JPH0418621B2 - - Google Patents

Info

Publication number
JPH0418621B2
JPH0418621B2 JP59004305A JP430584A JPH0418621B2 JP H0418621 B2 JPH0418621 B2 JP H0418621B2 JP 59004305 A JP59004305 A JP 59004305A JP 430584 A JP430584 A JP 430584A JP H0418621 B2 JPH0418621 B2 JP H0418621B2
Authority
JP
Japan
Prior art keywords
substrate
measured
immobilized enzyme
electrode
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59004305A
Other languages
Japanese (ja)
Other versions
JPS60147644A (en
Inventor
Masao Karube
Etsuo Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP59004305A priority Critical patent/JPS60147644A/en
Publication of JPS60147644A publication Critical patent/JPS60147644A/en
Publication of JPH0418621B2 publication Critical patent/JPH0418621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Description

【発明の詳細な説明】 本発明はセンサー電極に関し、特に、単一の電
極によつて複数基質の測定が可能なセンサー電極
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sensor electrode, and more particularly to a sensor electrode capable of measuring multiple substrates with a single electrode.

酸素電極、過酸化水素電極等のセンサー電極
は、被測定媒体中に溶け込んでいる酸素分子ある
いは過酸化水素を電解し、その時の電解電流を測
定することによつて酸素濃度あるいは過酸化水素
濃度を知り得るデバイスである。第1図は、従来
の酸素電極を示す図であり、1はガラス製の内
管、2は同じくガラス製の外管であり、該内管1
の底部には、白金製のカソード(第1電極)3が
設けられ、又、該外管2の底部には、酸素分子を
透過するテフロン膜4が取付けられている。該内
管1と該外管2との間には、内部液(30%
NaOH)5が入れられ、該内部液中には、鉛製
のアノード(第2電極)6が配置されている。該
カソード3、アノード6には夫々白金のリード線
10を介して電流検出系に接続されている。該酸
素分子透過性のテフロン膜の外側には、中性脂質
等の測定対象の基質が透過できる透析膜7が設け
られ、その中には固定化酵素8が入れられてい
る。尚、9はOリングである。
Sensor electrodes such as oxygen electrodes and hydrogen peroxide electrodes measure the oxygen concentration or hydrogen peroxide concentration by electrolyzing oxygen molecules or hydrogen peroxide dissolved in the medium to be measured and measuring the electrolytic current. It is a device that you can learn about. FIG. 1 is a diagram showing a conventional oxygen electrode, in which 1 is an inner tube made of glass, 2 is an outer tube also made of glass, and the inner tube 1
A cathode (first electrode) 3 made of platinum is provided at the bottom of the outer tube 2, and a Teflon membrane 4 that transmits oxygen molecules is attached to the bottom of the outer tube 2. Between the inner tube 1 and the outer tube 2, an internal liquid (30%
NaOH) 5 is placed in the internal liquid, and an anode (second electrode) 6 made of lead is placed in the internal liquid. The cathode 3 and anode 6 are connected to a current detection system via platinum lead wires 10, respectively. A dialysis membrane 7 through which a substrate to be measured such as a neutral lipid can permeate is provided on the outside of the oxygen molecule permeable Teflon membrane, and an immobilized enzyme 8 is placed therein. In addition, 9 is an O-ring.

このような酸素電極は、被測定基質が入れられ
た溶液中に浸される。その後、該固定化酵素8を
触媒として被測定基質は反応し、該反応によつて
溶液中の酸素分子濃度が低下する。この減少する
酸素分子の量を該電極間に流れる電流値に基づい
て測定し、結果として該被測定基質の濃度を測定
するようにしている。しかしながら、このような
酸素電極は単一の基質に対してのみその濃度を測
定することができ、他の基質を測定するために
は、種類の異なつた固定化酵素を備えた別の酸素
電極を用意しなければならない。
Such an oxygen electrode is immersed in a solution containing the substrate to be measured. Thereafter, the substrate to be measured reacts with the immobilized enzyme 8 as a catalyst, and the concentration of oxygen molecules in the solution decreases due to the reaction. This decreasing amount of oxygen molecules is measured based on the value of the current flowing between the electrodes, and as a result, the concentration of the substrate to be measured is measured. However, such an oxygen electrode can only measure the concentration of a single substrate; to measure other substrates, separate oxygen electrodes with different types of immobilized enzymes are required. Must be prepared.

本発明は上述した点に鑑みてなされたもので、
単一の電極によつて複数の基質を略同時に測定す
ることができるセンサー電極を提供することを目
的とする。
The present invention has been made in view of the above points, and
An object of the present invention is to provide a sensor electrode that can measure multiple substrates substantially simultaneously using a single electrode.

本発明に基づくセンサー電極は、内管と外管と
を有し、該内管の底部に配置された第1の電極
と、該内管と外管との間に入れられた内部液と、
該内部液中に配置された第2の電極と、該第1電
極に接近して配置された第1の被測定基質に感応
性の第1の固定化酵素と、第2の被測定基質に感
応性の第2の固定化酵素と、該第1と第2の固定
化酵素に近傍に配置された部材とを備え、該部材
により、該第1の固定化酵素への第1の被測定基
質の到達時刻と該第2の固定化酵素への第2の被
測定基質の到達時刻とに差が生じるように構成さ
れている。
The sensor electrode according to the present invention has an inner tube and an outer tube, a first electrode disposed at the bottom of the inner tube, and an internal liquid placed between the inner tube and the outer tube.
a second electrode disposed in the internal solution; a first immobilized enzyme sensitive to the first analyte substrate disposed close to the first electrode; and a first immobilized enzyme sensitive to the second analyte substrate. A sensitive second immobilized enzyme and a member disposed near the first and second immobilized enzymes, the member allows the first analyte to be measured to the first immobilized enzyme. The structure is such that a difference occurs between the arrival time of the substrate and the arrival time of the second measurement target substrate to the second immobilized enzyme.

以下本発明の一実施例を添付図面に基づき詳述
する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

第2図は、本発明に基づく酸素電極を示してお
り、図中第1図の従来装置と同一部分は、同一番
号を付し、その詳細な説明を省略する。酸素ガス
透過性膜4と透析膜7との間の空間には、単一の
固定化酵素に代え、第1の被測定基質Aに感応性
の第1の固定化酵素11、第2の被測定基質Bに
感応性の第2の固定化酵素12、中間膜13が配
置されている。該中間膜13としては、該基質A
と基質Bとが共にその中を拡散できる材料であ
り、更に、その中の拡散速度が基質Aと基質Bと
では相違するような材料が選ばれている。例え
ば、基質Aがグルコースとし、基質Bがコレステ
ロールとすると、中間膜13としては、透析膜が
使用される。
FIG. 2 shows an oxygen electrode according to the present invention. In the figure, the same parts as those of the conventional device shown in FIG. 1 are given the same numbers, and detailed explanation thereof will be omitted. In the space between the oxygen gas permeable membrane 4 and the dialysis membrane 7, instead of a single immobilized enzyme, a first immobilized enzyme 11 sensitive to the first analyte substrate A and a second immobilized enzyme are placed. A second immobilized enzyme 12 sensitive to the measurement substrate B and an intermediate film 13 are arranged. As the intermediate film 13, the substrate A
The material is selected such that both substrate A and substrate B can diffuse therein, and further, the diffusion rates in substrate A and substrate B are different. For example, if substrate A is glucose and substrate B is cholesterol, a dialysis membrane is used as the intermediate membrane 13.

第3図は、第2図に示した酸素電極21を用い
た測定システムの一例を示している。該酸素電極
21は、37℃に維持された水槽22中に配置され
ているビーカ23内に挿入される。該ビーカ23
内の溶液中には、テフロン(登録商標)がコーテ
イングされた磁性体24が入れられており、該ビ
ーカ23の下部に設けられた回転磁場発生装置2
5による回転磁場により、該磁性体24は回転
し、その結果、該ビーカ23中の溶液は攪拌され
る。該酸素電極21のカソード、アノード間に流
れた電流は、A−V変換器26によつて電圧信号
に変換され、演算回路27に供給される。尚、2
8は測定試料をビーカ23内に注入するためのマ
イクロシリンジである。
FIG. 3 shows an example of a measurement system using the oxygen electrode 21 shown in FIG. The oxygen electrode 21 is inserted into a beaker 23 placed in a water tank 22 maintained at 37°C. The beaker 23
A magnetic material 24 coated with Teflon (registered trademark) is placed in the solution in the beaker 23, and a rotating magnetic field generator 2 provided at the bottom of the beaker 23
5 rotates the magnetic body 24, and as a result, the solution in the beaker 23 is stirred. The current flowing between the cathode and anode of the oxygen electrode 21 is converted into a voltage signal by the AV converter 26 and supplied to the arithmetic circuit 27 . In addition, 2
8 is a microsyringe for injecting a measurement sample into the beaker 23.

上述した如き構成において、ビーカ23内に酸
素電流21を挿入し、磁性体24を回転させて該
ビーカ内の溶液の攪拌を行う。該攪拌により、該
ビーカ23内部の溶液中の酸素濃度はプラトーの
状態となり、その後、マイクロシリンジ28より
血清が該溶液中に注入される。該血清中に含まれ
る第1の被測定基質Aと第2の被測定基質Bは、
該酸素電極21底部に設けられている中間膜13
中を拡散して第1と第2の固定化酵素11,12
の部分に到達する。ここで、基質Aの中間膜13
中の拡散速度が基質Bのそれに比べて速い場合、
まず、基質Aが第1の固定化酵素11を触媒とし
て溶液中の酸素分子と反応し、過酸化水素等を生
成する。この結果、酸素電極底部のカソード3周
辺の酸素分子の量(濃度)は、該反応によつて少
くなり、該カソード3とアノード6との間に流れ
る電流は低くなる。第4図は時間経過に伴うこの
電流値変化を示した図であり、時刻t1で第1の固
定化酵素11を触媒とした基質Aの反応が開始さ
れ、該カソードとアノード間の電流値は徐々に減
少し、時刻t2で該電流値はプラトーの状態とな
る。この反応に寄与する酸素の量に比例した該電
流値の変化aから該第1の被測定基質Aの濃度を
測定することができる。更に、時刻t3になると、
第2の被測定基質Bが中間膜13内を拡散して第
2の固定化酵素12の部分に到達する。該第2の
被測定基質は、該第2の固定化酵素12を触媒と
して溶液中の酸素分子と反応し、過酸化水素等を
生成する。この結果、酸素電極底部のカソード3
周辺の酸素分子の量(濃度)は、該反応によつて
少くなり、該カソード3とアノード6との間に流
れる電流は第4図に示す如く低くなる。時刻t4
に、該電流値はプラトーの状態となり、反応に寄
与する酸素の量に比例した該電流値の変化bを演
算回路27で求めることによつて、該第2の被測
定基質Bの濃度を測定することができる。
In the above-described configuration, the oxygen current 21 is inserted into the beaker 23, and the magnetic body 24 is rotated to stir the solution in the beaker. Due to the stirring, the oxygen concentration in the solution inside the beaker 23 reaches a plateau state, and then serum is injected into the solution from the microsyringe 28. The first analyte substrate A and the second analyte substrate B contained in the serum are:
An intermediate film 13 provided at the bottom of the oxygen electrode 21
The first and second immobilized enzymes 11 and 12 are diffused inside.
reach the part. Here, the intermediate film 13 of substrate A
If the diffusion rate in substrate B is faster than that of substrate B,
First, the substrate A reacts with oxygen molecules in the solution using the first immobilized enzyme 11 as a catalyst to generate hydrogen peroxide and the like. As a result, the amount (concentration) of oxygen molecules around the cathode 3 at the bottom of the oxygen electrode decreases due to the reaction, and the current flowing between the cathode 3 and the anode 6 decreases. FIG. 4 is a diagram showing changes in this current value over time. At time t1 , the reaction of substrate A using the first immobilized enzyme 11 as a catalyst is started, and the current value between the cathode and the anode is gradually decreases, and the current value reaches a plateau at time t2 . The concentration of the first substrate A to be measured can be measured from the change a in the current value which is proportional to the amount of oxygen contributing to this reaction. Furthermore, at time t 3 ,
The second substrate to be measured B diffuses within the intermediate film 13 and reaches the second immobilized enzyme 12 portion. The second substrate to be measured reacts with oxygen molecules in the solution using the second immobilized enzyme 12 as a catalyst to generate hydrogen peroxide and the like. As a result, the cathode 3 at the bottom of the oxygen electrode
The amount (concentration) of surrounding oxygen molecules decreases due to this reaction, and the current flowing between the cathode 3 and anode 6 decreases as shown in FIG. time t 4
Then, the current value reaches a plateau state, and the concentration of the second substrate B to be measured is measured by determining the change b in the current value proportional to the amount of oxygen contributing to the reaction using the arithmetic circuit 27. can do.

第5図は、本発明の他の実施例を示しており、
第2図と同一部分は同一番号を付してある。この
実施例では、中間膜を第1と第2の固定化酵素膜
11,13の間に配置しており、被測定試料を注
入後、直ちに第1の固定化酵素を触媒とした第1
の被測定基質Aの反応が開始され、測定電流値は
減少を始める。該反応がプラトーとなつた後に、
中間膜13を拡散して第2の被測定基質SBが第
2の固定化酵素12の部分に到達し、該第2の固
定化酵素を触媒とした基質Bの反応が開始され
る。この実施例でも、第4図に示した如き電流変
化が測定される。
FIG. 5 shows another embodiment of the invention,
The same parts as in FIG. 2 are given the same numbers. In this embodiment, an intermediate membrane is placed between the first and second immobilized enzyme membranes 11 and 13, and immediately after the sample to be measured is injected, the first immobilized enzyme is used as a catalyst.
The reaction of substrate A to be measured starts, and the measured current value starts to decrease. After the reaction reaches a plateau,
The second substrate to be measured SB diffuses through the intermediate film 13 and reaches the second immobilized enzyme 12, and a reaction of the substrate B using the second immobilized enzyme as a catalyst is started. In this embodiment as well, current changes as shown in FIG. 4 are measured.

このように本発明においては、複数の固定化酵
素と、複数の基質の夫々が、対応した固定化酵素
に到達する時間を互いに相違させるための中間膜
とを設けるようにしたので、単一の酸素電極であ
るにも抱わらず、複数の基質を略同時に測定する
ことができる。尚、本発明は上述した実施例に限
定されることなく幾多の変形が可能である。例え
ば、3種以上の基質を測定するために3種以上の
固定化酵素を設けるようにしても良い。この場
合、夫々の基質の対応した固定化酵素への到達時
間が互いに相違するように、中間膜の材料を選定
する必要がある。又、酸素電極を例に挙げて説明
したが、固定化酵素を触媒とした反応によつて生
成された過酸化水素の濃度を測定するようにした
過酸化水素電極にも本発明を適用することができ
ると共に、酸素系によつてPH電極にも適用するこ
とができる。
In this way, in the present invention, since a plurality of immobilized enzymes and an intermediate membrane are provided to make the times at which each of a plurality of substrates reaches the corresponding immobilized enzymes different from each other, a single Despite being an oxygen electrode, multiple substrates can be measured almost simultaneously. Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, three or more types of immobilized enzymes may be provided in order to measure three or more types of substrates. In this case, it is necessary to select the material of the intermediate film so that the arrival times of each substrate to the corresponding immobilized enzyme are different from each other. Further, although the explanation has been given using an oxygen electrode as an example, the present invention can also be applied to a hydrogen peroxide electrode that measures the concentration of hydrogen peroxide produced by a reaction using an immobilized enzyme as a catalyst. It can also be applied to PH electrodes due to the oxygen system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸素電極を示す図、第2図は本
発明の一実施例を示す図、第3図は酸素電極を用
いた基質測定システムの一例を示す図、第4図は
測定電流値を示す図、第5図は本発明の他の実施
例を示す図である。 1……内管、2……外管、3……カソード、4
……酸素ガス透過性膜、6……アノード、7……
透析膜、11,12……固定化酵素膜、13……
中間膜、21……酸素電極、22……水槽、23
……ビーカ、24……磁性体、25……回転磁場
発生装置、26……A−V変換器、27……演算
回路、28……マイクロシリンジ。
Fig. 1 shows a conventional oxygen electrode, Fig. 2 shows an embodiment of the present invention, Fig. 3 shows an example of a substrate measurement system using an oxygen electrode, and Fig. 4 shows the measurement current. A diagram showing values, FIG. 5 is a diagram showing another embodiment of the present invention. 1... Inner tube, 2... Outer tube, 3... Cathode, 4
...Oxygen gas permeable membrane, 6... Anode, 7...
Dialysis membrane, 11, 12...immobilized enzyme membrane, 13...
Intermediate film, 21... Oxygen electrode, 22... Water tank, 23
... Beaker, 24 ... Magnetic material, 25 ... Rotating magnetic field generator, 26 ... AV converter, 27 ... Arithmetic circuit, 28 ... Microsyringe.

Claims (1)

【特許請求の範囲】 1 内管と外管とを有し、該内管の底部に配置さ
れた第1の電極と、該内管と外管との間に入れら
れた内部液と、該内部液中に配置された第2の電
極と、該第1電極に接近して配置された第1の被
測定基質に感応性の第1の固定化酵素と、第2の
被測定基質に感応性の第2の固定化酵素と、該第
1と第2の固定化酵素の近傍に配置された部材と
を備え、該部材により、該第1の固定化酵素への
第1の被測定基質の到達時刻と該第2の固定化酵
素への第2の被測定基質の到達時刻とに差が生じ
るように構成されたセンサー電極。 2 該第1と第2の基質は、該部材内を拡散して
第1と第2の固定化酵素に到達するように構成さ
れ、該部材内の第1と第2の基質の拡散速度に差
が生じるように、該部材の材質が選択されている
特許請求の範囲第1項記載のセンサー電極。 3 該部材は第1と第2の固定化酵素の間に配置
され、該第2の被測定基質は、該部材内を拡散し
て該第2の固定化酵素に到達することによつて、
反応開始時間が第1の被測定基質より遅延させら
れている特許請求の範囲第1項記載のセンサー電
極。
[Claims] 1. It has an inner tube and an outer tube, and includes a first electrode placed at the bottom of the inner tube, an internal liquid placed between the inner tube and the outer tube, and a first electrode disposed at the bottom of the inner tube. a second electrode disposed in the internal solution, a first immobilized enzyme sensitive to the first analyte substrate disposed close to the first electrode, and a first immobilized enzyme sensitive to the second analyte substrate; a second immobilized enzyme, and a member disposed near the first and second immobilized enzymes; A sensor electrode configured such that a difference occurs between the time of arrival of the second substrate to be measured and the time of arrival of the second substrate to be measured to the second immobilized enzyme. 2. The first and second substrates are configured to diffuse within the member to reach the first and second immobilized enzymes, and the first and second substrates are configured to diffuse within the member to a rate of diffusion of the first and second substrates within the member. The sensor electrode according to claim 1, wherein the material of the member is selected such that a difference occurs. 3. The member is placed between the first and second immobilized enzymes, and the second substrate to be measured diffuses within the member and reaches the second immobilized enzyme, thereby
The sensor electrode according to claim 1, wherein the reaction start time is delayed compared to the first substance to be measured.
JP59004305A 1984-01-13 1984-01-13 Sensor electrode Granted JPS60147644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59004305A JPS60147644A (en) 1984-01-13 1984-01-13 Sensor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59004305A JPS60147644A (en) 1984-01-13 1984-01-13 Sensor electrode

Publications (2)

Publication Number Publication Date
JPS60147644A JPS60147644A (en) 1985-08-03
JPH0418621B2 true JPH0418621B2 (en) 1992-03-27

Family

ID=11580786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59004305A Granted JPS60147644A (en) 1984-01-13 1984-01-13 Sensor electrode

Country Status (1)

Country Link
JP (1) JPS60147644A (en)

Also Published As

Publication number Publication date
JPS60147644A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
US4759828A (en) Glucose electrode and method of determining glucose
US4415666A (en) Enzyme electrode membrane
US5352348A (en) Method of using enzyme electrode
JP3387926B2 (en) Potentiometric biosensor and method of using the same
EP0359831B2 (en) Biosensor and process for its production
US6251260B1 (en) Potentiometric sensors for analytic determination
JPH05503580A (en) Polarographic chemical sensor with external reference electrode
JPS61128152A (en) Biochemical sensor
US4950379A (en) Polarographic cell
JPS6375655A (en) Enzyme electrode apparatus
EP0327018A2 (en) Enzyme Electrode
JPH043500B2 (en)
JPH04279854A (en) Platinum coated carbon fiber electrode and enzymatic film sensor using same
JPH07311175A (en) Current detection ion selective electrode
JPH0418621B2 (en)
JPH0432608Y2 (en)
JPS6258154A (en) Enzymatic function electrode
JP2001242133A (en) Disposable bun sensor and production method thereof
JPH0479413B2 (en)
RU2731411C1 (en) Biosensor with high sensitivity factor
JPS59147249A (en) Measuring instrument using bio-sensor
JPH043501B2 (en)
JPH0375552A (en) Enzyme electrode
CS274231B1 (en) Regenerable enzyme sensor with exchangeable membrane system
JPS6161049A (en) Oxidase electrode