JPH04187298A - Purifying treatment of sewage by using fine bubble - Google Patents

Purifying treatment of sewage by using fine bubble

Info

Publication number
JPH04187298A
JPH04187298A JP2319706A JP31970690A JPH04187298A JP H04187298 A JPH04187298 A JP H04187298A JP 2319706 A JP2319706 A JP 2319706A JP 31970690 A JP31970690 A JP 31970690A JP H04187298 A JPH04187298 A JP H04187298A
Authority
JP
Japan
Prior art keywords
sewage
gas
air
bubbles
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2319706A
Other languages
Japanese (ja)
Inventor
Takeshi Ishii
猛 石井
Kichiji Han
繁 吉次
Shigeaki Takeuchi
茂明 武内
Shinjiro Yamazaki
山崎 新二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON JIYOUKASOU KANRI CENTER KK
Sanyo Electronic Industries Co Ltd
Original Assignee
NISHI NIPPON JIYOUKASOU KANRI CENTER KK
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON JIYOUKASOU KANRI CENTER KK, Sanyo Electronic Industries Co Ltd filed Critical NISHI NIPPON JIYOUKASOU KANRI CENTER KK
Priority to JP2319706A priority Critical patent/JPH04187298A/en
Publication of JPH04187298A publication Critical patent/JPH04187298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To allow the efficient execution of a purifying treatment of sewage with a bio-oxidation effect by using a fine bubble generator which forms air as fine bubbles and mixes and dissolves the bubbles with and in the sewage. CONSTITUTION:The sewage contg. org. materials is subjected to the purification treatment by the bio-oxidation effect of mainly the bacteria and protozoans. The air is made into the fine bubbles of <=100mu diameter by using the fine bubble generator A consisting of a liquid suction port 1, a gas suction port 2, a gas quantity regulating valve 3, a pressurizing pump 4, a gas-liquid separating pipe 5, an excess gas outlet 6, and a gas outlet 7 for minute contained gas, etc., and are mixed and dissolved with and in the sewage of a contact aeration tank 10. Consequently, the time for treating the waste water in a bio-oxidation chamber is required to be shorter than the time with the conventional bubble generating system using air diffusion pipes and air diffusion plates and, therefore, only a shorter stagnation time in the bio-oxidation chamber is necessitated and the size of this chamber is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 現在、汚水は、一般家庭の生活排水のみならず、事業場
等より排出され、水質汚濁の原因となっている。この汚
水を浄化し、環境保全に役立つよう種々の汚水処理が考
えられてきた。二の汚水処理において細菌類や原生動物
等の微生物科主体とした生物処理がほとんどを占めてい
る。また、この生物処理も大別すると、A)酸素を必要
とする好気性処理と、B)酸素を必要としない嫌気性処
理の2種類に別けられる。本発明は、一般家庭の泡末発
生器を利用した風呂(通称、ジェットバス)等に用いら
れている微細気泡を用い、汚水をAの好気性処理で浄化
する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] Currently, sewage is discharged not only from household wastewater but also from workplaces, etc., and is a cause of water pollution. Various sewage treatment methods have been devised to purify this sewage and contribute to environmental conservation. In the second category of wastewater treatment, most of the wastewater treatment is biological treatment based on microorganisms such as bacteria and protozoa. Furthermore, this biological treatment can be roughly divided into two types: A) aerobic treatment that requires oxygen, and B) anaerobic treatment that does not require oxygen. The present invention relates to a method for purifying wastewater by the aerobic treatment described in A using fine bubbles that are used in baths (commonly known as whirlpool baths) using foam generators in general households.

〔従来の技術〕[Conventional technology]

従来の好気性処理は好気性微生物を主体とした生物酸化
槽(通称、曝気槽)があり、この槽に空気を送風機によ
り送り込み、槽内の微生物に酸素を与え、微生物の同化
作用及び、異化作用により汚水中の有機物を酸化分解し
、汚水を浄化するものであり、はとんどの場合、送風機
により散気管及び散気板を介し、気泡を小さくしたり、
高速撹拌で気泡を細かく砕き、空気を送り込む方法が、
−船釣に取られていた。しかしながら、これらの方法に
より発生させることができる気泡の大きさは、その直径
が1mm〜30mmのものを中心として、0.7mm以
上のものであった。
Conventional aerobic treatment involves a biological oxidation tank (commonly known as an aeration tank) that mainly uses aerobic microorganisms, and air is sent into this tank using a blower to give oxygen to the microorganisms in the tank, which stimulates the assimilation and catabolism of the microorganisms. It oxidizes and decomposes organic matter in wastewater and purifies the wastewater.In most cases, air blowers are used to reduce air bubbles through air diffusers and air diffuser plates.
The method uses high-speed stirring to break up air bubbles into small pieces and pump in air.
- He was taken fishing by boat. However, the size of bubbles that can be generated by these methods is mainly 1 mm to 30 mm in diameter, but is 0.7 mm or more.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の方法では、供給する気泡が大きく、本願実施例に
比較して、気泡を構成する気体の体積が同一の場合は、
その表面積の和が小さく、それに加えて気泡単体の浮力
が大きいために、短時間で水面上に浮上するので、酸素
の溶解効率が著しく悪いため、生物酸化槽へ供給する空
気量が非常に多く必要となり、実際に必要とする空気量
の30倍以上の空気を送る必要があり、大型の送風機に
よる供給が必要となり、装置の大型化とともに運転経費
も掛かり、経済的にも負担が大きかった。
In the above method, when the bubbles to be supplied are large and the volume of the gas constituting the bubbles is the same as in the example of the present application,
Because the sum of their surface areas is small and in addition, the buoyancy of individual bubbles is large, they rise to the surface of the water in a short time, resulting in extremely poor oxygen dissolution efficiency, and the amount of air supplied to the biological oxidation tank is extremely large. It was necessary to send more than 30 times the amount of air that was actually required, and a large blower was required to supply the air.This increased the size of the equipment and increased operating costs, creating a heavy economic burden.

また、一般の汚水は、比重が水より重い有機物質を多く
含有しており、この有機物質と微生物を含んだフロック
の比重も水より重いため、生物酸化槽内に対流を起こさ
せる等して、微生物を含んだフロックの底部への沈殿を
防止する必要があっ〔課題を解決するための手段〕 前記課題を解決するため、鋭意努力した結果、不要な多
量の空気を送らないで生物酸化槽に十分な酸素を供給し
、機能を果たし、しがも槽を小型化する方法を見出した
のである。
In addition, general sewage contains many organic substances whose specific gravity is heavier than water, and the specific gravity of flocs containing these organic substances and microorganisms is also heavier than water, so it is necessary to create convection in the biological oxidation tank. , it is necessary to prevent flocs containing microorganisms from settling at the bottom. [Means for solving the problem] In order to solve the above problem, as a result of our earnest efforts, we have developed a biological oxidation tank without sending in unnecessary large amounts of air. They found a way to supply enough oxygen to the tank to perform its functions, and to make the tank smaller.

即ち、本発明は、生物酸化槽に注入する気体を直径10
0μ以下の微細な気泡を用いて、汚水を浄化する方法を
試みたものである。
That is, in the present invention, the gas injected into the biological oxidation tank has a diameter of 10
This is an attempt at a method of purifying wastewater using microscopic bubbles of 0μ or less.

前記のような微細な気泡は、その気体の体積の和が同一
の場合には、従来技術である散気管又は、散気板式で発
生させる気泡の表面積に比較して約2桁倍の表面積を持
ち、またその微細気泡の浮力が小さいために、液体中に
おける気泡の上昇速度が大変遅く、気液の接触時間が長
くなり、その直径が10μのものは、水深1mでは約1
o分以上である。従ってこの微細気泡を多量に含有する
液体は、白濁状態になり、気泡が液体全体に拡散混合し
てゆく性質を持つようになる。このため生物酸化槽に供
給する空気量を従来の10分の1以下とし、槽内の対流
をおこさないで、全槽に十分な溶存酸素を供給し、もっ
て、微生物を含んだフロックを底部へ沈殿することなく
汚水を浄化する方法を提供するものである。
When the sum of the volumes of the gases is the same, the fine bubbles mentioned above have a surface area that is about two orders of magnitude larger than that of bubbles generated using the conventional aeration tube or aeration plate method. Also, because the buoyancy of the microbubbles is small, the rising speed of the bubbles in the liquid is very slow, and the contact time of the gas and liquid becomes long.
It is more than o minutes. Therefore, a liquid containing a large amount of these microbubbles becomes cloudy and has the property that the bubbles diffuse and mix throughout the liquid. For this reason, the amount of air supplied to the biological oxidation tank is reduced to less than one-tenth of the conventional amount, and sufficient dissolved oxygen is supplied to all the tanks without causing convection within the tank, allowing the flocs containing microorganisms to flow to the bottom. The present invention provides a method for purifying wastewater without precipitation.

また、微細気泡を発生させる手段は、次の様な方法があ
る。
Further, there are the following methods for generating microbubbles.

■)時開 昭61−271019号公報や、開閉62−
1.91031号公報に開示されるように、気体を加圧
して液体に溶解させたのちに、アウトフィルターで減圧
させることにより、微細な気泡を液体中に析出させる。
■) Publication number 61-271019, opening and closing 62-
As disclosed in Japanese Patent No. 1.91031, fine air bubbles are precipitated in the liquid by pressurizing the gas and dissolving it in the liquid, and then reducing the pressure with an out filter.

2)高速で回転する羽根によって液体と気体をミキシン
グすることにより微細な気泡を液体中に発生させる。
2) Fine bubbles are generated in the liquid by mixing the liquid and gas using blades rotating at high speed.

3)エジェクターにより、気体と液体を混合することに
より微細な気泡を液体中に発生させる。
3) An ejector mixes gas and liquid to generate fine bubbles in the liquid.

これらの方法により発生させる気泡は、その形状が大小
のものが入り混じって発生するが、30%以上の気体が
直径100μ以下の微細気泡になるような装置を用いる
必要がある。
The bubbles generated by these methods have a mixture of large and small shapes, but it is necessary to use an apparatus that allows 30% or more of the gas to become fine bubbles with a diameter of 100 μm or less.

この微細気泡を含有する率が高い程、好気性微生物によ
る浄化作用の効率が良くなり、好ましくは、5〜50μ
以下の直径を有する率が高い程良い。以下、本発明を実
施例にもとづいて詳細に説明する。
The higher the percentage of microbubbles contained, the more efficient the purification action by aerobic microorganisms becomes, preferably 5 to 50μ
The higher the percentage having the following diameter, the better. Hereinafter, the present invention will be explained in detail based on examples.

水質汚濁の原因は一般家庭の生活排水のみならず、事業
場等より排出される汚水である。この汚水は、8.流入
汚水として、10.生物酸化槽へ投入される。生物酸化
槽では、微細気泡発生装置(第1図)を用い、直径5〜
15μの微細な気泡を発生させ、生物酸化槽に7.微細
混合気体出口より吐出し、微細気泡発生装置を用いた生
物酸化槽及び、散気式暖気装置を用いた生物酸化槽゛の
浄化処理後の放流水の水質及び、生物酸化槽中の溶存酸
素(Do)を表した表2.及び表2.中のDOの変化を
グラフ3.とじた第6図で示されるように常に溶存酸素
濃度2mg/Q以上を保ち、好気的な雰囲気を保ち、適
量の好気性微生物を混合した生物酸化槽中の溶液と汚水
を混合し、好気性微生物により、汚水中の有機物を酸化
分解させる。約4〜8時間この槽で滞留させ酸化分解を
行わせ、生物酸化槽での処理を終了する。次に微生物を
含んだフロックと処理水を沈殿分離または浮上分離し、
清澄な処理水は放流される。また、分離した微生物を含
んだフロックは必要量のみ再び生物酸化槽へ返送させ、
再び、浄化処理を行わせる。また、余ったものは余剰汚
泥として、処理される2、〔作用〕 本発明では、気泡が極微細であるため、気体であるが、
液体のように全体に混合する性質があるため、容易に槽
全体に拡散混合することが出来、短時間に溶存酸素を高
めることが出来る。従って微生物の活動には、より多く
の酸素を必要とする生物酸化槽で汚水を処理する時間が
、従来の散気管及び、散気板による気泡発生方式のもの
より短くて済むため、生物酸化槽での滞留時間も短くて
済み、この槽を小型化することが出来る。そして、従来
の容積で使用するならば、汚水量を数倍にあげて処理す
ることも可能である。また、微細な気泡の性質により槽
内金体へ拡散し、汚泥のフロックに気泡が付着し易く、
気泡が付着した汚泥のフロックの浮力を高め、生物酸化
槽内で遊離しているものは、槽水面に浮」二分離するこ
とが出来、生物酸化槽より浄化処理をして取り出す放流
水に懸濁物質(通称、SS)の混入することを防止し、
沈殿槽を設置しなくても清澄な処理水を得ることが出来
る。従って、この性質を利用するならば、従来の沈殿槽
を無くし、処理装置全体を小型化することも可能である
The causes of water pollution are not only household wastewater, but also sewage discharged from businesses. This sewage is 8. As inflow sewage, 10. It is put into a biological oxidation tank. In the biological oxidation tank, a micro bubble generator (Fig. 1) is used to
7. Generate 15μ fine bubbles and place them in the biological oxidation tank. The water quality of the water discharged from the fine mixed gas outlet after purification treatment of the biological oxidation tank using a micro bubble generator and the biological oxidation tank using a diffused air heating device, and the dissolved oxygen in the biological oxidation tank Table 2 showing (Do). and Table 2. Graph 3 shows the change in DO inside. As shown in Figure 6, the dissolved oxygen concentration is always maintained at 2 mg/Q or more, an aerobic atmosphere is maintained, and the solution in the biological oxidation tank containing an appropriate amount of aerobic microorganisms is mixed with wastewater. Organic matter in wastewater is oxidized and decomposed by pneumatic microorganisms. The mixture is allowed to remain in this tank for about 4 to 8 hours to undergo oxidative decomposition, and the treatment in the biological oxidation tank is completed. Next, flocs containing microorganisms and treated water are separated by sedimentation or flotation,
Clear treated water is discharged. In addition, only the required amount of flocs containing separated microorganisms is returned to the biological oxidation tank.
Perform the purification process again. In addition, the remaining sludge is treated as surplus sludge. 2. [Operation] In the present invention, since the bubbles are extremely fine, they are gaseous.
Since it has the property of mixing throughout the tank like a liquid, it can be easily diffused and mixed throughout the tank, and dissolved oxygen can be increased in a short time. Therefore, the time required to treat wastewater in a biological oxidation tank, which requires more oxygen for microbial activity, is shorter than in the conventional air bubble generation method using aeration pipes and diffuser plates. The residence time in the tank is also short, and the tank can be made smaller. If the conventional capacity is used, it is possible to increase the amount of wastewater several times and treat it. In addition, due to the nature of fine air bubbles, they tend to diffuse into the metal body inside the tank and adhere to sludge flocs.
The buoyancy of the sludge flocs with air bubbles attached to them is increased, and what is liberated in the biological oxidation tank can be separated into two parts, floating on the tank water surface. Prevents the contamination of turbid substances (commonly known as SS),
Clear treated water can be obtained without installing a settling tank. Therefore, if this property is utilized, it is possible to eliminate the conventional settling tank and downsize the entire processing apparatus.

〔実施例〕〔Example〕

以下に実施例を上げて、本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例、 試験用の生物酸化槽として容積500Qの接触曝気槽2
基を用い、微細気泡発生装置を用いた生物酸化槽及び、
散気式曝気装置を用いた生物酸化槽流入汚水とし、既設
の合併処理浄化槽流入汚水の性状を示した表1.の汚水
を用い、1.5rri’7日で流入を行った。
Example: Contact aeration tank 2 with a capacity of 500Q as a biological oxidation tank for testing
a biological oxidation tank using a micro-bubble generator;
Table 1 shows the properties of sewage flowing into an existing combined treatment septic tank, using wastewater flowing into a biological oxidation tank using a diffused aeration system. The inflow was carried out at 1.5 rri' in 7 days.

微細気泡発生装置を用いたもの1基と従来の散気式曝気
のもの1基を使用した1、空気量はそれぞれ3゜3fl
/分及び、33Q/分であるため、微細気泡発生装置を
用いたものは従来の散気式曝気のものに比べ、約10分
の1の空気量である。生物酸化槽中の溶存酸素(DO)
を表2.中のDOの変化をグラフとした第6図のように
、常に2mg/Q以上のDOを保っており、この量で常
に充分な酸素を与えることが出来る。また、微細気泡に
おていは、槽下部より全体に拡散混合するため、殆ど対
流しなくても槽全体に均一、均質に混合出来、溶存酸素
も満遍なく供給出来るが、従来の方法は、対流させるた
めの撹拌装置が必要であり、また、気泡が大きいため、
真っ直上に向かって素速<」1昇し槽の形状に相当注意
しないと溶存酸素の不均一、不均質が起こる。また浄化
の状態は表2.及び、表2.中のCOD濃度の変化をグ
ラフ1.とじた第4図、表2.中のBOD濃度の変化を
グラフ2゜とじた第5図という結果となり、COD除去
率、BOD除去率は全ての測定結果においていづれも微
細気泡発生装置を用いたものは高い数値を示し、高性能
な浄化が行われていることをうかかわせている。
One using a micro bubble generator and one using a conventional diffused aeration system, each with an air volume of 3°3 fl.
/min and 33Q/min, therefore, the amount of air using the micro bubble generator is about 1/10th that of the conventional diffused aeration method. Dissolved oxygen (DO) in biological oxidation tank
Table 2. As shown in Figure 6, which is a graph of changes in DO inside the tank, the DO level is always maintained at 2 mg/Q or more, and this amount can always provide sufficient oxygen. In addition, in the case of microbubbles, since the mixture is diffused throughout the tank from the bottom of the tank, it can be mixed evenly and homogeneously throughout the tank with almost no convection, and dissolved oxygen can be evenly supplied, but the conventional method uses convection. A stirring device is required for this purpose, and the air bubbles are large, so
If you don't pay much attention to the shape of the tank, it will rise straight up at a speed of <''1 and the dissolved oxygen will become non-uniform. The state of purification is shown in Table 2. And Table 2. Graph 1 shows the change in COD concentration in Figure 4, Table 2. The results are shown in Figure 5, which shows the changes in the BOD concentration in the water, and the COD removal rate and BOD removal rate are high in all measurement results using the microbubble generator, indicating high performance. This suggests that a cleansing process is taking place.

〔発明の効果〕〔Effect of the invention〕

好気性生物処理装置において生物酸化槽の占める割合は
全体の約2分の1の大きさがあり、これが微細気泡発生
装置を用いるにとにより、滞留時間が4〜8時間と短く
なるため、6分の1〜4分の1の小型化が可能になり、
処理装置全体の容積が約60%に縮小出来る。従って、
土地高騰の折、処理施設設置面積も少なくて済み、土地
利用においても有効である。また空気量も10分の1で
よいため、非常に小さい送風機でよく、省力化を実現し
た。今後、新設の小型合併浄化槽や、変則合併浄化槽等
、各種の浄化槽や工場廃水処理施設、下水道、し尿処理
施設及びこれに類似する汚水処理施設等はもちろんのこ
と、既設においても、少し改造するだけで、数倍の処理
量が可能となる。
In an aerobic biological treatment system, the biological oxidation tank accounts for about one-half of the total size, but by using a microbubble generator, the residence time is shortened to 4 to 8 hours, so It becomes possible to reduce the size by 1/4 to 1/4.
The volume of the entire processing device can be reduced to about 60%. Therefore,
At a time when land prices are soaring, the installation area of treatment facilities is also small, making it effective for land use. In addition, since only one-tenth the amount of air is required, a very small blower is required, resulting in labor savings. In the future, we will only need to make minor modifications to not only new small-sized combined septic tanks, irregular combined septic tanks, various septic tanks, factory wastewater treatment facilities, sewers, human waste treatment facilities, and similar sewage treatment facilities, but also existing facilities. This allows for several times the amount of processing.

従って、汚水処理への活用がおおいに期待出来るもので
ある。
Therefore, it is highly anticipated that it will be used in sewage treatment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は微細気泡発生装置の概要を示す図であリ、/、
液体吸込1コ、認、気体吸込口、3.気体量調節弁、ダ
、加圧ポンプ、6.気液分離管、乙。 余剰気体出口、7.微細混入気体出口である。 第2図は微細気泡発生装置を用いた生物酸化槽(接触曝
気型)の縦断面の概要を示す図であり、/。 液体吸込口、ダ、加圧ポンプ、7.微細混入気体出口、
8.流入汚水、?、放流水、10.接触曝気槽、//、
接触濾材、/、2.ドラフトチューブ、/3.変流板、
/、5.上澄水、/A、移流口、である。 第3図は従来の散気式曝気を用いた生物酸化槽(接触曝
気型)の縦断面の概要を示す図であり、8゜流入汚水、
9.放流水、10.接触曝気型、//。 接触濾材、/、2.ドラフトチューブ、/3.変流板、
/ダ、散気管、/、5.上澄水、/乙、移流口、/7.
送風機(空気)である。 第4図はCOD除去率を示したグラフ1.である。 第5図はBOD除去率を示したグラフ2.である。 第6図はDoを示したグラフ3.である。 特許出願人 株式会社西日本浄化槽管理センター同  
 山陽電子工業株式会社 同   石井 猛 −13= 獣        ’OCh 悪酒絹藝′ニーt−儒ゼぬ t>    蟻〉G\)Cつカ〈 ロ モ 岐 口°1\厭 \’:$t:\ 第5図 第6図 グラフ3.溶存酸素濃度(D○) 単位(mg/ Q ) 手続補正書   \、す 平成3年 1月16日 特許庁長官             殿1、事件の表
示 平2−319706号 2、発明の名称 微細気泡を用いた汚水の浄化処理方法 3、補正をする者 事件との関係   特許出願人 住 所(居所)  岡山県岡山市長岡4番地734、補
正の対象 l)明細書の特許請求の範囲の欄 2)明細書第2頁第19行の[及び]を「又は」と訂正
する。 3)同第4頁第16行の「水深1mでは」と「約10分
以上」の間に「気泡か水中に留まる時間は」を加える。 4)同第5頁第9行の[液体に溶解させたのちに、」を
[液体吸込口より取り入れた液体に気体を溶解させたの
ちに、」と訂正する。 5)同第7頁第15行の「及び」を「又は」と訂正する
。 6)同第8頁第3〜5行の[生物酸化槽・・・懸濁物質
」を「生物酸化槽の下部を経由して取り出す浄化処理を
した放流水に懸濁物質」と訂正する。 以上 別    紙 〔特許請求の範囲〕 (1)有機物質を含有する汚水を細菌類や原生動物を主
体とした生物酸化作用による浄化処理を行う方法におい
て、空双東その直径が100μ以下の微細な気泡として
、前記汚水に混合、溶解させる微細気泡発生装置を用い
たことを特徴とする微細気泡を用いた汚水の浄化処理方
法。 (2)前記特許請求の範囲第1項記載の浄化処理方法を
用いた汚水の浄化処理装置。 (3)前記特許請求の範囲第1項記載の浄化処理方法に
おいて、沈澱槽を用いないことを特徴とする汚水の浄化
処理方法。 (4)前期特許請求の範囲第主項記載の浄化処理方法を
用いた汚水の浄化処理装置。
Figure 1 is a diagram showing the outline of the micro bubble generator.
1 liquid suction, gas suction port, 3. Gas flow control valve, pressure pump, 6. Gas-liquid separation tube, B. Excess gas outlet, 7. This is an outlet for finely mixed gas. Figure 2 is a schematic diagram of a longitudinal section of a biological oxidation tank (contact aeration type) using a microbubble generator. Liquid suction port, pressure pump, 7. finely entrained gas outlet,
8. Inflow sewage? , discharge water, 10. Contact aeration tank, //,
Contact filter medium, /, 2. draft tube, /3. current plate,
/, 5. Supernatant water, /A, advection port. Figure 3 is a diagram showing an outline of the longitudinal section of a biological oxidation tank (contact aeration type) using conventional diffused aeration.
9. Effluent water, 10. Contact aeration type, //. Contact filter medium, /, 2. draft tube, /3. current plate,
/da, diffuser pipe, /,5. Supernatant water, /B, advection port, /7.
It is a blower (air). Figure 4 is a graph 1 showing the COD removal rate. It is. Figure 5 is graph 2 showing the BOD removal rate. It is. FIG. 6 is a graph showing Do. It is. Patent applicant West Japan Septic Tank Management Center Co., Ltd.
Sanyo Electronics Industry Co., Ltd. Takeshi Ishii - 13 = Beast 'OCh Bad Sake Silk Art'neet - Confucian Zenut > Ant〉G\) Figure 5 Figure 6 Graph 3. Dissolved oxygen concentration (D○) Unit (mg/Q) Procedural amendment \, January 16, 1991 Commissioner of the Patent Office 1. Case indication Hei 2-319706 2. Name of invention using microbubbles. Sewage purification treatment method 3, relationship with the case of the person making the amendment Patent applicant address (residence) 4-734 Nagaoka, Okayama, Okayama Prefecture, subject of amendment l) Claims column of the specification 2) Specification Correct [and] in line 19 of page 2 to "or". 3) On page 4, line 16, add ``how long does a bubble stay underwater'' between ``at a depth of 1 meter'' and ``about 10 minutes or more''. 4) In the 9th line of page 5, correct ``After dissolving the gas in the liquid'' to ``After dissolving the gas in the liquid taken in from the liquid suction port.'' 5) Correct "and" in line 15 of page 7 to "or". 6) On page 8, lines 3 to 5, ``biological oxidation tank... suspended solids'' should be corrected to ``suspended solids in purified effluent that is taken out through the lower part of the biological oxidation tank.'' Attachment [Claims] (1) In a method for purifying wastewater containing organic substances by biological oxidation mainly using bacteria and protozoa, A method for purifying wastewater using microbubbles, characterized in that a microbubbles generator is used to mix and dissolve the bubbles in the wastewater. (2) A wastewater purification device using the purification method according to claim 1. (3) A sewage purification method according to claim 1, characterized in that a settling tank is not used. (4) A sewage purification device using the purification method recited in the main claim.

Claims (4)

【特許請求の範囲】[Claims] (1)有機物質を含有する汚水を細菌類や原生動物を主
体とした生物酸化作用による浄化処理を行う方法におい
て、空気及び酸素をその直径が100μ以下の微細な気
泡として、前記汚水に混合、溶解させる微細気泡発生装
置を用いたことを特徴とする微細気泡を用いた汚水の浄
化処理方法。
(1) In a method of purifying wastewater containing organic substances by biological oxidation mainly using bacteria and protozoa, air and oxygen are mixed into the wastewater as fine bubbles with a diameter of 100 μm or less, A method for purifying wastewater using microbubbles, characterized by using a dissolving microbubbles generator.
(2)前記特許請求の範囲第1項記載の浄化処理方法を
用いた汚水の浄化処理装置。
(2) A wastewater purification device using the purification method according to claim 1.
(3)前記特許請求の範囲第1項記載の浄化処理方法に
おいて、沈殿槽を用いないことを特徴とする汚水の浄化
処理方法。
(3) A sewage purification method according to claim 1, characterized in that a settling tank is not used.
(4)前記特許請求の範囲第1項記載の浄化処理方法を
用いた汚水の浄化処理装置。
(4) A wastewater purification device using the purification method according to claim 1.
JP2319706A 1990-11-21 1990-11-21 Purifying treatment of sewage by using fine bubble Pending JPH04187298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319706A JPH04187298A (en) 1990-11-21 1990-11-21 Purifying treatment of sewage by using fine bubble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319706A JPH04187298A (en) 1990-11-21 1990-11-21 Purifying treatment of sewage by using fine bubble

Publications (1)

Publication Number Publication Date
JPH04187298A true JPH04187298A (en) 1992-07-03

Family

ID=18113271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319706A Pending JPH04187298A (en) 1990-11-21 1990-11-21 Purifying treatment of sewage by using fine bubble

Country Status (1)

Country Link
JP (1) JPH04187298A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541532A1 (en) * 2002-07-22 2005-06-15 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
EP1736444A1 (en) * 2004-03-22 2006-12-27 Kousuke Chiba Pressurized biological wastewater purification process
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229133A (en) * 1986-10-02 1988-09-26 Ube Ind Ltd Gas-liquid contacting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63229133A (en) * 1986-10-02 1988-09-26 Ube Ind Ltd Gas-liquid contacting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541532A1 (en) * 2002-07-22 2005-06-15 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
US7105092B2 (en) 2002-07-22 2006-09-12 C & R Co. Sewage treatment process by activated-sludge method comprising line atomizing treatment
EP1541532A4 (en) * 2002-07-22 2008-03-05 C & R Co Sewage treatment process by activated-sludge method comprising line atomizing treatment
EP1736444A1 (en) * 2004-03-22 2006-12-27 Kousuke Chiba Pressurized biological wastewater purification process
EP1736444A4 (en) * 2004-03-22 2008-04-02 Kousuke Chiba Pressurized biological wastewater purification process
US7958652B2 (en) * 2005-01-07 2011-06-14 Bissell Homecare Inc. Extraction cleaning with plenum and air outlets facilitating air flow drying

Similar Documents

Publication Publication Date Title
JP6750930B6 (en) Sewage purification system
CN209537233U (en) A kind of trade effluent advanced treatment system
CN109650648A (en) A kind of processing system and method for cold rolling wastewater
JP3483917B2 (en) Sewage treatment method
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
KR20170101664A (en) Advanced treatment Apparatus effectively removes the nutrients in sewage/waste water
JP5148460B2 (en) Purification processing apparatus and purification processing method
CN107265791A (en) Kitchen garbage slurry fermentation waste water processing unit
JP5037479B2 (en) Purification processing apparatus and purification processing method
CN106587531A (en) Treatment system and method for synthesizing type industrial park sewage
CN110117064A (en) A kind of Biological Contact Oxidation Process and its equipment using nanometer aeration technology
CN113371940A (en) MBR (membrane bioreactor) deep denitrification integrated device and method based on embedding method
JPH04187298A (en) Purifying treatment of sewage by using fine bubble
CN216808488U (en) MBR advanced denitrification integrated device based on embedding method
CN209602315U (en) A kind of processing system of cold rolling wastewater
CN207877534U (en) Domestic wastewater treatment system
JP2004275996A (en) Sludge volume reduction method
CN104944693A (en) Method and device for purifying and treating chemical industrial wastewater
CN211770837U (en) Domestic sewage treatment system
CN208071543U (en) A kind of chemical wastewater treatment system
CN217265326U (en) Landfill leachate advanced treatment device
JPS6019097A (en) Sewage treating apparatus
JPH05146794A (en) Method for purifying sewage using fine bubble
CN221051687U (en) Power plant circulating water drainage treatment system taking reclaimed water as water supplement
CN216427012U (en) Synchronous dephosphorization system of integration sewage treatment device