values, and the acoustic effects (impact sound) against impact were also observed for each of the comparative materials (listed in the right column of the table). ) showed a considerably lower value than that of

(以下、余白) (発明の効果) 本発明の防振金属材料は高分子材料を用いていないので
耐熱性に優れ、加工性もよく、中心材と合せ材の層厚比
率を適正にすることにより良好な溶接性を確保すること
ができる。
(Hereinafter, blank space) (Effects of the invention) The vibration-proof metal material of the present invention does not use a polymer material, so it has excellent heat resistance, good workability, and the layer thickness ratio of the core material and the laminated material can be made appropriate. This makes it possible to ensure good weldability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の防振金属材料の一例の構成を示す説
明図で、(a)図は板、(ハ)図は管の場合である。 第2図は、金属材料の引張強さと防振係数の関係を示す
図である。 第3図は、2個の材料の音響インピーダンスの比とエネ
ルギー伝達係数の関係を示す図である。 第4図は、本発明の防振金属材料の溶接の際の接合状況
を示す模式図である。 第5図は、実施例で用いた防振金属材料を作成するため
の組立スラブの構成を示す説明図である。 第6図は、衝撃に対する音響効果の測定方法の説明図で
ある。 第7図は、衝撃に対する音響効果の測定結果を示す図で
ある。 第8図は、片持梁での振動fiIi声状況の調査結果を
示す図で、(a)図は比較材、0:I)図は本発明の防
振金属材料である。 第9図は、実施例で用いた防振金属材料の構成を示す図
である。
FIG. 1 is an explanatory view showing the structure of an example of the vibration-proof metal material of the present invention, in which (a) is a plate and (c) is a tube. FIG. 2 is a diagram showing the relationship between the tensile strength and vibration damping coefficient of a metal material. FIG. 3 is a diagram showing the relationship between the ratio of acoustic impedance of two materials and the energy transfer coefficient. FIG. 4 is a schematic diagram showing a joining situation during welding of the vibration-proof metal material of the present invention. FIG. 5 is an explanatory diagram showing the structure of an assembled slab for producing the vibration-proof metal material used in the example. FIG. 6 is an explanatory diagram of a method for measuring acoustic effects on impact. FIG. 7 is a diagram showing the measurement results of acoustic effects on impact. FIG. 8 is a diagram showing the results of an investigation of the vibration fiIi voice condition in a cantilever beam, in which (a) the comparison material and 0:I) the vibration-proof metal material of the present invention. FIG. 9 is a diagram showing the structure of the vibration-proof metal material used in the example.

Claims (4)

【特許請求の範囲】[Claims] (1)縦波または横波に対する音響インピーダンスの比
が2:1以上の2種類の金属材料の一方の金属を中心材
とし、この中心材の上下面に他方の金属材料を合せ材と
して金属接合したクラッド材からなる防振金属材料。
(1) Two types of metal materials with an acoustic impedance ratio of 2:1 or more for longitudinal waves or transverse waves, one of which is used as a core material, and the other metal material is used as a laminate material to join the upper and lower surfaces of this core material. Anti-vibration metal material made of cladding material.
(2)中心材の厚みがクラッド材の全厚みの60%以下
である請求項(1)記載の防振金属材料。
(2) The vibration-proof metal material according to claim (1), wherein the thickness of the core material is 60% or less of the total thickness of the cladding material.
(3)縦波または横波に対する音響インピーダンスの比
が2:1以上の2種類の金属材料を交互に4層以上重ね
合わせて金属接合した多層クラッド材からなる防振金属
材料。
(3) A vibration-proofing metal material consisting of a multilayer cladding material in which four or more layers of two types of metal materials having an acoustic impedance ratio for longitudinal waves or transverse waves of 2:1 or more are alternately stacked and metal-bonded.
(4)2種類の金属材料の接合界面に媒接材を有する請
求項(1)、(2)または(3)に記載の防振金属材料
(4) The vibration-proof metal material according to claim (1), (2) or (3), further comprising a junction material at the bonding interface between the two types of metal materials.
JP2316361A 1990-11-20 1990-11-20 Vibration-proof metallic material Pending JPH04187387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2316361A JPH04187387A (en) 1990-11-20 1990-11-20 Vibration-proof metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2316361A JPH04187387A (en) 1990-11-20 1990-11-20 Vibration-proof metallic material

Publications (1)

Publication Number Publication Date
JPH04187387A true JPH04187387A (en) 1992-07-06

Family

ID=18076246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2316361A Pending JPH04187387A (en) 1990-11-20 1990-11-20 Vibration-proof metallic material

Country Status (1)

Country Link
JP (1) JPH04187387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030754A1 (en) * 2009-09-09 2011-03-17 三菱マテリアル株式会社 Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142498A (en) * 1984-08-06 1986-02-28 Kobe Steel Ltd Production of aluminum-stainless steel clad plate for forming
JPS61255780A (en) * 1985-05-09 1986-11-13 Nachi Fujikoshi Corp Production of vibration-proof base plate
JPS61279548A (en) * 1985-06-06 1986-12-10 トヨタ自動車株式会社 Laminated steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142498A (en) * 1984-08-06 1986-02-28 Kobe Steel Ltd Production of aluminum-stainless steel clad plate for forming
JPS61255780A (en) * 1985-05-09 1986-11-13 Nachi Fujikoshi Corp Production of vibration-proof base plate
JPS61279548A (en) * 1985-06-06 1986-12-10 トヨタ自動車株式会社 Laminated steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030754A1 (en) * 2009-09-09 2011-03-17 三菱マテリアル株式会社 Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
US9076755B2 (en) 2009-09-09 2015-07-07 Mitsubishi Materials Corporation Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module

Similar Documents

Publication Publication Date Title
US7968211B2 (en) Aluminium composite sheet material
JP5625049B2 (en) Method for selecting an intermediate layer for vibroacoustic attenuation, an intermediate layer for vibroacoustic attenuation, and a glazing unit comprising such an intermediate layer
JP2510783B2 (en) Method for producing clad steel sheet with excellent low temperature toughness
WO2006053701A2 (en) Aluminium composite sheet material
KR20120027034A (en) High strength multi-layer brazing sheet structures with good controlled atmosphere brazing(cab) brazeability
JPH04187387A (en) Vibration-proof metallic material
JPH05261568A (en) Production of clad steel pipe
JP2013184380A (en) Vibration-damping composite material
JP6120476B2 (en) Welding joint material
JP3024525B2 (en) Surface metal plate and sound damping structural member for reducing sound wave reflectance
JPH0716792B2 (en) Clad steel plate manufacturing method
JPH06106672A (en) Damping metal pipe
JPH07100987A (en) Damping metal pipe
JP3163977B2 (en) Composite damping structural members
Knapp et al. Investigation of Form-and-Print processing of wrought aluminum alloys for industrial applications
JP2508147B2 (en) Composite damping plate material with excellent weldability
RU2180288C2 (en) Light-weight energy- and sound-absorbing heat-insulation material
JPS6137317A (en) Composite damping steel plate
JPH0711461A (en) Alloy laminated type plated high damping steel plate excellent in workability and corrosion resistance
Pan et al. Metal Pipe Joining with Aluminum Alloy by Ultrasonic Cast-In Insert Process
JPH07252603A (en) Production of high damping structure excellent in toughness
Polyzou et al. On the cold rolling of explosive welded Al/Cu bimetallic sheets
JPH0193347A (en) Vibration-attenuating composite metallic sheet
JPS61182820A (en) Composite damping metal plate
JPH03258471A (en) Manufacture of aluminum clad steel plate