JPH04185997A - Evaporator for low temperature liquefied gas - Google Patents

Evaporator for low temperature liquefied gas

Info

Publication number
JPH04185997A
JPH04185997A JP31144690A JP31144690A JPH04185997A JP H04185997 A JPH04185997 A JP H04185997A JP 31144690 A JP31144690 A JP 31144690A JP 31144690 A JP31144690 A JP 31144690A JP H04185997 A JPH04185997 A JP H04185997A
Authority
JP
Japan
Prior art keywords
evaporator
liquefied gas
section
temperature
evaporating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31144690A
Other languages
Japanese (ja)
Inventor
Masaru Kataoka
片岡 勝
Nobuo Ito
伊東 伸男
Akira Obata
小畑 彰
Naoki Yamabe
直樹 山辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Original Assignee
Koike Sanso Kogyo Co Ltd
Koike Sanso Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koike Sanso Kogyo Co Ltd, Koike Sanso Kogyo KK filed Critical Koike Sanso Kogyo Co Ltd
Priority to JP31144690A priority Critical patent/JPH04185997A/en
Publication of JPH04185997A publication Critical patent/JPH04185997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To prevent frosting and icing by providing plural evaporating units and a evaporated gas heating unit connecting the flow outlet part of each evaporating unit to a common piping through a valve, and connecting the common piping to the heating unit in an evaporation for liquefied oxygen or the like. CONSTITUTION:An evaporator A is composed of two evaporating units 1 and 2, consisting of two finned pipe 6, and one heating portion 3 consisting of one finned pipe 6. Pipes 9a and 9b of flow outlet parts of the evaporating units 1 and 2 are connected to a common piping 11 through respective valves 4 and 5. The pipe 12 of the flow inlet part of the heating unit 3 is also connected to the common piping 11. In this arrangement, for example, the valve 4 is opened and the valve 5 is closed so as to connect the evaporating unit 1 to the heating unit 3, and liquefied gas stored in a CE is supplied to the evaporating units 1 and 2 through pipes 8c, 8a and 8b. The liquefied gas is thus supplied from the evaporating unit 1 to an apparatus through the heating unit 3, while the evaporating unit 2 is in standby. If the evaporating unit 2 is iced over, opening/closing of the valves 4 and 5 is changed over so as to make the evaporating unit 1 stand by, perform deicing, and start up the evaporating unit 2.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は低温液化ガスを大気と熱交換させることによっ
て蒸発気化させる蒸発器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an evaporator that evaporates low-temperature liquefied gas by exchanging heat with the atmosphere.

〈従来の技術〉 現在、液化酸素、液化窒素、液化アルゴン、液化炭酸ガ
ス等の低温液化ガス(以下「液化ガス1という)が医療
機関或いは工場で大量に使用されている。前記液化ガス
はコールドエバポレーター(CE)等に貯蔵されており
、使用に際しては大気熱交換型蒸発器(以下を蒸発器1
という)に於いて蒸発気化した後、所定の配管を通って
目的の機器に供給される。
<Prior Art> Currently, low-temperature liquefied gases (hereinafter referred to as "liquefied gas 1") such as liquefied oxygen, liquefied nitrogen, liquefied argon, and liquefied carbon dioxide gas are used in large quantities in medical institutions or factories. It is stored in an evaporator (CE), etc., and when used, it is stored in an atmospheric heat exchange type evaporator (hereinafter referred to as evaporator 1).
After being evaporated and vaporized in the evaporator, it is supplied to the target equipment through predetermined piping.

上記蒸発器は、例えば実公昭51−29546号公報に
開示されるように、長手方向に複数のフィンを形成した
フィンパイプを縦方向に並列配置すると共に、これ等の
フィンパイプを夫々ベンド管で接続して構成されている
。そして供給された液化ガスは、フィンパイプ中を流通
する過程で大気との熱交換がなされ、所定の温度まで昇
温したガスとなって、蒸発器の下流側に配置された二次
配管を通って所定の機器に供給されるものである。
As disclosed in, for example, Japanese Utility Model Publication No. 51-29546, the above-mentioned evaporator is constructed by arranging fin pipes in which a plurality of fins are formed in the longitudinal direction in parallel in the longitudinal direction, and connecting these fin pipes with bent pipes. connected and configured. The supplied liquefied gas exchanges heat with the atmosphere while flowing through the fin pipe, becomes a gas heated to a predetermined temperature, and passes through the secondary pipe located downstream of the evaporator. It is supplied to specified equipment.

また蒸発器の性能は単位時間当たりの蒸発量によって設
定され、この蒸発能力は液化ガスの種類。
Also, the performance of the evaporator is set by the amount of evaporation per unit time, and this evaporation capacity is determined by the type of liquefied gas.

気化ガスの温度等の条件を満足させる熱交換面積によっ
て設定される。
It is set by a heat exchange area that satisfies conditions such as the temperature of vaporized gas.

上記蒸発器に於いて、液化ガスを大気との熱交換によっ
て蒸発、気化させることから、大気条件によっては液化
ガスの供給により蒸発器の液化ガス供給側に着霜し、蒸
発器の長時間使用によってこの霜が成長して着氷するこ
とがある。蒸発器に着霜、或いは着氷すると大気との熱
交換が阻害され、この結果充分に昇温しないガスが二次
配管及び機器に供給されることとなり、配管材料の低温
脆性を惹起したり、或いは機器の動作不良を起こす虞が
ある。また氷等が成長して蒸発器の基礎に悪影響を与え
る直がある。
In the above evaporator, the liquefied gas is evaporated and vaporized by heat exchange with the atmosphere, so depending on the atmospheric conditions, the supply of liquefied gas may cause frost to form on the liquefied gas supply side of the evaporator, causing the evaporator to be used for a long time. This frost can grow and form ice. When frost or ice builds up on the evaporator, heat exchange with the atmosphere is inhibited, and as a result, gas that is not sufficiently heated is supplied to secondary piping and equipment, causing low-temperature brittleness of piping materials, Otherwise, there is a risk that the equipment may malfunction. In addition, ice may grow and have a negative impact on the foundation of the evaporator.

上記問題を解決するために、 ■蒸発器に着霜或いは着氷した場合には、この付着物を
ハンマーで叩き落す。
In order to solve the above problem, (1) If frost or ice forms on the evaporator, knock off this deposit with a hammer.

■蒸発器の使用を定期的に停止して霜や氷を解かす。■Stop using the evaporator periodically to thaw frost and ice.

■同一性能を有する蒸発器を複数台設置して切り換え使
用する。
■ Install multiple evaporators with the same performance and switch between them.

■数うンク上の蒸発能力を有する蒸発器を使用する。■Use an evaporator with a higher evaporation capacity.

等の対応を行っているのが現状である。Currently, the following measures are being taken.

〈発明が解決しようとした課題〉 然し、上記■、■では運転効率が悪化し、且つ基本的な
解決策とはならない、また■では設備コストが高くなる
。また■では設備コストが高くなり、且つ長時間の使用
によって着霜或いは着氷し基本的な解決とはならない等
の問題がある。
<Problems to be Solved by the Invention> However, in the above cases (1) and (3), the operating efficiency deteriorates and is not a fundamental solution, and (2) increases the equipment cost. In addition, (2) has problems such as high equipment costs and frost or ice formation due to long-term use, which is not a basic solution.

本発明の目的は、上記問題を解決した低温液化ガス用蒸
発器を提供することにある。
An object of the present invention is to provide an evaporator for low-temperature liquefied gas that solves the above problems.

〈課題を解決するための手段〉 上記課題を解決するために本発明に係る低温液化ガス用
蒸発器は、長手方向にフィンを形成した複数のフィンパ
イプを立設すると共にこれ等のフィンパイプを連結して
構成した低温液化ガス用蒸発器であって、供給された低
温液化ガスを蒸発させるための蒸発部を複数設けると共
に、前記蒸発部に於いて蒸発したガスを昇温させるため
の昇温部を設け、前記各蒸発部の流出口を該流出口を開
閉するためのバルブを介して共通配管に接続すると共に
、前記共通配管を昇温部の流入口に接続して構成される
ものである。
<Means for Solving the Problems> In order to solve the above problems, the evaporator for low-temperature liquefied gas according to the present invention includes a plurality of fin pipes having fins formed in the longitudinal direction, and a plurality of fin pipes having fins formed in the longitudinal direction. An evaporator for low-temperature liquefied gas configured in a connected manner, including a plurality of evaporators for evaporating the supplied low-temperature liquefied gas, and a temperature raising unit for raising the temperature of the evaporated gas in the evaporator. The outlet of each of the evaporating sections is connected to a common piping via a valve for opening and closing the outlet, and the common piping is connected to the inlet of the temperature increasing section. be.

く作用〉 上記手段によれば、設備コストを大幅に上昇させること
無く、長期間安定した状態で液化ガスを蒸発、気化させ
ることが出来る。
Effect> According to the above means, the liquefied gas can be evaporated and vaporized in a stable state for a long period of time without significantly increasing the equipment cost.

蒸発器に於ける着霜或いは着氷部分は供給された液化ガ
スが蒸発する部分に集中し、蒸気を昇温させる部分には
殆ど着霜或いは着氷することが無い。従って、蒸発器を
液化ガスを蒸発させるための蒸発部と蒸気を昇温させる
ための昇温部とに分割して構成し、前記蒸発部を複数設
けると共に各蒸発部と昇温部とをバルブを介して接続す
ることで、昇温部に対して接続される蒸発部を選択する
ことが出来る。
Frost or ice formation in the evaporator is concentrated in the area where the supplied liquefied gas evaporates, and there is almost no frost or ice formation on the area where the temperature of the steam is raised. Therefore, the evaporator is divided into an evaporation section for evaporating the liquefied gas and a temperature raising section for raising the temperature of the steam. By connecting through the evaporation section, it is possible to select the evaporation section to be connected to the temperature raising section.

即ち、蒸発器に於ける任意の蒸発部と昇温部とを接続し
て液化ガスの蒸発、気化を行い。この蒸発部に着霜2着
氷が生じて気化効率が低下したとき、該蒸発部の流出口
に設けたバルブを閉鎖すると共に、他の蒸発部のバルブ
を開放して昇温部と接続することによって、液化ガスは
新たに接続された蒸発部に流入して蒸発し、この蒸気が
昇温部に流出して昇温する。
That is, the liquefied gas is evaporated and vaporized by connecting an arbitrary evaporation section and a temperature raising section in the evaporator. When frost builds up in this evaporation section and the vaporization efficiency decreases, the valve provided at the outlet of the evaporation section is closed, and the valves of other evaporation sections are opened and connected to the temperature raising section. As a result, the liquefied gas flows into the newly connected evaporation section and is evaporated, and this vapor flows out to the temperature raising section and is heated.

このとき、閉鎖された蒸発部にある液化ガスは蒸発する
が流出しないために内部圧力が増大し、この圧力によっ
て該蒸発部に残留する液化ガスは供給側に逆流する。従
って、この蒸発部に新たな液化ガスが供給されることは
無く、蒸発部自体が大気との熱交換によって昇温しで付
着した霜、氷が融解する。
At this time, the liquefied gas in the closed evaporation section evaporates but does not flow out, so the internal pressure increases, and this pressure causes the liquefied gas remaining in the evaporation section to flow back toward the supply side. Therefore, no new liquefied gas is supplied to the evaporator, and the evaporator itself heats up through heat exchange with the atmosphere, melting the frost and ice that have adhered to it.

上記の如く、本発明に係る蒸発器にあっては、複数の蒸
発部を選択的に機能させることによって、他の蒸発部を
停止させることが出来る。従って、停止している蒸発部
には液化ガスが供給されることが無い。このため、停止
している蒸発部に着霜。
As described above, in the evaporator according to the present invention, by selectively operating a plurality of evaporators, other evaporators can be stopped. Therefore, liquefied gas is not supplied to the stopped evaporator. As a result, frost forms on the stopped evaporator.

着氷の生じることが無く、常に良好な熱交換を行い得る
状態に維持することが出来る。
There is no icing, and it is possible to maintain a state where good heat exchange can be performed at all times.

〈実施例〉 以下上記手段を適用した蒸発器の一実施例について図を
用いて説明する。
<Example> An example of an evaporator to which the above means is applied will be described below with reference to the drawings.

第1図は蒸発器の平面説明図、第2図は蒸発器の側面説
明図、第3図は蒸発器のブロック説明図である。
FIG. 1 is a plan view of the evaporator, FIG. 2 is a side view of the evaporator, and FIG. 3 is a block diagram of the evaporator.

図に於いて、蒸発器Aは二つの蒸発部1.2及び一つの
昇温部3を有して構成されている。蒸発部−1,2と昇
温部3とはパルプ4.5を介して接続されており、これ
等のバルブ4.5を操作することによって、昇温部3に
対し蒸発部1或いは2を選択的に接続し得るように構成
されている。
In the figure, the evaporator A has two evaporating sections 1.2 and one temperature increasing section 3. Evaporation sections 1 and 2 and temperature raising section 3 are connected via pulp 4.5, and by operating these valves 4.5, evaporation section 1 or 2 can be connected to temperature raising section 3. It is configured so that it can be selectively connected.

前記蒸発部1,2及び昇温部3は夫々アルミニウムを押
出成形することによって長手方向に複数のフィン6aを
形成したフィンバイブロを用いて構成されており、フィ
ン6aを介して大気との熱交換を行うことで液化ガスを
蒸発、気化させるものである。
The evaporation sections 1 and 2 and the temperature raising section 3 are each constructed using a fin vibro in which a plurality of fins 6a are formed in the longitudinal direction by extruding aluminum, and heat exchange with the atmosphere is performed through the fins 6a. By doing this, the liquefied gas is evaporated and vaporized.

このため、蒸発部1,2及び昇温部3は、フレームlO
に夫々所定数のフィンバイブロを立てた状態で縦横方向
(第1図に於ける上下、左右方向)に配列すると共に、
これ等のフィンバイブロを並列及び直列接続して構成さ
れている。
For this reason, the evaporation sections 1 and 2 and the temperature raising section 3 are
A predetermined number of fin vibros are arranged vertically and horizontally (in the vertical and horizontal directions in FIG.
It is constructed by connecting these fin vibros in parallel and series.

図に示すように、蒸発部1.2は15本のフィンバイブ
ロを縦方向に3系列で並列させると共に横方向に5本直
列させて構成されている。そして横方向に配列されたフ
ィンバイブロをベンド管7によって直列接続することに
よって3系列の流通路1a〜IC及び流通路28〜2C
を構成すると共に、各、系列の上流側に配列されたフィ
ンバイブロを管8a、8bで接続し、下流側に配列され
たフィンバイブロを管9a、9bで接続することによっ
て、流通路1a〜lc、2a〜2Cを並列接続している
As shown in the figure, the evaporation section 1.2 is constructed by arranging 15 fin vibros in 3 series in the vertical direction and 5 in series in the lateral direction. By connecting the fin vibros arranged in the horizontal direction in series through the bend pipe 7, three series of flow passages 1a to IC and flow passages 28 to 2C are formed.
By connecting the fin vibros arranged on the upstream side of the series with tubes 8a and 8b, and connecting the fin vibros arranged on the downstream side with tubes 9a and 9b, flow paths 1a to lc are constructed. , 2a to 2C are connected in parallel.

前記管8a、8bは供給管8Cによって接続されており
、この供給管8Cの所定位置にフランジ8dが設けられ
ている。そして第3図に示すように前記フランジ8d介
して供給管8CとCE14.!:を接続することによっ
て、CE14に貯蔵された液化ガスを蒸発部1.2に供
給し得るように構成している。
The pipes 8a and 8b are connected by a supply pipe 8C, and a flange 8d is provided at a predetermined position of the supply pipe 8C. As shown in FIG. 3, the supply pipe 8C and CE14. ! : is configured so that the liquefied gas stored in the CE 14 can be supplied to the evaporation section 1.2.

本実施例に於いて、供給管8Cは蒸発部1.2を構成す
るフィンバイブロを直列接続するベンド管7の最も低い
位置よりも更に低い位置に設けられている。このため、
作動を停止している蒸発部1又は2に液化ガスが供給さ
れても、蒸発部1又は2の内部圧力が上昇すると液化ガ
スは容易にCE14側に逆流する。
In this embodiment, the supply pipe 8C is provided at a position lower than the lowest position of the bend pipe 7 that connects the fin vibros that constitute the evaporator section 1.2 in series. For this reason,
Even if the liquefied gas is supplied to the evaporator 1 or 2 which is not operating, the liquefied gas easily flows back toward the CE 14 when the internal pressure of the evaporator 1 or 2 increases.

また管9a、9bには夫々管9a、9bを開閉するため
のバルブ4,5が設けられており、蒸発部1.2はこれ
等のパルプ4.5を介して共通配管11と接続されてい
る。
Further, the pipes 9a and 9b are provided with valves 4 and 5 for opening and closing the pipes 9a and 9b, respectively, and the evaporation section 1.2 is connected to the common pipe 11 via these pulps 4.5. There is.

また昇温部3は30本のフィンバイブロを縦方向に6系
列並列させると共に横方向に5本直列させて構成されて
いる。そして蒸発部1.2と同様に横方向に配列された
フィンバイブロをベンド管7によって直列接続すること
によって6系列の流通路3a〜3fを構成すると共に、
各系列の上流側に位置するフィンバイブロを管12で接
続し、下流側に位置するフィンバイブロを管13で接続
することによって各流通路3a〜3fを並列接続してい
る。
The temperature raising section 3 is constructed by arranging 30 fin vibros in 6 series in the vertical direction and 5 in series in the lateral direction. Similarly to the evaporator section 1.2, by connecting the fin vibros arranged laterally in series through the bend pipes 7, 6 series of flow passages 3a to 3f are constructed.
The fin vibros located on the upstream side of each series are connected through a pipe 12, and the fin vibros located on the downstream side are connected through a pipe 13, thereby connecting the flow paths 3a to 3f in parallel.

前記管12は蒸発部1.2の共通配管11と接続されて
いる。また管13の所定位置にフランジ13aが設けら
れており、このフランジ13aを介して第3図に示す二
次配管15と接続されている。
Said pipe 12 is connected to the common pipe 11 of the evaporator section 1.2. Further, a flange 13a is provided at a predetermined position of the pipe 13, and is connected to a secondary pipe 15 shown in FIG. 3 via this flange 13a.

上記の如く構成した蒸発器Aに於いて、蒸発部1、 2
及び昇温部3に於けるフィンバイブロの数は、液化ガス
の種類、蒸発量等の条件に応じて予め設定、される。
In the evaporator A configured as described above, evaporation sections 1 and 2
The number of fin vibros in the temperature raising section 3 is set in advance according to conditions such as the type of liquefied gas and the amount of evaporation.

即ち、液化ガスの種類、供給圧力、蒸発量、二次側に対
する供給温度、大気条件等の条件が設定されると、蒸発
部1. 2に於ける所要交換熱量、及び昇温部3に於け
る所要交換熱量が設定される。
That is, when conditions such as the type of liquefied gas, supply pressure, evaporation amount, supply temperature to the secondary side, and atmospheric conditions are set, the evaporation section 1. The required amount of heat to be exchanged in 2 and the amount of heat to be exchanged in the temperature increasing section 3 are set.

またフィンバイブロの材質1表面積等の条件が設定され
ると、熱伝達率が設定される。従って、前記所要交換熱
量及び熱伝達率から、蒸発部1,2及び昇温部3の所要
表面積を算出することが可能であり、算出された値に基
づいてフィンバイブロの数を設定することが可能となる
Furthermore, when conditions such as the surface area of the material 1 of the fin vibro are set, the heat transfer coefficient is set. Therefore, it is possible to calculate the required surface areas of the evaporation sections 1 and 2 and the temperature raising section 3 from the required exchange heat amount and heat transfer coefficient, and it is possible to set the number of fin vibros based on the calculated values. It becomes possible.

例えば、アルミニウム製のフィンバイブロを用い、液化
ガスを飽和液体の液化窒素とし、この供給圧力を10k
g/cj fとし、蒸発量を30ONボ/hとし、気化
ガスの供給温度を大気温度−1O°Cとし、大気条件を
温度0℃以上、湿度90%以下として、蒸発部1.2に
於ける所要表面積、及び昇温部3に於ける所要表面積を
算出すると、蒸発部1.2に於ける表面積Atは20.
285ryfとなり、且つ昇温部3に於ける表面積^、
は82.652nfとなる。
For example, using an aluminum fin vibro, the liquefied gas is saturated liquid liquefied nitrogen, and the supply pressure is 10k.
g/cj f, the evaporation amount is 30ON/h, the supply temperature of vaporized gas is atmospheric temperature -10°C, and the atmospheric conditions are 0°C or more and humidity 90% or less. Calculating the required surface area in the temperature rising section 3 and the required surface area in the temperature raising section 3, the surface area At in the evaporating section 1.2 is 20.
285ryf, and the surface area in the temperature rising section 3 is
becomes 82.652nf.

従って、上記の如くして算出した表面積A、、、 A3
と単位長さ当たりのフィンバイブロの表面積の値に基づ
いて、蒸発部1.2及び昇温部3に於けるフィンバイブ
ロの数を設定することが可能である。
Therefore, the surface area A calculated as above, A3
It is possible to set the number of fin vibros in the evaporation section 1.2 and the temperature raising section 3 based on the value of the surface area of the fin vibros per unit length.

前記蒸発部1.2の表面積^1は供給された液化窒素の
飽和液体を飽和蒸気に蒸発させるのに必要な面積であっ
て、大気条件等が前記設定条件よりも悪化した場合に液
化ガスが昇温部3に流出する虞がある。このため、蒸発
部1.2の表面積りは前記値よりも大きく設定すること
が好ましい。
The surface area ^1 of the evaporation section 1.2 is the area necessary to evaporate the supplied saturated liquid of liquefied nitrogen into saturated vapor, and the surface area ^1 of the evaporation section 1.2 is the area necessary to evaporate the supplied saturated liquid of liquefied nitrogen into saturated vapor. There is a possibility that it may leak into the temperature rising section 3. For this reason, it is preferable that the surface area of the evaporation section 1.2 is set larger than the above value.

また液化ガスの種類が異なると、蒸発部1.2の表面積
^1、及び昇温部3の表面積^、は異なる値となる。然
し、蒸発器Aとしては複数の液化ガスに対応し得るよう
に構成されることが好ましい。
Furthermore, if the type of liquefied gas is different, the surface area ^1 of the evaporation section 1.2 and the surface area ^ of the temperature raising section 3 will have different values. However, it is preferable that the evaporator A is configured to be able to handle a plurality of liquefied gases.

このため、蒸発部1.2の表面積^、と昇温部3の表面
積A、との比率は20%乃至35%の範囲で設定するこ
とが有利である。
For this reason, it is advantageous to set the ratio of the surface area ^ of the evaporating section 1.2 to the surface area A of the temperature raising section 3 in the range of 20% to 35%.

上記構成に於いて、例えばバルブ4を開放すると共にバ
ルブ5を閉鎖することによって蒸発部lと昇温部3とを
接続し、CuI2のパルプ14aを開放して該CE14
に加圧貯蔵された液化ガスを管8c、8a、8bを介し
て蒸発部1.2に供給すると、蒸発部1に供給された液
化ガスは該蒸発部1の流通路1a〜ICを流通する過程
で蒸発して飽和蒸気となり、管9a、バルブ4.共通配
管11を通って昇温部3の管12から昇温部3に至り、
この昇温部3の流通路3a〜3fを流通する過程で所定
温度に昇温し、管13から二次配管15を通って図示し
ない機器に供給される。
In the above configuration, for example, by opening the valve 4 and closing the valve 5, the evaporating section 1 and the temperature increasing section 3 are connected, and the CuI2 pulp 14a is opened and the CE14 is opened.
When the liquefied gas stored under pressure is supplied to the evaporation section 1.2 through the pipes 8c, 8a, and 8b, the liquefied gas supplied to the evaporation section 1 flows through the flow passages 1a to IC of the evaporation section 1. In the process, it evaporates and becomes saturated steam, which flows through the pipe 9a and valve 4. It passes through the common pipe 11 and reaches the temperature rising part 3 from the pipe 12 of the temperature rising part 3,
The temperature is raised to a predetermined temperature while flowing through the flow passages 3a to 3f of the temperature raising section 3, and the fluid is supplied from the pipe 13 through the secondary pipe 15 to equipment not shown.

また蒸発部2では液化ガスの流通が無いことから、供給
された液化ガスが蒸発、気化して内部圧力が上昇し、こ
のため、該蒸発部2に新たな液化ガスが供給されること
は無く、従って、蒸発部2には霜、氷等が付着すること
無く待機状態を維持する。
In addition, since there is no flow of liquefied gas in the evaporation section 2, the supplied liquefied gas evaporates and vaporizes, increasing the internal pressure, so that no new liquefied gas is supplied to the evaporation section 2. Therefore, the evaporator 2 is maintained in a standby state without frost, ice, etc. adhering to it.

上記の如くして液化ガスの蒸発、気化を行って所定時間
経過し、蒸発器1に霜或いは氷が付着して該蒸発部1の
蒸発能力が低下したときには、パルプ4を閉鎖すると共
にバルブ5を開放して待機状態にある蒸発部2を昇温部
3と接続することで、CuI2から供給される液化ガス
を蒸発部2で蒸発させて蒸気を昇温部3に供給し、且つ
蒸発部1の作動を停止する。このとき、作動を停止した
蒸発部1は大気により加温されて付着した霜、氷が融解
すると共に、内部にある液化ガスが蒸発、気化して内部
圧力が上昇し、該蒸発部1に新たな液化ガスが供給され
ること無く待−状態となる。
When a predetermined period of time has elapsed after the liquefied gas has been evaporated and vaporized as described above, and frost or ice has adhered to the evaporator 1 and the evaporation capacity of the evaporator 1 has decreased, the pulp 4 is closed and the valve 5 is closed. By opening the evaporator 2 and connecting the evaporator 2 in a standby state to the temperature raising part 3, the liquefied gas supplied from the CuI 2 is evaporated in the evaporator 2 and the vapor is supplied to the temperature raising part 3. Stop the operation of 1. At this time, the evaporator 1, which has stopped operating, is heated by the atmosphere and the adhering frost and ice melts, and the liquefied gas inside evaporates and vaporizes, increasing the internal pressure, causing the evaporator 1 to generate new The system enters a standby state without being supplied with sufficient liquefied gas.

このように、本発明に係る蒸発器Aにあっては、昇温部
3に蒸発部1. 2を選択的に接続することが可能であ
る。このため、作動を停止している蒸発部1又は2は常
に待機状態となり、所望の時期に蒸発部としての機能を
発揮することが可能となる。
As described above, in the evaporator A according to the present invention, the temperature raising section 3 includes the evaporating section 1. 2 can be selectively connected. For this reason, the evaporator 1 or 2, which has stopped operating, is always in a standby state and can function as an evaporator at a desired time.

また現在作動している蒸発部に霜、氷が付着した場合に
は、パルプ4.5の操作によって現在作動している蒸発
部と待機状態にある蒸発部と切り換え使用することが可
能である。このため、常に蒸発器Aの蒸発能力を損なう
こと無く、安定した状態で作動させると共に、霜、氷の
付着した蒸発部の作動を停止させることによって、付着
した霜。
Furthermore, if frost or ice adheres to the currently operating evaporator, it is possible to switch between the currently operating evaporator and the standby evaporator by operating the pulp 4.5. Therefore, by constantly operating the evaporator A in a stable state without impairing its evaporation capacity, and by stopping the operation of the evaporator section on which frost or ice has adhered, it is possible to eliminate the frost that has adhered to it.

氷を融解させることが可能となり、且つ霜、氷が融解し
た後はこの蒸発部を待機状態に維持することが可能とな
る。
It becomes possible to melt ice, and after the frost and ice melt, it becomes possible to maintain this evaporation section in a standby state.

〈発明の効果〉 以上詳細に説明したように本発明に係る低温液化ガス用
蒸発器にあっては、現在作動している蒸発部に霜、氷が
付着した場合に、この蒸発部を待機状態にある蒸発部と
切り換えて作動させることで、蒸発器の蒸発能力を常に
安定させると共に、切り換えによって作動を停止した蒸
発部に付着した霜、氷を大気との熱交換によって融解す
ることが出来る。このため、蒸発器の蒸発能力を常に安
定した状態に維持することが出来る。
<Effects of the Invention> As explained in detail above, in the evaporator for low-temperature liquefied gas according to the present invention, when frost or ice adheres to the currently operating evaporator, the evaporator can be switched to the standby state. By switching the operation to the evaporator section located in the evaporator, the evaporation capacity of the evaporator is always stabilized, and frost and ice attached to the evaporator section, which has stopped operating due to the switch, can be melted by heat exchange with the atmosphere. Therefore, the evaporation capacity of the evaporator can always be maintained in a stable state.

また蒸発器に於ける一つの蒸発部の熱交換面積を、該蒸
発部の熱交換面積と昇温部の熱交換面積の和の20%〜
35%に設定することによって、この蒸発器を複数種類
の液化ガスに対応させることが出来る。
In addition, the heat exchange area of one evaporation section in the evaporator should be 20% to 20% of the sum of the heat exchange area of the evaporation section and the heat exchange area of the heating section.
By setting it to 35%, this evaporator can be made compatible with multiple types of liquefied gases.

また複数の蒸発部及び昇温部とを一体的に構成すること
によって、蒸発器の操作性を容品としたと共に、設置面
積を低減させることが出来る。
Further, by integrally configuring the plurality of evaporation sections and temperature raising sections, the operability of the evaporator can be improved and the installation area can be reduced.

また複数の蒸発部に対する液化ガスの供給口を該蒸発部
を構成するフィンパイプを接続する管の下端よりも下方
に設けることによって、該蒸発部の作動を停止したとき
に供給された液化ガスを逆流させることが出来る等の特
徴を有するものである。
In addition, by providing the liquefied gas supply ports for the plurality of evaporators below the lower ends of the pipes connecting the fin pipes constituting the evaporators, the liquefied gas supplied when the evaporators stop operating is It has features such as being able to reverse flow.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は蒸発器の平面説明図、第2図は蒸発器の側面説
明図、第3図は蒸発器のブロック説明図である。 Aは蒸発器、1.2は蒸発部、la〜lc、2a〜2c
は流通路、3は昇温部、4.5はバルブ、6はフィンバ
イブ、6aはフィン、7はベンド管、8 a〜8 c、
  9 a、  9 b、 12.13は管、8d、1
3aはフランジ、10はフレーム、11は共通配管、1
4はCE、15は二次配管である。 特許出願人  小池酸素工業株式会社
FIG. 1 is a plan view of the evaporator, FIG. 2 is a side view of the evaporator, and FIG. 3 is a block diagram of the evaporator. A is the evaporator, 1.2 is the evaporation section, la to lc, 2a to 2c
is a flow path, 3 is a temperature rising section, 4.5 is a valve, 6 is a fin vibe, 6a is a fin, 7 is a bend pipe, 8 a to 8 c,
9 a, 9 b, 12.13 is a tube, 8d, 1
3a is a flange, 10 is a frame, 11 is a common pipe, 1
4 is CE, and 15 is secondary piping. Patent applicant Koike Oxygen Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)長手方向にフィンを形成した複数のフィンパイプ
を立設すると共にこれ等のフィンパイプを連結して構成
した低温液化ガス用蒸発器であって、供給された低温液
化ガスを蒸発させるための蒸発部を複数設けると共に前
記蒸発部に於いて蒸発したガスを昇温させるための昇温
部を設け、前記各蒸発部の流出口を該流出口を開閉する
ためのパルプを介して共通配管に接続すると共に、前記
共通配管を昇温部の流入口に接続したことを特徴とした
低温液化ガス用蒸発器。
(1) An evaporator for low-temperature liquefied gas constructed by erecting a plurality of fin pipes each having fins formed in the longitudinal direction and connecting these fin pipes to evaporate the supplied low-temperature liquefied gas. A plurality of evaporation sections are provided, and a temperature raising section is provided to raise the temperature of the gas evaporated in the evaporation section, and the outlet of each evaporation section is connected to a common pipe through a pulp for opening and closing the outlet. An evaporator for low-temperature liquefied gas, characterized in that the common pipe is connected to an inlet of a temperature rising section.
(2)一つの蒸発部に於ける熱交換面積がこの蒸発部に
於ける熱交換面積と昇温部に於ける熱交換面積の和¥2
0%乃至35%¥であることを特徴とした請求項(1)
記載の低温液化ガス用蒸発器。
(2) The heat exchange area in one evaporation section is the sum of the heat exchange area in this evaporation section and the heat exchange area in the heating section ¥2
Claim (1) characterized in that the amount is 0% to 35% ¥.
The described evaporator for low temperature liquefied gas.
(3)複数の蒸発部及び昇温部を一つの枠体に取り付け
て一体的に構成したことを特徴とした請求項(1)又は
(2)記載の低温液化ガス用蒸発器。
(3) The evaporator for low-temperature liquefied gas according to claim (1) or (2), characterized in that a plurality of evaporation parts and temperature raising parts are attached to one frame and configured integrally.
(4)複数の蒸発部に低温液化ガスを供給するための供
給口を該蒸発部を構成するフィンパイプ又はフィンパイ
プを接続する管の下端よりも下方に設けたことを特徴と
した請求項(1)乃至(3)何れかに記載の低温液化ガ
ス用蒸発器。
(4) A claim characterized in that a supply port for supplying low-temperature liquefied gas to a plurality of evaporators is provided below the lower end of a fin pipe constituting the evaporator or a pipe connecting the fin pipes. The evaporator for low-temperature liquefied gas according to any one of 1) to (3).
JP31144690A 1990-11-19 1990-11-19 Evaporator for low temperature liquefied gas Pending JPH04185997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31144690A JPH04185997A (en) 1990-11-19 1990-11-19 Evaporator for low temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31144690A JPH04185997A (en) 1990-11-19 1990-11-19 Evaporator for low temperature liquefied gas

Publications (1)

Publication Number Publication Date
JPH04185997A true JPH04185997A (en) 1992-07-02

Family

ID=18017316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31144690A Pending JPH04185997A (en) 1990-11-19 1990-11-19 Evaporator for low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPH04185997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604982A1 (en) * 1992-12-29 1994-07-06 Praxair Technology, Inc. Cryogenic fluid vaporizer system and process
JP2008274975A (en) * 2007-04-25 2008-11-13 Kobe Steel Ltd Liquefied natural gas vaporizing device and method
JP2009030765A (en) * 2007-07-30 2009-02-12 Toho Gas Co Ltd Liquefied natural gas vaporizing device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604982A1 (en) * 1992-12-29 1994-07-06 Praxair Technology, Inc. Cryogenic fluid vaporizer system and process
JP2008274975A (en) * 2007-04-25 2008-11-13 Kobe Steel Ltd Liquefied natural gas vaporizing device and method
JP2009030765A (en) * 2007-07-30 2009-02-12 Toho Gas Co Ltd Liquefied natural gas vaporizing device and method

Similar Documents

Publication Publication Date Title
US20090277207A1 (en) High Speed Defrosting Heat Pump
CN101545702A (en) Condenser of outdoor unit of air conditioner and outdoor unit provided with the condenser
JPH04185997A (en) Evaporator for low temperature liquefied gas
JPS6231263B2 (en)
JPH08291899A (en) Vaporizer for liquefied natural gas and cooling and stand-by holding method thereof
JPH10252994A (en) Method and equipment for vaporizing low temperature liquefied gas
CN214746788U (en) Energy-saving circulating system of freeze dryer
CN205980489U (en) Energy -saving hot vapour defrosting system of air -source heat bump water heater
CN213131989U (en) Water outlet condensing device of air-cooling and water-cooling dual-purpose evaporator
JPH08219599A (en) Refrigerating plant
CN209147484U (en) Cooling system and cooling equipment
JP2002039567A (en) Air conditioner and its operation method
CN208059351U (en) A kind of cryogenic vaporizer defrosts anti-freeze device
JPH0419423B2 (en)
CN205066274U (en) Novel energy -saving uninterrupted cold supply hot air defrosting control system
JPS5826511B2 (en) Defrosting device for refrigerators
JPS6192397A (en) Regenerating method of air thermal evaporator
IT9068011A1 (en) GAS COLD DRYING DEVICE
CN220829669U (en) Continuous dehumidifying and drying device for temperature and humidity verification box
CN207214460U (en) A kind of energy-saving cistern of Teat pump boiler
JP4664530B2 (en) Ice thermal storage air conditioner
JPH11351685A (en) Cooling system
JPS5820859Y2 (en) heat pump equipment
CN106091503A (en) A kind of automatic defrosting system and refrigeration plant
JPH0282074A (en) Multi-stage control type air cooling device