JPH04184075A - Thermal insulating box - Google Patents

Thermal insulating box

Info

Publication number
JPH04184075A
JPH04184075A JP30986990A JP30986990A JPH04184075A JP H04184075 A JPH04184075 A JP H04184075A JP 30986990 A JP30986990 A JP 30986990A JP 30986990 A JP30986990 A JP 30986990A JP H04184075 A JPH04184075 A JP H04184075A
Authority
JP
Japan
Prior art keywords
box
urethane foam
inner box
thermal insulating
hard urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30986990A
Other languages
Japanese (ja)
Inventor
Kazuto Uekado
一登 上門
Hideo Nakamoto
中元 英夫
Tomonao Amayoshi
智尚 天良
Yasuaki Tanimoto
康明 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP30986990A priority Critical patent/JPH04184075A/en
Publication of JPH04184075A publication Critical patent/JPH04184075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)

Abstract

PURPOSE:To improve a heat transfer rate of a hard urethane foam and further improve a thermal insulating performance of a thermal insulating box by a method wherein the thermal insulating box is comprised of an outer box, the hard urethane foam containing carbonic acid gas adsorption agent and having as foam agent substance 1,1-dichloro 1-fluoroethane (HCFC-1416) and an inner box molded by high nitrile ABS resin compound. CONSTITUTION:A thermal insulation box is comprised of an outer box 2, a hard urethane foam 4 containing carbonic acid gas adsorption agent, and an inner box 5 molded by a high nitrile ABS resin compound got through a polymerization of monomer mixture of a vinyl cyanide compound with 57 to 63wt% and aromatic vinyl compound with 37 to 43wt% under a conjugated diene synthetic rubber with 14 to 19wt%. Carbonic acid gas contained in the hard urethane foam can be removed with carbonic acid gas adsorption agent and at the same time since high nitrile ABS resin compound having minute molecular structure with a hard gas permeability is used as the inner box material, its air permeability is low. In addition, since it has a high chemical resistance against HCFC-141b, no cracks are generated and no immersion of air through the cracks and it shows a superior thermal insulating performance in view of aging characteristic.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫等に用いる断熱箱体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat insulating box for use in refrigerators, freezers and the like.

従来の技術 近年、省エネルギーの観点よシ発泡断熱材の熱伝導率を
低減し、断熱性能を向上することが強く望まれている。
BACKGROUND OF THE INVENTION In recent years, from the viewpoint of energy conservation, it has been strongly desired to reduce the thermal conductivity of foam insulation materials and improve their insulation performance.

このため代表的な発泡断熱材である硬質ウレタンフオー
ムの製造にあたっては、主原料として用いるポリエーテ
ルポリオール及びポリイソシアネート−1助剤原料と1
て用いる整泡剤・触媒・発泡剤に対し、原料面から種々
の加養取組みがなされている。このような取組において
特に硬質ウレタンフオームの熱伝導率を低減するには、
気泡中のガス成分の気体熱伝導率を改善することが重要
である。特に発泡剤として、オゾン層破壊による環境問
題がなく、かつ気体熱伝導率の小さな1,1−ジクロロ
1−フルオロエタン(以下HCFC−141bと称する
)を用い、気泡中をガスとして満たすことが不可欠であ
る。
For this reason, in the production of rigid urethane foam, which is a typical foam insulation material, polyether polyol used as the main raw material and polyisocyanate-1 auxiliary raw material and
Various efforts have been made to improve the foam stabilizers, catalysts, and blowing agents used in the production of foams from the viewpoint of raw materials. In such efforts, especially to reduce the thermal conductivity of rigid urethane foam,
It is important to improve the gas thermal conductivity of the gas components in the bubbles. In particular, it is essential to use 1,1-dichloro-1-fluoroethane (hereinafter referred to as HCFC-141b) as a blowing agent, which does not cause environmental problems due to ozone layer depletion and has low gas thermal conductivity, to fill the bubbles with gas. It is.

しかしながら、ウレタンフオーム原料中の残留水分や断
熱箱体の面材から透過してくる水蒸気が、インシアネー
ト原料や残存未反応のインシアネートと反応し、発生し
た炭酸ガスがフオーム気泡中に含まれる現象を避けるこ
とができなかった。すなわち、HCFC−141bのガ
ス熱伝導率が、0.0095W/mK(0,00821
al/mhc)であるのに対し、炭酸ガスの熱伝導率0
 、0163 W/mK(0,01401al/mhc
、:lと大きく、気体熱伝導率を改善し、フオームの熱
伝導率を向上していく上で発生する炭酸ガスの存在が大
きな問題であった。
However, there is a phenomenon in which the residual moisture in the urethane foam raw material and the water vapor that permeates through the face material of the insulating box react with the incyanate raw material and the remaining unreacted incyanate, and the generated carbon dioxide gas is contained in the foam bubbles. could not be avoided. That is, the gas thermal conductivity of HCFC-141b is 0.0095 W/mK (0,00821
al/mhc), whereas the thermal conductivity of carbon dioxide is 0
, 0163 W/mK (0,01401 al/mhc
, :l, and the existence of carbon dioxide gas generated was a major problem in improving the gas thermal conductivity and improving the thermal conductivity of the foam.

従来、系中から発生する炭酸ガスの除去に対しては、例
えば、特開昭57−49628号公報に示されるような
方法が提案されている。この特開昭57−49628号
公報を説明するとウレタン原料中に炭酸ガス吸着剤を添
加し発泡させてウレタンフオームを生成するもので、こ
れによシ系中で発生する炭酸ガスを吸着させ、除去する
ことが特徴となっている。
Conventionally, for removing carbon dioxide gas generated from the system, a method as disclosed in, for example, Japanese Unexamined Patent Publication No. 57-49628 has been proposed. To explain this Japanese Patent Application Laid-open No. 57-49628, a carbon dioxide adsorbent is added to a urethane raw material and foamed to produce a urethane foam, which adsorbs and removes carbon dioxide gas generated in the system. It is characterized by

発明が解決しようとする課題 しかし、このようなウレタンフオームを断熱箱体の断熱
材に使用した場合、初期においては気泡中の炭酸ガスが
吸着除去されるため熱伝導率は小さく、優れた断熱性能
を示すが、一方、気泡中の圧力が低下するため、空気が
断熱箱体のプラスチック製の内箱材を透過し侵入し、断
熱性能が経時的に急激に悪化するという問題があった。
Problems to be Solved by the Invention However, when such urethane foam is used as a heat insulating material for a heat insulating box, the carbon dioxide gas in the bubbles is adsorbed and removed in the initial stage, so the thermal conductivity is low and excellent heat insulating performance is not achieved. However, on the other hand, as the pressure in the bubbles decreases, air penetrates through the plastic inner box material of the heat insulating box, causing a problem in that the heat insulating performance deteriorates rapidly over time.

第3図で説明すると、1は断熱箱体で鉄板からなる外箱
2とABS樹脂製の内箱3、及び両箱間に一体発泡して
なる硬質ウレタンフオーム4から構成されている。内箱
3には汎用のABS樹脂を用いている。汎用のABS樹
脂とは共役ジエン系合成ゴムの存在化に10〜40重量
%のシアン化ビニル化合物と60〜90重量%の芳香族
ビニル化合物との単量体混合物を重合させて得た、すな
わちグラフト共重合体にシアン化ビニル化合物の含有率
が60〜90重量%であるシアン化ビニル化合物と芳香
族ビニル化合物共重合体を混合した樹脂組成物をいう。
Referring to FIG. 3, numeral 1 is a heat insulating box body which is composed of an outer box 2 made of iron plate, an inner box 3 made of ABS resin, and a hard urethane foam 4 integrally foamed between the two boxes. The inner box 3 is made of general-purpose ABS resin. General-purpose ABS resin is obtained by polymerizing a monomer mixture of 10 to 40% by weight of vinyl cyanide compound and 60 to 90% by weight of aromatic vinyl compound in the presence of conjugated diene synthetic rubber, i.e. It refers to a resin composition in which a vinyl cyanide compound and an aromatic vinyl compound copolymer having a vinyl cyanide compound content of 60 to 90% by weight are mixed in a graft copolymer.

また、HCFC−141bを発泡剤成分とする硬質ウレ
タンフオーム4中にはあらかじめウレタン原料中に添加
し発泡過程で気泡中に分散した合成ゼオライト粉末から
なる炭酸ガス吸着剤が含まれている。
Furthermore, the hard urethane foam 4 containing HCFC-141b as a blowing agent component contains a carbon dioxide adsorbent made of synthetic zeolite powder that has been added to the urethane raw material in advance and dispersed in the bubbles during the foaming process.

このような構成においては、気泡中に含まれる炭酸ガス
は、合成ゼオライト粉末が成る炭酸ガス吸着剤に吸着除
去され、硬質ウレタンフオーム4の熱伝導率は気体熱伝
導率が改善し小さくなり断熱性能は向上する。しかし、
経時的には、炭酸ガスが除去された分、気泡中の圧力は
低下し、内箱3を透過して空気がよシ多く侵入してくる
。この結果、断熱箱体1の断熱性能を悪化させる問題が
あった。
In such a configuration, the carbon dioxide contained in the bubbles is adsorbed and removed by the carbon dioxide adsorbent made of synthetic zeolite powder, and the thermal conductivity of the rigid urethane foam 4 decreases as the gas thermal conductivity improves, resulting in improved insulation performance. will improve. but,
Over time, as carbon dioxide gas is removed, the pressure in the bubbles decreases, and more air penetrates through the inner box 3. As a result, there was a problem that the heat insulation performance of the heat insulation box 1 was deteriorated.

また、HCFC−141bを発泡剤成分とした場合、ケ
ミカルアタック性の強さから内箱3にクラックを発生さ
せ、外観品質の悪さと共に空気の侵入が一層増加するた
め前記断熱箱体1の断熱性能の悪化がよシ促進する問題
があシ、経時的にも優れた断熱性能を維持することが課
題であった。
In addition, when HCFC-141b is used as a blowing agent component, cracks occur in the inner box 3 due to its strong chemical attack properties, which deteriorates the appearance quality and further increases air infiltration, so that the insulation performance of the insulation box 1 increases. There is a problem in that the deterioration of the thermal insulation performance is accelerated, and the challenge is to maintain excellent thermal insulation performance over time.

本発明は、上記課題に鑑み、HCFC−141bを発泡
剤成分とする硬質ウレタンフオーム中に含まれる炭酸ガ
スを吸着除去し、硬質ウレタンフオームの熱伝導率を改
善すると共に、空気の侵入を防止し断熱箱体の断熱性能
を改善することを目的とする。
In view of the above problems, the present invention adsorbs and removes carbon dioxide contained in a hard urethane foam containing HCFC-141b as a blowing agent component, improves the thermal conductivity of the hard urethane foam, and prevents air from entering. The purpose is to improve the insulation performance of the insulation box.

課題を解決するための手段 本発明は、上記課題を解決するために、外箱と、炭酸ガ
ス吸着剤を含有する硬質ウレタンフオームと、共役ジエ
ン系合成ゴム14〜19重量部の存在下に57〜63重
量%のシアン化ビニル化合物と37〜43重量%の芳香
族ビニル化合物との単量体混合物を重合させて得た。す
なわちグラフト共重合体にシアン化ビニル化合物の含有
率が37〜43重量%であるシアン化ビニル化合物と芳
香族ビニル化合物共重合体を混合した高ニトリルABS
樹脂組成物を成型した内箱とよ構成る断熱箱体を形成す
るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an outer box, a hard urethane foam containing a carbon dioxide adsorbent, and 57 parts by weight of a conjugated diene synthetic rubber in the presence of 14 to 19 parts by weight. It was obtained by polymerizing a monomer mixture of ~63% by weight of vinyl cyanide compound and 37-43% by weight of aromatic vinyl compound. That is, high nitrile ABS in which a vinyl cyanide compound and an aromatic vinyl compound copolymer having a vinyl cyanide compound content of 37 to 43% by weight are mixed into a graft copolymer.
A heat insulating box body is formed with an inner box molded from a resin composition.

ここでシアン化ビニル化合物としてはアクリロニトリル
、芳香族ビニル化合物としてはスチレン等を用いること
ができる。
Here, acrylonitrile can be used as the vinyl cyanide compound, and styrene can be used as the aromatic vinyl compound.

作  用 上記構成によって硬質ウレタンフオーム中に含まれる炭
酸ガスは、炭酸ガス吸着剤によって除去できると共に炭
酸ガスを吸着し気泡中の圧力が減少した場合でも、分子
構造が緻密で気体透過しにくい高ニトリルABS樹脂組
成物を内箱材に使用しているため、空気の透過は小さく
、さらにはHCFC−141bに対する耐薬品性が大き
いためクラック73:発生ぜず−クラ+gり部を介1−
て四僻の侵入がないので経時的にも優れた断熱性能を示
すのである。また、上記構成による高ニトリルABS樹
脂組成物は、断熱箱体の内箱材として要求される真空成
型性や外観品質等において問題なく適用することが可能
である。このように長期にわたって断熱性能の優れた断
熱箱体を提供することができるのである。
Effect With the above structure, carbon dioxide contained in the hard urethane foam can be removed by the carbon dioxide adsorbent, and even if the pressure in the bubbles decreases by adsorbing carbon dioxide, the high nitrile foam has a dense molecular structure and is difficult for gas to permeate. Since ABS resin composition is used for the inner box material, air permeation is small, and furthermore, it has high chemical resistance to HCFC-141b, so cracks 73: do not occur through the crack + g portion.
Since there is no intrusion of foreign material, it shows excellent insulation performance over time. Further, the high nitrile ABS resin composition having the above structure can be used without problems in terms of vacuum formability, appearance quality, etc. required as an inner box material of a heat insulating box. In this way, it is possible to provide a heat insulating box with excellent heat insulating performance over a long period of time.

実施例 以下、実施例をあげて本発明の断熱箱体を第1図〜第2
図を用いて説明する。なお、従来と同一構成のものにつ
いては同一番号を符して説明を省略する。
Examples Below, examples will be given to illustrate the heat insulating box of the present invention in Figures 1 to 2.
This will be explained using figures. Incidentally, those having the same configuration as the conventional one are denoted by the same numbers and the description thereof will be omitted.

5は、内箱であシ、表1に組成内容を示したようにシア
ン化ビニル化合物としてアクリロニトリルを、芳香族ビ
ニル化合物としてスチレンをモノマーとす2高ニトリル
ABS樹脂組成物をコートハンガーダイ付き押し出し機
で溶融して平板に加工、この平板を真空成型機で成形し
たものである。
5 is an inner box, and as shown in Table 1, a high nitrile ABS resin composition containing acrylonitrile as a vinyl cyanide compound and styrene as an aromatic vinyl compound as monomers is extruded using a coat hanger die. It is melted and processed into a flat plate using a machine, and this flat plate is then molded using a vacuum forming machine.

この内箱5を外箱2にはめ込んだ後、表1に示すような
炭酸ガス吸着剤6(合成ゼオライト粉末束ソー■製5A
)ウレタン原料を内箱5と外箱2の両箱間に注入充填し
、硬質ウレタンフオーム4を生成、断熱箱体6を得てい
る。
After fitting this inner box 5 into the outer box 2, use a carbon dioxide adsorbent 6 (synthetic zeolite powder bundle 5A made by Thor) as shown in Table 1.
) A urethane raw material is injected and filled between the inner box 5 and the outer box 2 to produce a hard urethane foam 4 and obtain a heat insulating box body 6.

なお、前記平板における内箱真空成型時の外観、内箱5
を外箱2にはめ込む際の内箱5のクラックの有無につい
ての結果を表1に示した。また、断熱箱体6に充填した
硬質ウレタンフオーム4の熱伝導率を発泡後1日後と2
50日後の条件でそれぞれ断熱箱体6からサンプリング
して測定した結果を同様に表1に示した。
In addition, the appearance of the flat plate when the inner box is vacuum formed, the inner box 5
Table 1 shows the results regarding the presence or absence of cracks in the inner box 5 when the inner box 5 was fitted into the outer box 2. In addition, the thermal conductivity of the hard urethane foam 4 filled in the heat insulating box 6 was measured 1 day after foaming and 2 days after foaming.
Table 1 also shows the results of samples taken from the heat insulating box 6 and measured after 50 days.

比較例として、組成内容の異なるABS樹脂組成物原料
処方の異なる硬質ウレタンフオームを用いたときの結果
について同時に表1に示した(比較例A−D)。
As a comparative example, Table 1 also shows the results when using rigid urethane foams having different ABS resin composition raw material formulations with different composition contents (Comparative Examples A to D).

(以下 余 白) このように本発明の断熱箱体6は、長期にわたって優れ
た断熱性能を維持すると共に、内箱5の品質においても
問題なく、容易に安定して提供することが可能である。
(Hereinafter referred to as margins) As described above, the heat insulating box 6 of the present invention maintains excellent heat insulating performance over a long period of time, and there is no problem with the quality of the inner box 5, making it possible to easily and stably provide the inner box 5. .

実施例や比較例から判るように、炭酸ガス吸着剤を硬質
ウレタンフオーム4に添加した場合、初期においては、
気泡中の炭酸ガスが吸着除去され、硬質ウレタンフオー
ム4の熱伝導率は小さく断熱性能は改良されるが、25
0日後では、モノマー混合物中のアクリロニトリルの組
成比が、57重量%以上のものから製造された高ニトリ
ルABS樹脂組成物からなる内箱6でないと、熱伝導率
が大きく劣化していることが判った。これは、内箱6を
形成するABS樹脂組成物の分子構造が緻密になシ、空
気の侵入が小さくなるため、炭酸ガス吸着剤により気泡
中の炭酸ガスが吸着除去され気泡中の圧力が低下しても
空気の透過が少なく、かつ内箱5はHCFCに対する耐
薬品性が優れているためクラックの発生が冷却運転時に
おいてなく、クラック部分を介しての空気の侵入がない
ため硬質ウレタンフオーム4の熱伝導率の劣化がないの
である。なお、アクリロニトリルの組成比が64重量%
を越え共役ジエン系ゴム分が13%を下回わったり、2
0%を越えると内箱5の真空成型性や、外箱2にはめ込
む際の耐クラツク性の弱さに起因した割れの発生があり
、内箱6の品質確保の上で大きな問題となるのである。
As can be seen from the Examples and Comparative Examples, when a carbon dioxide adsorbent is added to the hard urethane foam 4, initially,
Carbon dioxide gas in the bubbles is adsorbed and removed, and the thermal conductivity of the hard urethane foam 4 is small and the heat insulation performance is improved, but 25
After 0 days, it was found that the thermal conductivity deteriorated significantly unless the inner box 6 was made of a high nitrile ABS resin composition manufactured from a monomer mixture with a composition ratio of acrylonitrile of 57% by weight or more. Ta. This is because the molecular structure of the ABS resin composition that forms the inner box 6 is dense, and the intrusion of air is reduced, so the carbon dioxide gas adsorbent adsorbs and removes the carbon dioxide gas in the bubbles, reducing the pressure in the bubbles. In addition, since the inner box 5 has excellent chemical resistance against HCFC, cracks do not occur during cooling operation, and since there is no air intrusion through cracked parts, the hard urethane foam 4 There is no deterioration in thermal conductivity. In addition, the composition ratio of acrylonitrile is 64% by weight.
If the conjugated diene rubber content exceeds 13% or falls below 2.
If it exceeds 0%, cracks may occur due to poor vacuum formability of the inner box 5 and weak crack resistance when fitting it into the outer box 2, which poses a major problem in ensuring the quality of the inner box 6. be.

このように、熱伝導率の経時劣化が小さく、又、内箱5
の品質上も問題なく、優れた品質を有する断熱箱体6が
得られるのである。
In this way, the deterioration of thermal conductivity over time is small, and the inner box 5
The heat insulating box body 6 having excellent quality can be obtained without any problem in terms of quality.

発明の効果 以上のように本発明は、外箱と、炭酸ガス吸着剤を含有
する硬質ウレタンフオームと、共役ジエン系合成ゴム1
4〜19重量部の存在下に57〜63重量%のシアン化
ビニル化合物と37〜43重量%の芳香族ビニル化合物
との単量体混合物を重合させて得た高ニトリルABS樹
脂組成物を成形した内箱とよりなる断熱箱体であるから
、硬質ウレタンフオーム中に発生した炭酸ガスは容易に
吸着除去が可能である。また、炭酸ガスが炭酸ガス吸着
剤によシ吸着され気泡中の圧力が低下した場合でも外部
からの経時的な空気の侵入を防ぐことができる。又、冷
却運転時の内箱クラックもなく、クラックを介しての空
気侵入もないのである。
Effects of the Invention As described above, the present invention comprises an outer case, a hard urethane foam containing a carbon dioxide adsorbent, and a conjugated diene-based synthetic rubber 1.
A high nitrile ABS resin composition obtained by polymerizing a monomer mixture of 57 to 63% by weight of a vinyl cyanide compound and 37 to 43% by weight of an aromatic vinyl compound in the presence of 4 to 19 parts by weight is molded. Since it is an insulated box body consisting of a hard urethane inner box, carbon dioxide gas generated in the hard urethane foam can be easily adsorbed and removed. Moreover, even when carbon dioxide gas is adsorbed by the carbon dioxide adsorbent and the pressure in the bubbles decreases, it is possible to prevent air from entering from outside over time. Furthermore, there are no cracks in the inner box during cooling operation, and no air intrusion through cracks.

この結果、硬質ウレタンフオームの熱伝導率は小さいま
まで経時的に維持され、優れた断熱性能を長期にわたっ
て有する環境問題のない断熱箱体を提供することができ
るのである。又、内箱は、真空成型性や耐クラツク性に
おいても問題なく、優れた外観品質を保持することが可
能である。
As a result, the thermal conductivity of the rigid urethane foam remains low over time, making it possible to provide a heat insulating box that has excellent heat insulating performance over a long period of time and is free from environmental problems. Moreover, the inner box has no problems in vacuum formability or crack resistance, and can maintain excellent appearance quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における断熱箱体の一部を切
シ欠いた斜視図、第2図は同断熱箱体の断面図、第3図
は従来例の断熱箱体の断面図である。 2・・・・・・外箱、4・・・・・・硬質ウレタンフオ
ーム、5・・・・・・内箱、6・・・・・・断熱箱体。 代理人の氏名 弁理士 小鍜治  明 ほか2名2−外
角 6−1町杷看俸 ts1図 第2図
Fig. 1 is a partially cutaway perspective view of a heat insulating box according to an embodiment of the present invention, Fig. 2 is a sectional view of the same heat insulating box, and Fig. 3 is a sectional view of a conventional heat insulating box. It is. 2...Outer box, 4...Hard urethane foam, 5...Inner box, 6...Insulating box body. Name of agent: Patent attorney Akira Okaji and two others

Claims (1)

【特許請求の範囲】[Claims] 外箱と、炭酸ガス吸着剤を含有し、1,1−ジクロロ1
−フルオロエタンを発泡剤成分とする硬質ウレタンフォ
ームと、共役ジエン系合成ゴム14〜19重量部の存在
下に57〜63重量%のシアン化ビニル化合物と37〜
43重量%の芳香族ビニル化合物との単量体混合物を重
合させて得た高ニトリルABS樹脂組成物を成形した内
箱とよりなる断熱箱体。
Contains an outer box and a carbon dioxide adsorbent, and contains 1,1-dichloro1
- Rigid urethane foam containing fluoroethane as a blowing agent component, and 57 to 63% by weight of a vinyl cyanide compound in the presence of 14 to 19 parts by weight of conjugated diene synthetic rubber;
A heat insulating box body comprising an inner box molded from a high nitrile ABS resin composition obtained by polymerizing a monomer mixture with 43% by weight of an aromatic vinyl compound.
JP30986990A 1990-11-14 1990-11-14 Thermal insulating box Pending JPH04184075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30986990A JPH04184075A (en) 1990-11-14 1990-11-14 Thermal insulating box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30986990A JPH04184075A (en) 1990-11-14 1990-11-14 Thermal insulating box

Publications (1)

Publication Number Publication Date
JPH04184075A true JPH04184075A (en) 1992-07-01

Family

ID=17998279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30986990A Pending JPH04184075A (en) 1990-11-14 1990-11-14 Thermal insulating box

Country Status (1)

Country Link
JP (1) JPH04184075A (en)

Similar Documents

Publication Publication Date Title
PT685512E (en) METHOD FOR PREPARING RIGID OPEN CELL POLYURETHANE FOAMS
JP4978979B2 (en) Vacuum insulation core material and vacuum insulation material
JPH04184075A (en) Thermal insulating box
US5898039A (en) Foaming method
JPH0490483A (en) Thermal insulating box
JP2004244529A (en) Expandable particle of styrene-based resin, method for producing the same and styrene-based resin foam
KR20060046568A (en) Use of polyamide-based outer layers for production of inliners for refrigeration equipment
JPH03292113A (en) Thermally-insulated box body
JPH04184073A (en) Heat insulating box body
JPH04217774A (en) Heat insulating box body
JPH0641161B2 (en) Method for producing styrene resin foam sheet and styrene resin foam sheet for thermoforming
JPH0468285A (en) Heat-insulated box
JPH04240377A (en) Adiabatic box
JPH04176612A (en) Heat insulating box
JPH06147745A (en) Heat insulating box body
JP2543084B2 (en) Insulated box
JPH07292148A (en) Heat-insulating box body
JPH0278885A (en) Refrigerator
JPH0796573A (en) Heat-insulating box
JPS58136633A (en) Expanded polypropylene resin particle and its preparation
JPH0587440A (en) Heat-insulated box
JPH029609A (en) Heat insulating body
JPH05220759A (en) Heat insulating box body
JPH0493581A (en) Heat-insulated box
JP2002174486A (en) Refrigerator door