JPH04186102A - Method and device for detecting damage of structural member - Google Patents
Method and device for detecting damage of structural memberInfo
- Publication number
- JPH04186102A JPH04186102A JP31748090A JP31748090A JPH04186102A JP H04186102 A JPH04186102 A JP H04186102A JP 31748090 A JP31748090 A JP 31748090A JP 31748090 A JP31748090 A JP 31748090A JP H04186102 A JPH04186102 A JP H04186102A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- structural member
- frequency band
- crack
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006378 damage Effects 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims description 10
- 238000011088 calibration curve Methods 0.000 claims abstract description 12
- 238000005259 measurement Methods 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 12
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000009466 transformation Effects 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、例えば、ガスタービンの静翼や動翼のような
高温高圧の雰囲気中で使用される構造部材(被検査体)
の熱疲労よる亀裂や高温酸化による腐食及び構造部材(
被検査体)のコーテング層(被膜)内の非破壊による交
流電位差法を利用した構造部材の損傷検出方法及びその
装置に関する。Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to structural members (inspected objects) used in high temperature and high pressure atmospheres, such as stator blades and rotor blades of gas turbines. body)
cracks due to thermal fatigue, corrosion due to high temperature oxidation, and structural members (
The present invention relates to a method and apparatus for detecting damage to a structural member using a non-destructive alternating current potential difference method in a coating layer (film) of an object to be inspected.
(従来の技術)
一般に、発電用ガスタービンの静翼や動翼のような構造
部材は、例えば、1300〜1500°C程度の超高温
で長時間に亘って使用されるし、他方、起動停止が頻繁
に行われる発電機器の構造部材は温度変動に伴う熱応力
の繰返しにより、多数の熱疲労亀裂が発生して成長し、
破壊するおそれがあるばかりでなく、熱応力に加えて高
温酸化による腐食及び構造部材のコーテング層内に減肉
、浸蝕、剥離や組織の変化等が複合して使用不能になる
等の問題がある。(Prior Art) In general, structural members such as stationary blades and rotor blades of gas turbines for power generation are used at extremely high temperatures of, for example, 1,300 to 1,500°C for long periods of time, and on the other hand, they are used during startup and shutdown. In the structural members of power generation equipment, where thermal stress is frequently applied, many thermal fatigue cracks occur and grow due to repeated thermal stress caused by temperature fluctuations.
Not only is there a risk of destruction, but in addition to thermal stress, there are problems such as corrosion due to high-temperature oxidation, thinning, erosion, peeling, and changes in structure within the coating layer of the structural member, making it unusable. .
従来、構造部材(被検査体)の損傷検出手段には、顕微
鏡による組織観察手段が広く採用されているけれども、
この顕微鏡による組織観察手段は人手と時間を費し、さ
らに、コーテング層(被膜)を備えた構造部材の顕微鏡
による組織観察手段はコーテング層を剥離して取り除か
なければならない等の欠点がある。Conventionally, tissue observation using a microscope has been widely used as a means for detecting damage to structural members (objects to be inspected).
This microscopic structure observation means requires manpower and time, and the microscopic structure observation means of a structural member provided with a coating layer (film) has drawbacks such as the need to peel and remove the coating layer.
一方、高周波発振装置による超音波検出手段やX線検出
手段によるワークの損傷検出手段が既に提案されている
けれとも、定量評価か困難であったり、コーテング材に
適用不可である等の問題かある。On the other hand, although methods for detecting damage to workpieces using ultrasonic detection means using high-frequency oscillators and means for detecting damage to workpieces using X-ray detection means have already been proposed, there are problems such as difficulty in quantitative evaluation or inability to apply them to coating materials. .
他方、従来、電位差法の一つとして直流電位差手段か、
電位差と亀裂の長さの較正関係を解析的に求めやすいこ
とや測定原理及びその装置が比較的に簡素であるという
理由に基づき、多く採用されているけれども、この直流
電位差手段は、被測定部材の断面の平均的なデータ(情
報)を検知するため、被測定物の表面の微小亀裂の分布
や亀裂の先端形状の計測に適用することは困難である。On the other hand, conventionally, as one of the potential difference methods, DC potential difference means,
This DC potential difference method is widely used because it is easy to analytically determine the calibration relationship between potential difference and crack length, and the measurement principle and equipment are relatively simple. Since this method detects average data (information) on the cross section of a target object, it is difficult to apply it to measuring the distribution of microcracks on the surface of the object to be measured or the shape of the tip of a crack.
又一方、この種の“亀裂深さ検出装置“ (特開昭57
−24804号)が既に提案されている。On the other hand, this type of "crack depth detection device" (Japanese Unexamined Patent Publication No. 57
-24804) has already been proposed.
即ち、上記”亀裂深さ検出装置”は被測定物に高周波電
流を流すことにより、この高周波電流が被測定物の表面
近くを流れるという、いわゆる表面効果によって、被測
定物の表面の微小な亀裂を検出するようになっている。In other words, the above-mentioned "crack depth detection device" detects minute cracks on the surface of the measured object by passing a high-frequency current through the measured object, and this high-frequency current flows close to the surface of the measured object. It is designed to detect.
つまり、上述した亀裂深さ検出装置は、被測定物に電流
を流し、この電位差によって亀裂の深さを検出する亀裂
検査装置において、高周波電流を発生する信号発生器と
、この高周波電流を増幅する交流定電流装置と、この交
流定電流装置に連結し、被測定物の亀裂箇所の近傍に設
置する入力端子と、上記信号発生器とトランスを介して
連結された増幅器と、上記信号発生器で発生した同一周
波数の電位差を増幅するように調整された口・ンクイン
アンプと、このロックインアンプにその一端部を連結し
、他端部を上記入力端子間であって被測定物の亀裂箇所
の近傍に設置する出力端子と、上記ロックインアンプの
電位差を読取る電圧計とにより被測定物の亀裂の深さを
検出するようにしたものである。In other words, the crack depth detection device described above is a crack inspection device that applies a current to the object to be measured and detects the depth of the crack based on the potential difference. an AC constant current device, an input terminal connected to the AC constant current device and installed near a crack in the object to be measured, an amplifier connected to the signal generator via a transformer, and the signal generator. One end of the lock-in amplifier is connected to the lock-in amplifier, which is adjusted to amplify the generated potential difference at the same frequency, and the other end is connected between the input terminals and near the crack in the object to be measured. The depth of the crack in the object to be measured is detected using an output terminal installed in the lock-in amplifier and a voltmeter that reads the potential difference between the lock-in amplifiers.
(発明が解決しようとする課題)
しかしながら、上述した亀裂深さ検出装置は、単一周波
数の交流を使用している関係上、被測定物の表面に大き
さ、形状の異なる多数の亀裂か分布する場合や埋没欠陥
に対しては、周波数を変えて多数回の計測を余儀無くさ
れ、多くの時間と労力を費し、亀裂測定検査を効率よく
行うことが困難であるばかりでなく、被7Illl定物
に被膜(コーテング)を施したものにあっては、この被
測定物の被膜層を判別しなければならず、上記単一周波
数による計測手段では、さらに多くの時間と労力を費し
、繁雑になると共に、計測誤差を生じて高精度の亀裂深
さ等の検出をすることが困難である。(Problem to be Solved by the Invention) However, since the crack depth detection device described above uses alternating current of a single frequency, there are many cracks with different sizes and shapes distributed on the surface of the object to be measured. In the case of crack measurement or buried defects, it is necessary to measure many times by changing the frequency, which requires a lot of time and effort. When a fixed object is coated with a coating, it is necessary to determine the coating layer of the object, and the above-mentioned single frequency measurement method requires even more time and effort. In addition to being complicated, measurement errors occur, making it difficult to detect crack depth etc. with high accuracy.
本発明は、上述した事情に鑑みてなされたものであって
、交流電流の表皮効果を有効適切に利用して、被測定物
としての構造部材の表面に発生・伝播する亀裂、酸化腐
食及び組織の変化等の損傷領域の大きさ(寸法)・形状
・位置・分布等を高精度に効率良く計測するようにした
構造部材の損傷検出方法及びその装置を提供することを
目的とする。The present invention has been made in view of the above-mentioned circumstances, and effectively and appropriately utilizes the skin effect of alternating current to prevent cracks, oxidation corrosion, and microstructures that occur and propagate on the surface of a structural member as an object to be measured. An object of the present invention is to provide a method and apparatus for detecting damage to a structural member, which enables highly accurate and efficient measurement of the size (dimensions), shape, position, distribution, etc. of a damaged area, such as changes in damage area.
、 −6−
〔発明の構成〕
(課題を解決するための手段)
本発明は、各周波数帯域の交流定電流波形を発生させる
関数発生器に高速電流増幅器を電流波形を増幅するよう
にして接続し、この高速電流増幅器に接続され上記構造
部材へ交流電流を印加するように電流供給端子を当接し
、この電流供給端子の傍らの構造部材に当接して電圧を
検出するように電圧計測端子を付設し、この電圧計測端
子に検出した電圧を増幅するトランスを接続し、このト
ランスに増幅した電圧を各周波数帯域に分解する高速フ
ーリエ変換アナライザを接続し、この高速フーリエ変換
アナライザに伝送装置を通して各周波数帯域に分解され
る電圧データの数値解析をする記憶装置を備えた演算装
置を接続し、この演算装置に表示装置を接続して構成し
たものである。, -6- [Structure of the Invention] (Means for Solving the Problem) The present invention connects a high-speed current amplifier to a function generator that generates an AC constant current waveform in each frequency band so as to amplify the current waveform. A current supply terminal connected to the high-speed current amplifier is brought into contact with the structural member so as to apply an alternating current to the structural member, and a voltage measurement terminal is brought into contact with a structural member beside the current supply terminal to detect the voltage. A transformer that amplifies the detected voltage is connected to this voltage measurement terminal, and a fast Fourier transform analyzer that decomposes the amplified voltage into each frequency band is connected to this transformer. It is constructed by connecting an arithmetic device equipped with a storage device for numerically analyzing voltage data decomposed into frequency bands, and connecting a display device to this arithmetic device.
(作 用)
本発明は、構造部材に当接した電流供給端子に高速電流
増幅器からの交流定電流を印加し、上記電流供給端子の
傍らの構造部材に当接した電圧計測端子から電圧を検出
し、この電圧をトランス、高速フーリエ変換アナライザ
及び伝送装置を通して表示装置及び記憶装置を備えた演
算装置に入力し、この演算装置に予め入力されたデータ
に基づき、上記電圧を各周波数帯域ごとに分解して、上
記構造部材の亀裂の大きさ、形状、位置、亀裂の分布状
態を検出し、各亀裂検出量を予め定めた較正曲線により
損傷量に変換して上記表示装置に表示するようにした構
造部制の損傷検出方法である。(Function) The present invention applies an AC constant current from a high-speed current amplifier to a current supply terminal that is in contact with a structural member, and detects a voltage from a voltage measurement terminal that is in contact with a structural member beside the current supply terminal. Then, this voltage is input to a calculation device equipped with a display device and a storage device through a transformer, a fast Fourier transform analyzer, and a transmission device, and the voltage is decomposed into each frequency band based on the data input in advance to this calculation device. The size, shape, position, and distribution of cracks in the structural member are detected, and the detected amount of each crack is converted into a damage amount using a predetermined calibration curve, which is displayed on the display device. This is a structural damage detection method.
(実施例) 以下、本発明を図示の一実施例について説明する。(Example) Hereinafter, the present invention will be described with reference to an illustrated embodiment.
第1図乃至第3図において、符号1は、各周波数帯域の
交流定電流波形を発生させる関数発生器であって、この
関数発生器1には、高速電流増幅器2が電流波形を増幅
するようにして接続されており、この高速電流増幅器2
には、位置決め保持部材3で保持された複数(図では一
対)の電流供給端子(入力端子)4a、4bが接続され
いる。In FIGS. 1 to 3, reference numeral 1 denotes a function generator that generates an AC constant current waveform in each frequency band. This high-speed current amplifier 2
A plurality (a pair in the figure) of current supply terminals (input terminals) 4a and 4b held by the positioning and holding member 3 are connected to the terminals.
又、この各電流供給端子4a、4bは、第3図に示され
るように、例えば、ガスタービンの静翼による亀裂Wa
を有する被測定物としての構造部材Wに交流電流を印加
するように当接するようにして付設されており、この各
電流供給端子4a、4bの傍ら構造部材Wには、複数(
図では一対)の電圧計測端子(出力端子)5a、5bが
当接して電圧を検出するように付設されている。さらに
、この各電圧計測端子5a、5bには、トランス6か検
出した電圧を増幅するようにして接続されており、この
トランス6には、高速フーリエ変換アナライザ7が増幅
した電圧を各周波数帯域に分解するようにして接続され
ている。又、この高速フーリエ変換アナライザ6には、
記憶装置8を備えた演算装置9が伝送装置10を通して
各周波数帯域に分解される電圧データの数値解析をする
ようにして接続されており、この演算装置9には、表示
装置11が接続されている。Moreover, as shown in FIG.
A plurality of (
In the figure, a pair of voltage measurement terminals (output terminals) 5a and 5b are attached so as to come into contact with each other to detect voltage. Furthermore, a transformer 6 is connected to each of the voltage measurement terminals 5a, 5b so as to amplify the detected voltage, and the voltage amplified by the fast Fourier transform analyzer 7 is connected to the transformer 6 in each frequency band. They are connected in such a way that they can be taken apart. In addition, this fast Fourier transform analyzer 6 includes:
An arithmetic device 9 equipped with a storage device 8 is connected to perform numerical analysis of voltage data decomposed into each frequency band through a transmission device 10, and a display device 11 is connected to this arithmetic device 9. There is.
特に、上記演算装置9は、第2図に示されるように、先
ず、上記記憶装置8に予め入力して記憶された亀裂のな
い同一形状の構造部材Wの同一の位置で測定した基準電
圧Eoのスペクトラムデータを呼出し、次に、上記高速
ツーり変換アナライザ7から伝送された損傷材としての
構造部材Wの電圧Eとの比E / E oを各周波数帯
域について計算する。In particular, as shown in FIG. 2, the arithmetic unit 9 first calculates the reference voltage Eo measured at the same position of the structural member W of the same shape without cracks, which is inputted and stored in the storage device 8 in advance. Then, the ratio E/E o of the voltage E of the structural member W as a damaged material transmitted from the high-speed toggle conversion analyzer 7 is calculated for each frequency band.
他方、予め、人為的に亀裂を入れた試料について計測し
て定めたE / E oと亀裂の大きさ、形状、位置、
亀裂密度等の亀裂パラメータとの較正曲線データを上記
記憶装置8から呼出し、E / E oの入力値を定め
る。このとき、E / E oのデータと上記亀裂パラ
メータとの較正曲線の周波数帯域は、最も感度の良い条
件で一致するように選択される。On the other hand, E/Eo, which was determined in advance by measuring a sample with artificial cracks, and the size, shape, and position of the crack,
Calibration curve data with crack parameters such as crack density is retrieved from the storage device 8, and the input value of E/Eo is determined. At this time, the frequency band of the calibration curve between the E/Eo data and the crack parameters is selected so that they match under the most sensitive conditions.
さらに、上記亀裂パラメータと損傷量(疲労の場合、繰
返し数と疲労破壊回数と比で表される)との相関を表す
較正線データは上記記憶装置8から呼出し、上記亀裂パ
ラメータから構成部材Wの損傷量を決定する。この損傷
量は、上記表示装置11により表示される(第2図参照
)。Furthermore, calibration line data representing the correlation between the crack parameters and the amount of damage (in the case of fatigue, expressed as a ratio between the number of repetitions and the number of fatigue fractures) is read from the storage device 8, and the Determine the amount of damage. This amount of damage is displayed on the display device 11 (see FIG. 2).
以下、本発明の作用について説明する。Hereinafter, the effects of the present invention will be explained.
従って、予め、上記構造部材Wの表面に各電流供給端子
4 a % 4 bと各電圧計測端子5a、5bとを当
接しておく。Therefore, each current supply terminal 4a%4b and each voltage measurement terminal 5a, 5b are brought into contact with the surface of the structural member W in advance.
次に、複数の周波数帯域の交流定電流波形が上記関数発
生器1から発振されることにより、この複数の周波数帯
域の交流定電流波形の電流は、多くの周波数を含んでい
るから、第5図(A)(B)に示されるような矩形波が
適用されている。この各周波数帯域の交流定電流波形の
電流は、上記高速電流増幅器2により増幅されて後、上
記構造部材Wに当接した各電流供給端子4a、4bに高
速電流増幅器2からの交流定電流を印加することにより
、この構造部材Wに亀裂による損傷部Waがあると、上
記各電流供給端子4a、4bの傍ら構造部材Wに当接し
た上記各電圧計測端子S a s5bが電圧を検出し、
この出力電圧は上記トランス6によって増幅されて、上
記高速フーリエ変換アナライザ7へ入力し、この高速フ
ーリエ変換アナライザ7は入力電圧をフーリエ変換し、
各周波数帯域の電圧にスペクトラム分解する。このスペ
クトラム分解された各周波数帯域の電圧データは、上記
伝送装置10を通して表示装置]1及び記憶装置8を備
えた演算装置9へ入力する。Next, since the AC constant current waveform of a plurality of frequency bands is oscillated from the function generator 1, the current of the AC constant current waveform of the plurality of frequency bands includes many frequencies. A rectangular wave as shown in Figures (A) and (B) is applied. The current of the AC constant current waveform in each frequency band is amplified by the high speed current amplifier 2, and then the AC constant current from the high speed current amplifier 2 is applied to each current supply terminal 4a, 4b in contact with the structural member W. By applying voltage, if there is a damaged part Wa due to a crack in this structural member W, each of the voltage measurement terminals S a s5b that is in contact with the structural member W beside each of the current supply terminals 4a and 4b detects the voltage,
This output voltage is amplified by the transformer 6 and inputted to the fast Fourier transform analyzer 7, which fast Fourier transform analyzer 7 Fourier transforms the input voltage.
Spectrum decomposition into voltages in each frequency band. This spectrum-decomposed voltage data of each frequency band is inputted through the transmission device 10 to an arithmetic device 9 equipped with a display device] 1 and a storage device 8.
このようにして、上記演算装置9に入力した各周波数帯
域の電圧データは、前述したように、この演算装置9に
予め入力されたデータに基づき、上記電圧を各周波数帯
域ごとに分解して、上記構造部材Wの亀裂Waの大きさ
、形状、位置、亀裂の分布状態を検出し、各亀裂検出量
を予め定めた較正曲線により損傷量に変換して上記表示
装置11に表示するようになっている。In this way, the voltage data of each frequency band input to the calculation device 9 is obtained by decomposing the voltage into each frequency band based on the data input to the calculation device 9 in advance, as described above. The size, shape, position, and distribution state of the cracks Wa in the structural member W are detected, and the detected amount of each crack is converted into a damage amount using a predetermined calibration curve and displayed on the display device 11. ing.
次に、第4図乃至第6図に示される本発明の他の実施例
は、例えば、ガスタービンの静翼による亀裂Waを有す
る被測定物としての構造部材Wを具体的な数値を入れて
交流電流を印加し、損傷部を検出したものである。Next, in another embodiment of the present invention shown in FIGS. 4 to 6, for example, a structural member W as an object to be measured having a crack Wa caused by a stator blade of a gas turbine is Damaged parts are detected by applying alternating current.
即ち、第4図乃至第6図において、各周波数帯域の交流
定電流波形を発生させる関数発生器1には、IMHzま
で増幅可能な交流アンプ12が電流波形を増幅するよう
にして接続されており、この交流アンプ12には、位置
決め保持部材3で保持された複数(図では一対)の電流
供給端子(入力端子)4a、4bが接続されいる。又、
この各電流供給端子4a、4bは、例えば、ガスタービ
ンの静翼による亀裂Waを有する被測定物としての構造
部材Wに交流電流を印加するように当接するようにして
付設されており、この各電流供給端子4a、4bの傍ら
構造部材Wには、複数(図では一対)の電圧計測端子(
出力端子)5a、5bが当接して電圧を検出するように
付設されている。That is, in FIGS. 4 to 6, an AC amplifier 12 capable of amplifying up to IMHz is connected to a function generator 1 that generates an AC constant current waveform in each frequency band so as to amplify the current waveform. A plurality of current supply terminals (input terminals) 4a and 4b (a pair in the figure) held by the positioning and holding member 3 are connected to the AC amplifier 12. or,
The current supply terminals 4a, 4b are attached so as to apply an alternating current to a structural member W, which is an object to be measured, which has a crack Wa caused by, for example, a stator blade of a gas turbine. A plurality of (a pair in the figure) voltage measurement terminals (
The output terminals 5a and 5b are attached so as to be in contact with each other to detect voltage.
さらに、この各電圧計測端子5a、5bには、トランス
6が検出した電圧を増幅するようにして接続されており
、このトランス6には、高速フーリエ変換アナライザ7
が増幅した電圧を各周波数帯域に分解するようにして接
続されている。又、この高速フーリエ変換アナライザ7
には、ディスク装置13を備えたコンピュータ14がG
P−IBインターフェイス15を通して各周波数帯域に
分解される電圧データの数値解析をするようにして接続
されており、このコンピュータ14には、CRT表示装
置]6が接続されている。Further, a transformer 6 is connected to each of the voltage measurement terminals 5a, 5b so as to amplify the detected voltage, and a fast Fourier transform analyzer 7 is connected to the transformer 6.
are connected so that the amplified voltage is decomposed into each frequency band. Also, this fast Fourier transform analyzer 7
, the computer 14 equipped with the disk device 13 is
The computer 14 is connected to perform numerical analysis of voltage data decomposed into each frequency band through a P-IB interface 15, and a CRT display device 6 is connected to the computer 14.
−13−、l
従って、予め、上記構造部材Wの表面に各電流供給端子
4a、4bと各電圧計測端子5a、5bとを当接してお
く。-13-,l Therefore, each current supply terminal 4a, 4b and each voltage measurement terminal 5a, 5b are brought into contact with the surface of the structural member W in advance.
次に、上記関数発生器]から、例えば、50H2の矩形
波交流定電圧を印加して定電流を流すことにより、この
矩形波交流定電圧波形の電流は、第5図(A)(B)に
示されるように、定電流の電圧波形をフーリエ解析した
結果、矩形波を示し、この矩形波は多くの周波数成分を
連続的に含んでいるから、この各周波数帯域の交流定電
圧波形の電流は、上記交流アンプ〕2により増幅されて
後、上記構造部材Wに当接した各電流供給端子4a、4
bに高速電流増幅器2からの交流定電流を印加すること
により、この構造部材Wに亀裂による損傷部Waがある
と、上記各電流供給端子4 a s4bの傍ら構造部材
Wに当接した各電圧計測端子5a、5bが電圧を検出し
、この出力電圧はトランス6によって増幅されて、上記
高速フーリエ変換アナライザ7へ入力し、この高速フー
リエ変換アナライザ7は入力電圧をフーリエ変換し、6
周−] 4 −
波数帯域の電圧にスペクトラム分解する。このスペクト
ラム分解された各周波数帯域の電圧データは、上記GP
−IBインターフェイス15を通して」二記ディスク装
置13を備えたコンピュータ14へ入力する。Next, by applying a rectangular wave AC constant voltage of, for example, 50H2 from the function generator to flow a constant current, the current of this rectangular wave AC constant voltage waveform is as shown in FIGS. 5(A) and (B). As shown in , the result of Fourier analysis of the constant current voltage waveform shows a rectangular wave, and since this rectangular wave continuously contains many frequency components, the current of the AC constant voltage waveform in each frequency band are amplified by the AC amplifier] 2, and then connected to the respective current supply terminals 4a, 4 that are in contact with the structural member W.
By applying an alternating current constant current from the high-speed current amplifier 2 to b, if there is a damaged part Wa in this structural member W due to a crack, each voltage that comes into contact with the structural member W beside each of the current supply terminals 4a and s4b is reduced. The measurement terminals 5a and 5b detect the voltage, and this output voltage is amplified by the transformer 6 and inputted to the fast Fourier transform analyzer 7, which performs Fourier transform on the input voltage,
Frequency - ] 4 - Spectrum decomposition into wave number band voltages. This spectrally decomposed voltage data of each frequency band is
- input to the computer 14 equipped with the second disk drive 13 through the IB interface 15;
このようにして、上記コンピュータ14に人力した各周
波数帯域の電圧データは、予め、このコンピュータ]4
に入力されたデータに基づき、上記電圧を各周波数帯域
ごとに分解して、上記構造部材Wの亀裂Waの大きさ、
形状、位置、亀裂の分布状態を検出し、各亀裂検出量を
予め定めた較正曲線により損傷量に変換して上記CRT
表示装置16に表示するようになっている。In this way, the voltage data of each frequency band manually entered into the computer 14 is stored in advance in this computer]4.
Based on the input data, the voltage is decomposed into each frequency band to determine the size of the crack Wa in the structural member W,
The shape, position, and distribution state of cracks are detected, and the amount of each detected crack is converted into the amount of damage using a predetermined calibration curve.
It is designed to be displayed on the display device 16.
なお、上記コンピュータ14は、第6図に示されるよう
に、先ず、上記ディスク装置13から亀裂のない同一形
状の静翼としての構造部材Wの同一の位置で測定した基
準電圧Eoのスペクトラムデータを呼出し、次に、損傷
材としての構造部材Wの電圧Eとの比E / E oを
各周波数帯域について計算する。As shown in FIG. 6, the computer 14 first receives spectrum data of the reference voltage Eo measured at the same position of the structural member W, which is a static vane of the same shape without cracks, from the disk device 13. Then, the ratio E/E o of the structural member W as damaged material to the voltage E is calculated for each frequency band.
他方、予め、人為的に亀裂を入れた試料について計測し
て定めた最適周波数帯域E / E oと最大亀裂の大
きさ及びE / E oのときの亀裂密度との較正曲線
データを上記ディスク装置13から呼出す。On the other hand, the calibration curve data of the optimum frequency band E/Eo, the maximum crack size, and the crack density at E/Eo, determined in advance by measuring artificially cracked samples, is used in the disk device. Call from 13.
特に、この具体例では、最大の亀裂の長さは、第7図の
電圧比と最大亀裂長さとの関係を示すグラフのように、
500Hzの低周波帯域でのE/Eoと直線関係にあり
、亀裂密度は、第8図の電圧比と亀裂密度との関係を示
すグラフのように、5kHzの高周波帯域でのE /
E oと直線関係にある。In particular, in this specific example, the maximum crack length is as shown in the graph showing the relationship between voltage ratio and maximum crack length in Figure 7.
There is a linear relationship with E/Eo in the low frequency band of 500 Hz, and crack density has a linear relationship with E/Eo in the high frequency band of 5 kHz, as shown in the graph showing the relationship between voltage ratio and crack density in Figure 8.
There is a linear relationship with E o.
そこで、最大亀裂長さを検出するための較正曲線の周波
数帯域は、500Hzの低周波数帯域のデータから呼出
し、亀裂密度を検出するための較正曲線の周波数帯域は
5KHzの高周波数帯域のデータから呼出し、E /
E oの実測スペクトラムデータから」二記各周波数帯
域のデータを選択して上記各亀裂パラメータを決定する
。Therefore, the frequency band of the calibration curve for detecting the maximum crack length is called from the data in the low frequency band of 500 Hz, and the frequency band of the calibration curve for detecting the crack density is called from the data in the high frequency band of 5 KHz. ,E/
From the measured spectrum data of Eo, select data for each frequency band to determine each crack parameter.
さらに、第9図の最大亀裂長さと疲労損傷との関係を示
すグラフ及び第10図の亀裂密度と疲労損傷との関係を
示すグラフに示されるように、最大亀裂長さβと疲労損
傷n/Nf(nは繰り返し数、Nfは材料の疲労破壊回
数)の関係及び亀裂密度りと疲労損傷n / N fの
関係を呼出し、各亀裂パラメータから疲労損傷値を算出
し、上記CRT表示装置16に上記静翼としての被測定
物の構造部材Wの亀裂分布状態と損傷評価結果を表示す
る。Furthermore, as shown in the graph showing the relationship between maximum crack length and fatigue damage in Figure 9 and the graph showing the relationship between crack density and fatigue damage in Figure 10, the maximum crack length β and fatigue damage n/ The relationship between Nf (n is the number of repetitions, Nf is the number of fatigue failures of the material) and the relationship between crack density and fatigue damage n/Nf are called up, the fatigue damage value is calculated from each crack parameter, and the fatigue damage value is displayed on the CRT display device 16. The crack distribution state and damage evaluation results of the structural member W of the object to be measured as the stationary blade are displayed.
又一方、第11図及び第12図は、例えば、ガスタービ
ンの動翼による亀裂Waや酸化腐食部Wcを有する被測
定物として導体による構造部材Wであって、この構造部
材Wの表面に高温酸化・腐食を防止する、例えば、Pt
−Alの拡散による被膜やCoCrAIYの溶射による
導電率の異なる耐食性の被膜wbをコーテングしたもの
であって、このガスタービンの動翼による被測定物の亀
裂W a 、酸化減肉Wc、変質部Wdが形成されたも
のである。On the other hand, FIGS. 11 and 12 show, for example, a structural member W made of a conductor as an object to be measured that has cracks Wa or oxidized corrosion parts Wc caused by the rotor blades of a gas turbine. Prevents oxidation and corrosion, e.g. Pt
- It is coated with a corrosion-resistant coating wb having different electrical conductivity, such as a coating formed by diffusion of Al or a coating formed by thermal spraying of CoCrAIY. was formed.
このようなガスタービンの動翼による亀裂Waや酸化腐
食部Weを有する被測定物として導体による構造部材W
は、第4図に示された具体例に基づき、」二記コンピュ
ータ14の演算内容と上記ディスク装置]、3の記憶内
容を上述した各現象に対応する内容に変更した上で上記
構造部材Wの損傷検出をCRT表示装置16に検出表示
することができる。A structural member W made of a conductor is used as an object to be measured that has cracks Wa or oxidized corrosion parts We caused by the rotor blades of a gas turbine.
Based on the specific example shown in FIG. Damage detection can be detected and displayed on the CRT display device 16.
さらに、第11図及び第12図に示されるガスタービン
の動翼による亀裂Waや酸化腐食部Wcを有する被測定
物として導体による構造部材Wは、耐食性の被膜wbの
剥離を生じた場合、第13図の電圧と翼表面からの欠陥
位置との関係を示すグラフに示されるように、剥離の生
じた位置に最も良く合致する浸透深さを有する高い周波
数(例えば、5kHz)に対応する電圧か低い周波数(
例えば、500Hz)に対応する電圧と比較して大きく
変化するので、剥離の存在を確認することかできる。さ
らに、変質層のように比較的に広い領域で一様に変化す
る場合は、」二記各電流供給端子4a、4bと各電圧測
定端子5a、5bを位置決め用保持部祠3によって共に
移動走査させながら計測することにより、局所的に欠陥
を検出することができる。Furthermore, when the structural member W made of a conductor is an object to be measured that has a crack Wa or an oxidized corrosion part Wc caused by the rotor blade of a gas turbine shown in FIGS. 11 and 12, when the corrosion-resistant coating wb peels off, the As shown in the graph of the relationship between voltage and defect location from the blade surface in Figure 13, the voltage corresponding to a high frequency (e.g., 5 kHz) with a penetration depth that best matches the location where delamination has occurred is Low frequency (
For example, since the voltage changes significantly compared to the voltage corresponding to 500 Hz, the presence of peeling can be confirmed. Furthermore, when the change is uniform over a relatively wide area such as in a degraded layer, the current supply terminals 4a and 4b and the voltage measurement terminals 5a and 5b are moved and scanned together by the positioning holding part 3. By measuring while moving, defects can be locally detected.
このように被膜wbをコーテングした構造部材Wは、例
えば、亀裂、減肉、剥離、変質層等の損傷部を非破壊的
に効率良く、しがち、高精度に検出することもできる。In the structural member W coated with the film wb in this manner, damaged parts such as cracks, thinning, peeling, and altered layers can be detected non-destructively, efficiently, easily, and with high precision.
以上述べたように本発明によれば、構造部材に当接した
電流供給端子に高速電流増幅器からの交流定電流を印加
し、上記電流供給端子の傍らの構造部材に当接した電圧
計測端子から電圧を検出し、この電圧をトランス、高速
フーリエ変換アナライザ及び伝送装置を通して表示装置
及び記憶装置を備えた演算装置に入力し、この演算装置
に予め入力されたデータに基づき、上記電圧を各周波数
帯域ごとに分解して、」二記構造部材の亀裂の大きさ、
形状、位置、亀裂の分布状態を検出し、各亀裂検出量を
予め定めた較正曲線により損傷量に変換して上記表示装
置に表示するようにしであるので、被測定物としての構
造部材の表面に発生・伝播する亀裂、酸化腐食及び組織
の変化等の損傷領域の深さを高精度に効率良く検出する
ことができるばかりでなく、検出手段か各周波数帯域で
一挙に検出できるから、短時間に労力を費すことなく、
しかも、誤差なく、高精度の亀裂深さ検出をすることが
できると共に、被膜を施した構造部材の亀裂の大きさ、
酸化、剥離、変質及び損傷状態を非破壊的に検出するこ
とかできる等の優れた効果を有する。As described above, according to the present invention, an alternating current constant current from a high-speed current amplifier is applied to a current supply terminal in contact with a structural member, and a voltage measurement terminal in contact with a structural member adjacent to the current supply terminal is applied with an AC constant current from a high-speed current amplifier. Detects the voltage, inputs this voltage through a transformer, a fast Fourier transform analyzer, and a transmission device to an arithmetic unit equipped with a display device and a storage device. The size of the crack in the structural member is determined by disassembling each
The shape, position, and distribution state of cracks are detected, and each detected amount of cracks is converted into damage amount using a predetermined calibration curve and displayed on the display device, so the surface of the structural member as the object to be measured is Not only can the depth of damage areas such as cracks, oxidation corrosion, and changes in structure that occur and propagate in the substrate be detected with high precision and efficiency, but the detection means can detect them all at once in each frequency band, so it can be detected in a short time. without spending any effort on
Moreover, it is possible to detect the crack depth with high precision without error, and also to detect the size of the crack in the coated structural member.
It has excellent effects such as being able to nondestructively detect oxidation, peeling, deterioration, and damage states.
第1図は、本発明の構造部材の損傷検出方法及びその装
置のブロック線図、第2図は、本発明の構造部材の損傷
検出方法及びその装置に組込まれる演算装置を説明する
ための図、第3図は、被測定物としての構造部材の一例
としてガスタービン静翼の亀裂状態を示す斜面図、第4
図は、本発明の他の実施例を示すのブロック線図、第5
図(A)(B)は、電圧と矩形波電流の周波数分析結果
及び電圧と周波数との関係を示す各図、第6図は、本発
明の構造部材の損傷検出方法及びその装置に組込まれる
コンピュータを説明するための図、第7図は、電圧比と
最大亀裂長さとの関係を示すグラフ、第8図は、電圧比
と亀裂密度との関係を示すグラフ、第9図は、最大亀裂
長さと疲労損傷との関係を示すグラフ、第10図は、亀
裂密度と疲労損傷との関係を示すグラフ、第11図は、
被71Iす宝物としての構造部材の他の一例としてガス
タービン動翼を示す側面図、第12図は、第11図中の
鎖線A−Aに沿う拡大断面図、第13図は、ガスタービ
ン動翼における電圧比と翼表面からの欠陥位置との関係
を示すグラフである。
1・・関数発生器、2・・・高速電流増幅器、4 a
%4b・・・電流供給端子、5 a % 5 b・・・
電圧計測端子、6・・・トランス、7・・・高速フーリ
エ変換アナライザ、8・記憶装置、9・・演算装置、]
0・・・伝送装置、11・・・表示装置、12・・・交
流アンプ、13・・・ディスク装置、14・・・コンピ
ュータ、15・・・GP−IBインターフェイス、16
・・・CRT表示装置。
第3図
■−−−−一
1g −へ−m−、−一
周波数kHz
(A)
第4図
時間t、 m5eC
(B)
第5図
14 翳?]う1面面−リ デ 7り装置FE
\−Eのスペクトラム EOのスペクトラムーロビュ
ー
1 N赫節−1
EE。
500Hz ”” 1E/EOの
スペクトラム ゛
E/Eol汀盲貨清了H盲l 1:
1
最大き裂長さ (L)mm
l II
o3.原搏数f ご0′
第7図
疲労損傷 n / N f
第9図
第11図
疲労損傷 n/Nf
第10図
第12図FIG. 1 is a block diagram of the structural member damage detection method and apparatus of the present invention, and FIG. 2 is a diagram for explaining the structural member damage detection method of the present invention and an arithmetic unit incorporated in the apparatus. , FIG. 3 is a perspective view showing a crack state of a gas turbine stationary blade as an example of a structural member as an object to be measured;
Figure 5 is a block diagram showing another embodiment of the present invention.
Figures (A) and (B) are diagrams showing the results of frequency analysis of voltage and rectangular wave current and the relationship between voltage and frequency, and Figure 6 is a diagram showing the method and apparatus for detecting damage to structural members of the present invention. Figure 7 is a graph showing the relationship between voltage ratio and maximum crack length. Figure 8 is a graph showing the relationship between voltage ratio and crack density. Figure 9 is a graph showing the relationship between voltage ratio and crack density. A graph showing the relationship between length and fatigue damage, FIG. 10 is a graph showing the relationship between crack density and fatigue damage, and FIG. 11 is a graph showing the relationship between crack density and fatigue damage.
71I is a side view showing a gas turbine rotor blade as another example of a structural member as a treasure; FIG. 12 is an enlarged sectional view taken along the chain line A-A in FIG. 11; FIG. It is a graph showing the relationship between the voltage ratio in the blade and the defect position from the blade surface. 1...Function generator, 2...High speed current amplifier, 4 a
%4b...Current supply terminal, 5a %5b...
Voltage measurement terminal, 6...Transformer, 7...Fast Fourier transform analyzer, 8...Storage device, 9...Arithmetic device,]
0... Transmission device, 11... Display device, 12... AC amplifier, 13... Disk device, 14... Computer, 15... GP-IB interface, 16
...CRT display device. Fig. 3■ -----1g -to-m-, -1 Frequency kHz (A) Fig. 4 Time t, m5eC (B) Fig. 5 14 Shadow? ] 1st side - Reloading device FE
\-E's Spectrum EO's Spectrum-Loview 1 N-Kusetsu-1 EE. 500Hz ”” 1E/EO spectrum ゛E/Eol
1 Maximum crack length (L) mm l II o3. Original frequency f Go0' Fig. 7 Fatigue damage n/N f Fig. 9 Fig. 11 Fatigue damage n/Nf Fig. 10 Fig. 12
Claims (1)
高速電流増幅器からの交流定電流を印加し、上記電流供
給端子の傍らの構造部材に当接した電圧計測端子から電
圧を検出し、この電圧をトランス、高速フーリエ変換ア
ナライザ及び伝送装置を通して表示装置及び記憶装置を
備えた演算装置に入力し、この演算装置に予め入力され
たデータに基づき、上記電圧を各周波数帯域ごとに分解
して、上記構造部材の亀裂の大きさ、形状、位置、亀裂
の分布状態を検出し、各亀裂検出量を予め定めた較正曲
線により損傷量に変換して上記表示装置に表示するよう
にしたことを特徴とする構造部材の損傷検出方法。 2、各周波数帯域の交流定電流波形を発生させる関数発
生器と、この関数発生器に接続され電流波形を増幅する
高速電流増幅器と、この高速電流増幅器に接続され上記
構造部材へ交流電流を印加するように当接した電流供給
端子と、この電流供給端子の傍らの構造部材に当接して
電圧を検出するように付設された電圧計測端子と、この
電圧計測端子に接続され検出した電圧を増幅するトラン
スと、このトランスに接続されて増幅した電圧を各周波
数帯域に分解する高速フーリエ変換アナライザと、この
高速フーリエ変換アナライザに接続され伝送装置を通し
て各周波数帯域に分解される電圧データの数値解析をす
る記憶装置を備えた演算装置と、この演算装置に接続さ
れた表示装置とを具備したことを特徴とする構造部材の
損傷検出装置。[Claims] 1. A constant AC current from a high-speed current amplifier in each frequency band is applied to a current supply terminal in contact with a structural member, and a voltage measurement terminal in contact with a structural member beside the current supply terminal; This voltage is input to a calculation device equipped with a display device and a storage device through a transformer, a fast Fourier transform analyzer, and a transmission device. The size, shape, position, and distribution of cracks in the above-mentioned structural member are detected by breaking it down into bands, and the detected amount of each crack is converted into the amount of damage using a predetermined calibration curve, which is displayed on the above-mentioned display device. A method for detecting damage to a structural member, characterized in that: 2. A function generator that generates an AC constant current waveform in each frequency band, a high-speed current amplifier that is connected to this function generator and amplifies the current waveform, and a high-speed current amplifier that is connected to this high-speed current amplifier and applies AC current to the above structural members. A current supply terminal contacts a structural member near the current supply terminal to detect voltage, and a voltage measurement terminal connects to this voltage measurement terminal to amplify the detected voltage. a fast Fourier transform analyzer connected to this transformer that decomposes the amplified voltage into each frequency band, and a fast Fourier transform analyzer that is connected to this fast Fourier transform analyzer and performs numerical analysis of the voltage data decomposed into each frequency band through a transmission device. What is claimed is: 1. A damage detection device for a structural member, comprising: an arithmetic device having a storage device for storing information; and a display device connected to the arithmetic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2317480A JPH0827168B2 (en) | 1990-11-21 | 1990-11-21 | Method and apparatus for detecting damage to structural member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2317480A JPH0827168B2 (en) | 1990-11-21 | 1990-11-21 | Method and apparatus for detecting damage to structural member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04186102A true JPH04186102A (en) | 1992-07-02 |
JPH0827168B2 JPH0827168B2 (en) | 1996-03-21 |
Family
ID=18088699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2317480A Expired - Lifetime JPH0827168B2 (en) | 1990-11-21 | 1990-11-21 | Method and apparatus for detecting damage to structural member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0827168B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185545B2 (en) | 2004-12-29 | 2007-03-06 | General Electric Company | Instrumentation and method for monitoring change in electric potential to detect crack growth |
-
1990
- 1990-11-21 JP JP2317480A patent/JPH0827168B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7185545B2 (en) | 2004-12-29 | 2007-03-06 | General Electric Company | Instrumentation and method for monitoring change in electric potential to detect crack growth |
Also Published As
Publication number | Publication date |
---|---|
JPH0827168B2 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180364037A1 (en) | Non-destructive evaluation methods for determining a thickness of a coating layer on a turbine engine component | |
US7519487B2 (en) | System and method for depth determination of cracks in conducting structures | |
Si et al. | Potential difference methods for measuring crack growth: A review | |
US20070069720A1 (en) | Material characterization with model based sensors | |
Jang et al. | Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser | |
Fu et al. | Lift-off effect reduction based on the dynamic trajectories of the received-signal fast Fourier transform in pulsed eddy current testing | |
US20080278151A1 (en) | System and methods for inspecting internal cracks | |
US6534975B2 (en) | Nondestructive method for determining the thickness of a metallic protective layer on a metallic base material via a different type of layer between the metallic protective layer and the metallic base material | |
Gomez-Duran et al. | Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulphate solution. II. Dynamics of fracture | |
Pasadas et al. | Defect classification with SVM and wideband excitation in multilayer aluminum plates | |
JPS60152950A (en) | Eddy current nondestructive testing method and device thereof | |
US7106055B2 (en) | Fabrication of samples having predetermined material conditions | |
CN110132805B (en) | Ultrasonic evaluation method for average grain size of 2219 aluminum alloy cast ingot | |
JP2007303956A (en) | Technique for noncontact and nondestructive inspection on thermal barrier coating which has deteriorated with age | |
JPH04186102A (en) | Method and device for detecting damage of structural member | |
JPS61172059A (en) | Method for nondestructive forecasting of life of turbine | |
Liang et al. | Analysis of amplitude and frequency detection error of surface acoustic wave generated by laser line source | |
JPH09113488A (en) | Method and apparatus for evaluating electromagnetic quality | |
KR20180125748A (en) | Method and apparatus for surface inspection surface of blade | |
Rodriguez et al. | Design of an FPGA-based eddy current instrument for the detection of corrosion pits | |
US6563309B2 (en) | Use of eddy current to non-destructively measure crack depth | |
RU2813467C1 (en) | Method of determining concentration of hydrogen in titanium alloy | |
Gonchar et al. | The eddy-current and ultrasonic investigations of the nickel-base superalloy the gas turbine engine blades after exploitation | |
Ribichini et al. | Gas turbine coatings eddy current quantitative and qualitative evaluation | |
JP4869891B2 (en) | Multi-layer non-destructive inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080321 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090321 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100321 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100321 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110321 Year of fee payment: 15 |