JPH04183945A - Cylinder direct injection type spark ignition engine - Google Patents

Cylinder direct injection type spark ignition engine

Info

Publication number
JPH04183945A
JPH04183945A JP2311656A JP31165690A JPH04183945A JP H04183945 A JPH04183945 A JP H04183945A JP 2311656 A JP2311656 A JP 2311656A JP 31165690 A JP31165690 A JP 31165690A JP H04183945 A JPH04183945 A JP H04183945A
Authority
JP
Japan
Prior art keywords
fuel
intake
fuel injection
engine
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2311656A
Other languages
Japanese (ja)
Inventor
Takanobu Ueda
貴宣 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2311656A priority Critical patent/JPH04183945A/en
Publication of JPH04183945A publication Critical patent/JPH04183945A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To stabilize combustion of stratified air-fuel mixture, increase output in the case of low load operation and improve properties of exhaust gas by arranging a variable valve timing device at least in one of intake and exhaust valves, and increasing overlap of the intake and exhaust valves in the case of the low load operation more than that in the case of high load operation. CONSTITUTION:A variable valve timing device 30 is arranged on a cam shaft to drive an intake valve, and fuel injection valves 5 to inject fuel directly are also arranged in respective cylinders. Since the respective fuel injection valves 5 carry out divided injection of the fuel in one stroke of the respective cylinders, the valves having high operational speed equipped with piezoelectric elements are used therefor, and in the case an engine load is less than a prescribed value, at least a part of requested fuel injection volume according to an engine operational condition is injected into the cylinders so that air-fuel mixture can be formed in the vicinity of sparking plugs 16. In order to carry out such various controls of an engine 1, a ECU 20 to input output signals from a crank angle sensor 22, an accel opening sensor 24 and so on are arranged, and the variable valve timing device 30 is controlled by means of this ECU 20 so that overlap of intake and exhaust valves in the case of low load operation can be increased more than that in the case of high load operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒内直接噴射式火花点火機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an in-cylinder direct injection spark ignition engine.

〔従来の技術〕[Conventional technology]

気筒内に燃料を直接噴射する燃料噴射弁を備え、燃料噴
射量が少ない比較的低負荷の運転時には要求燃料噴射量
の少くとも一部を気筒圧縮行程中に噴射して点火栓近傍
に混合気を成層させることにより希薄混合気燃焼を行な
うようにした筒内直接噴射式火花点火機関が公知である
Equipped with a fuel injection valve that directly injects fuel into the cylinder, during relatively low-load operation with a small fuel injection amount, at least a portion of the required fuel injection amount is injected during the cylinder compression stroke to create a mixture near the spark plug. An in-cylinder direct injection spark ignition engine that performs lean mixture combustion by stratifying fuel is known.

この種の内燃機関の例としては本願出願人により特開平
2−169834号公報に提案されたものがある。
An example of this type of internal combustion engine is one proposed in Japanese Patent Laid-Open No. 2-169834 by the applicant of the present invention.

同公報に提案された筒内直接噴射式火花点火機関では、
要求燃料噴射量が所定の第1の噴射量より少い場合には
要求燃料噴射量の全量を気筒圧縮行程中に噴射し、要求
燃料噴射量が」二記第1の噴射量より大きく、かつ所定
の第2の噴射量より小さい場合には要求燃料噴射量の一
部を圧縮行程中に噴射するようにして残りの燃料は前も
って吸気行程中に噴射するようにしている。
In the in-cylinder direct injection spark ignition engine proposed in the same bulletin,
If the required fuel injection amount is less than the predetermined first injection amount, the entire amount of the required fuel injection amount is injected during the cylinder compression stroke, and if the required fuel injection amount is greater than the first injection amount, and If the required fuel injection amount is smaller than the second predetermined injection amount, a part of the required fuel injection amount is injected during the compression stroke, and the remaining fuel is injected in advance during the intake stroke.

このように燃料を分割噴射することにより、吸気行程中
に噴射された燃料は筒内全体に火炎伝播可能な均一希薄
混合気を形成し、圧縮行程中に噴射された燃料は点火栓
近傍に成層され、着火可能な比較的濃い混合気を形成す
るため、混合気の着火と火炎の伝播が良好になり、燃焼
状態が向上する。また、要求燃料噴射量が比較的多いと
きに燃料の全量を圧縮行程中に噴射した場合に点火栓付
近に局部的に過濃混合気が形成されることにより生じる
スモーク発生や出力低下の問題が解決される。
By splitting the fuel injection in this way, the fuel injected during the intake stroke forms a homogeneous lean mixture that allows flame propagation throughout the cylinder, and the fuel injected during the compression stroke forms a stratified mixture near the ignition plug. The fuel mixture forms a relatively rich mixture that can be ignited, which improves the ignition of the mixture and the propagation of flame, resulting in improved combustion conditions. In addition, when the required fuel injection amount is relatively large and the entire amount of fuel is injected during the compression stroke, the problem of smoke generation and output reduction caused by locally forming a rich mixture near the ignition plug can be avoided. resolved.

要求燃料量が更に増大して前記第2の噴射歯辺」−にな
り吸気行程噴射のみによっても点火栓により着火可能な
濃度の均一混合気を筒内金体に形成できるようになると
、圧縮行程噴射は停止し要求燃料噴射量の全量が吸気行
程中に噴射されるようにする。(或いは、この場合も燃
料噴射量の一部を圧縮行程中に噴射するようにしても良
い。)上記のように分割燃料噴射を行なうことにより燃
料噴射量の少い低負荷領域では安定した着火を得るとと
もに、燃料噴射量の多い領域では空気利用率を向上して
良好な燃焼を得ることが可能となっている。
When the required amount of fuel increases further to reach the second injection tooth side, and it becomes possible to form a homogeneous mixture in the cylinder metal body with a concentration that can be ignited by the ignition plug by only intake stroke injection, the compression stroke Injection is stopped so that the entire required fuel injection amount is injected during the intake stroke. (Alternatively, in this case as well, part of the fuel injection amount may be injected during the compression stroke.) By performing split fuel injection as described above, stable ignition can be achieved in low load regions where the fuel injection amount is small. At the same time, it is possible to improve the air utilization rate and obtain good combustion in areas where the amount of fuel injection is large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記特開平2−169834号公報の筒内噴射式火花点
火機関は、全般的に希薄混合気による燃焼を可能とする
ものであるが、燃料噴射量の少ない低負荷運転時には燃
焼が不安定になる場合がある。すなわち低負荷運転時に
は主として成層混合気燃焼が行なわれているため、混合
気成層領域周囲のガス温度が燃焼によっても充分に上昇
せず燃焼室壁温が比較的低くなる傾向にある。このため
吸入空気が燃焼室内で充分に昇温されず着火前の混合気
温度が低くなってしまう。混合気温度の低下は燃料の気
化を遅らせ、混合気燃焼速度の低下を招いて気筒内の燃
焼ガス温度を低下させるため、成層混合気の燃焼中は燃
焼室壁温度は上昇せず、燃焼速度低下による燃焼の不安
定化が生じ、機関振動の増大や出力低下、排気ガス性状
の悪化等を生じる場合がある。
The direct-injection spark ignition engine disclosed in JP-A-2-169834 is generally capable of combustion with a lean mixture, but combustion becomes unstable during low-load operation with a small amount of fuel injection. There are cases. That is, during low-load operation, stratified air-fuel mixture combustion is mainly performed, so the gas temperature around the air-fuel mixture stratified region does not rise sufficiently due to combustion, and the combustion chamber wall temperature tends to become relatively low. For this reason, the temperature of the intake air is not sufficiently raised in the combustion chamber, and the temperature of the air-fuel mixture before ignition becomes low. A decrease in the mixture temperature delays the vaporization of the fuel, leading to a decrease in the combustion rate of the mixture and lowering the combustion gas temperature in the cylinder. Therefore, during combustion of a stratified mixture, the combustion chamber wall temperature does not increase and the combustion rate decreases. This decrease may cause combustion to become unstable, resulting in increased engine vibration, decreased output, and worsened exhaust gas properties.

上記問題を解決するため、低負荷時に成る程度吸入空気
量を絞り、燃焼ガス量を減らして筒内温度を上昇させる
ことも考えられるが、吸気絞りによるポンピングロスが
増大し、機関出力の低下や燃費増大を生じるため好まし
くない。
In order to solve the above problem, it is possible to reduce the amount of intake air at low loads to reduce the amount of combustion gas and raise the cylinder temperature, but this increases the pumping loss due to intake throttling, resulting in a decrease in engine output. This is not preferable because it increases fuel consumption.

本発明は、上記に鑑み筒内直接噴射式火花点火機関の低
負荷時の燃焼を改善することを目的としている。
In view of the above, an object of the present invention is to improve combustion during low load in a direct injection spark ignition engine.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば機関の筒内に燃料を直接噴射可能な燃料
噴射弁を備え、機関負荷が所定値以下の場合に機関運転
状態に応じた要求燃料噴射量の少なくとも一部を気筒内
に噴射して点火栓の近傍に混合気を形成する筒内直接噴
射式火花点火機関において、 吸気弁と排気弁の少くとも一方に可変バルブタイミング
装置を設け、機関低負荷運転時には機関高負荷運転時よ
りも吸排気弁のオーバラップを増大させるようにしたこ
とを特徴とする筒内直接噴射式火花点火機関が提供され
る。
According to the present invention, a fuel injection valve capable of directly injecting fuel into the cylinder of an engine is provided, and when the engine load is below a predetermined value, at least a part of the required fuel injection amount according to the engine operating state is injected into the cylinder. In a direct injection spark ignition engine that forms a mixture near the ignition plug, a variable valve timing device is installed on at least one of the intake valve and exhaust valve, so that when the engine is running at low load, the timing is lower than when the engine is running at high load. There is also provided an in-cylinder direct injection spark ignition engine characterized in that the overlap between intake and exhaust valves is increased.

5作 用〕 機関低負荷時には吸排気弁のオーバラップが増大するこ
七により燃焼室内に残留する高温の既燃ガス量が増大す
る。この残留既燃ガスは吸入行程時に新気と混合するた
め気筒内ガス温度が上昇し、着火前の混合気温度を高く
保つことができるため燃料の気化が促進され燃焼速度も
向上し、成層燃焼時にも燃焼が安定化する。
5. Effect] When the engine is under low load, the overlap between the intake and exhaust valves increases, which increases the amount of high-temperature burnt gas remaining in the combustion chamber. This residual burnt gas mixes with fresh air during the intake stroke, increasing the gas temperature in the cylinder and keeping the mixture temperature high before ignition, promoting fuel vaporization and increasing the combustion rate, resulting in stratified combustion. Combustion is sometimes stabilized.

〔実施例〕〔Example〕

第1図は本発明を適用した4気筒ガソリンエンジンの一
実施例の構成を示す。図において1はエンジン本体、2
は吸気管、3はエアクリーナ、4はサージタンクを示す
。本実施例においては吸気管にスロットルバルブは設け
られておらず吸入空気量の制御は行なっていない。また
、図示していないが本実施例のエンジンは吸排気弁をそ
れぞれ独立したカム軸で駆動するダブルオーバヘッドカ
ムシャフト(DOHC)形式であり、吸気弁を駆動する
カム軸には後述する可変バルブタイミング装置(VVT
) 30が設けられ、吸気弁の開閉タイミングを変更で
きるようになっている。
FIG. 1 shows the configuration of an embodiment of a four-cylinder gasoline engine to which the present invention is applied. In the figure, 1 is the engine body, 2
3 indicates the intake pipe, 3 indicates the air cleaner, and 4 indicates the surge tank. In this embodiment, a throttle valve is not provided in the intake pipe, and the amount of intake air is not controlled. Although not shown, the engine of this embodiment has a double overhead camshaft (DOHC) type in which the intake and exhaust valves are driven by independent camshafts, and the camshafts that drive the intake valves are equipped with variable valve timing, which will be described later. Equipment (VVT
) 30 is provided so that the opening/closing timing of the intake valve can be changed.

更に、本実施例のエンジンには各気筒内に直接燃料を噴
射する燃料噴射弁5が設けられている。
Furthermore, the engine of this embodiment is provided with a fuel injection valve 5 that directly injects fuel into each cylinder.

燃料噴射弁5は各気筒の1行程中に燃料の分割噴射を行
なうためピエソ圧電素子を用いた作動速度の高いものが
使用されている。6は各枝管14を通じて燃料噴射弁5
に高圧燃料を供給する高圧リザーバタンク、7は高圧導
管8を介して高圧燃料をリザーバタンク6に圧送するた
めの、吐出圧制御可能な高圧燃料ポンプ、9は燃料タン
ク、10は導管11を介して燃料タンク9から高圧燃料
ポンプ7に燃料を供給する低圧燃料ポンプを夫々示す。
The fuel injection valve 5 uses a piezoelectric element with a high operating speed to perform split injection of fuel during one stroke of each cylinder. 6 is a fuel injection valve 5 through each branch pipe 14.
7 is a high-pressure fuel pump whose discharge pressure can be controlled for supplying high-pressure fuel to the reservoir tank 6 through a high-pressure conduit 8; 9 is a fuel tank; 10 is a high-pressure fuel pump through a conduit 11; A low-pressure fuel pump that supplies fuel from a fuel tank 9 to a high-pressure fuel pump 7 is shown in FIG.

低圧燃料ポンプ10の吐出側は、各燃料噴射弁5のピエ
ソ圧電素子を冷却するための圧電素子冷却用導入管12
に接続される。圧電素子冷却用燃料油戻管13は燃料タ
ンク9に連結され、この導管13を介して圧電素子冷却
用導入管12を流れる燃料を燃料タンク9に回収する。
The discharge side of the low-pressure fuel pump 10 includes a piezoelectric element cooling introduction pipe 12 for cooling the piezoelectric element of each fuel injection valve 5.
connected to. The piezoelectric element cooling fuel oil return pipe 13 is connected to the fuel tank 9 , and the fuel flowing through the piezoelectric element cooling introduction pipe 12 is recovered into the fuel tank 9 via this conduit 13 .

電子制御ユニット(EC1l)20はディジクルコンピ
ュータからなり、エンジン1の各種制御を行なっている
The electronic control unit (EC1l) 20 is composed of a digital computer and performs various controls on the engine 1.

これらの制御のため、[EClI20にはクランク角セ
ンサ22から機関回転数Neに比例した出力パルスが、
またアクセル開度センサ24からアクセルペダル(図示
せず)の操作量(アクセル開度)θ9に応じた出力信号
が人力されている。
For these controls, [EClI 20 receives an output pulse proportional to the engine speed Ne from the crank angle sensor 22,
Further, an output signal corresponding to the operation amount (accelerator opening) θ9 of an accelerator pedal (not shown) is manually generated from the accelerator opening sensor 24.

またEC[I20は図示しない点火回路を介して各気筒
に設けられた点火栓16に接続され各気筒の点火時期を
制御している他、図示しない駆動回路を介して各燃料噴
射弁5に接続され、燃料噴射時期、と燃料噴射量とを制
御している。また、同様にVVT30 も図示しない駆
動回路を介して[EClI20に接続されており、EC
U20からの信号に応じて吸気弁の開閉タイミングが変
更されるようになっている。
Further, the EC[I 20 is connected to the ignition plug 16 provided in each cylinder via an ignition circuit (not shown) to control the ignition timing of each cylinder, and is also connected to each fuel injection valve 5 via a drive circuit (not shown). and controls the fuel injection timing and fuel injection amount. Similarly, VVT30 is also connected to [EClI20] via a drive circuit (not shown).
The opening/closing timing of the intake valve is changed according to the signal from U20.

前述のように本実施例のエンジンはスロットル弁による
吸入空気量制御を行なっておらず、エンジンの負荷は燃
料噴射量をアクセル角度θ4とエンジン回転数Neとに
応じて変えることにより制御されている。従って燃焼室
内には常に大量の吸入空気が供給されるため、空燃比は
通常のエンジンよりリーン側になっており、特に低負荷
時には噴射した燃料を気筒内に均一に拡散させてしまう
と点火栓による着火ができなくなる。そこで本実施例で
はエンジン低負荷時では、燃料噴射時期を遅らせて、気
筒圧縮行程後期に燃料噴射を行なうようにしている。第
2図は圧縮行程後期に燃料噴射を行なった場合の噴射燃
料の拡散パターンを示すエンジンの縦断面図である。
As mentioned above, the engine of this embodiment does not control the intake air amount using the throttle valve, and the engine load is controlled by changing the fuel injection amount according to the accelerator angle θ4 and the engine rotation speed Ne. . Therefore, a large amount of intake air is always supplied into the combustion chamber, so the air-fuel ratio is leaner than that of a normal engine.Especially at low loads, if the injected fuel is uniformly spread within the cylinder, the spark plug ignition becomes impossible. Therefore, in this embodiment, when the engine load is low, the fuel injection timing is delayed so that the fuel injection is performed in the latter half of the cylinder compression stroke. FIG. 2 is a longitudinal sectional view of the engine showing a diffusion pattern of injected fuel when fuel is injected in the latter half of the compression stroke.

図において60はシリンダブロック、61はシリンダヘ
ット、62はピストン、63はピストン62の頂面に形
成された略円筒状凹部、64はピストン62頂面とシリ
ンダヘッド61内壁面間に形成されたシリンダ室を夫々
示す。点火栓16はシリンダ室64に臨んでシリンダヘ
ット61のほぼ中央部に取り付けられる。ンリンタヘン
ド61内には吸気ポートおよび排気ポー)・が形成され
、これら吸気ポートおよび排気ポートのシリンダ室64
内への開口部には夫々吸気弁および排気弁が配置されて
いるが、図は圧縮行程後期の状態であり、吸排気弁とも
に閉弁しているため図面には示していない。燃料噴射弁
5はスワール型の燃料噴射弁であり、広がり角が大きく
貫徹力の弱い噴霧状の燃料を噴射する。燃料噴射弁5は
、斜め下方を指向して、シリンダ室64の頂部に配置さ
れ、点火栓65近傍に向かって燃料噴射するように配置
される。また、燃料噴射弁5の燃料噴射方向および燃料
噴射時期は、噴射燃料かピストン62頂部に形成された
凹部63を指向するように決められる。図示したように
圧縮行程後期に噴射された燃料は、シリンダ室64内圧
力が」1昇しており貫徹力が弱く、シリンダ室64内で
の空気の流動も低下した状態であるためシリンダ室64
内に拡散せず、点火栓16近傍の領域Kに集中して成層
化する。この領域に内の燃料分布も不均一てあり、リッ
チな混合気層がら空気層まで変化しているため、この領
域に内には最も着火しやすい混合気層が存在する。従っ
て燃料噴射量が少ない場合でも点火栓16による着火が
可能となる。
In the figure, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, 63 is a substantially cylindrical recess formed on the top surface of the piston 62, and 64 is a cylinder formed between the top surface of the piston 62 and the inner wall surface of the cylinder head 61. Each room is shown. The ignition plug 16 is attached to a substantially central portion of the cylinder head 61 facing the cylinder chamber 64. An intake port and an exhaust port are formed in the cylinder head 61, and the cylinder chamber 64 of these intake ports and exhaust ports is formed.
An intake valve and an exhaust valve are arranged at the openings to the inside, but they are not shown in the drawing because the figure shows the latter half of the compression stroke and both the intake and exhaust valves are closed. The fuel injection valve 5 is a swirl type fuel injection valve, and injects fuel in the form of a spray with a large spread angle and a weak penetration force. The fuel injection valve 5 is arranged at the top of the cylinder chamber 64 so as to face obliquely downward, and is arranged so as to inject fuel toward the vicinity of the ignition plug 65 . Further, the fuel injection direction and fuel injection timing of the fuel injection valve 5 are determined so that the injected fuel is directed toward the recess 63 formed at the top of the piston 62. As shown in the figure, the pressure in the cylinder chamber 64 of the fuel injected in the latter half of the compression stroke has increased by 1, the penetration force is weak, and the flow of air within the cylinder chamber 64 has also decreased.
It does not diffuse into the interior, but concentrates in the area K near the spark plug 16 and forms a stratification. The fuel distribution within this region is also uneven, varying from a rich mixture layer to an air layer, so the mixture layer that is most likely to ignite exists within this region. Therefore, even when the fuel injection amount is small, ignition by the ignition plug 16 is possible.

次に第3図(a)から(d)は中負荷より高い負荷領域
における燃料噴射を示している。中負荷以上の負荷では
燃料は吸入行程初期(第3図(a))と圧縮行程後期(
第3図(C))との2回に分けて分割噴射が行なわれる
。これは、中負荷以上の領域では燃料噴射量も増大する
ため、全燃料量を圧縮行程後期に噴射すると点火栓16
近傍に形成される混合気領域が全体的に過濃となり、こ
の領域で燃料空気量が不足して不完全燃焼を生じるため
、排気スモークの発生や出力不足を生じることがあるか
らである。
Next, FIGS. 3(a) to 3(d) show fuel injection in a load range higher than medium load. At medium or higher loads, fuel is distributed at the beginning of the suction stroke (Fig. 3 (a)) and at the end of the compression stroke (Fig. 3(a)).
Split injection is performed in two parts (Fig. 3(C)). This is because the amount of fuel injection also increases in the region of medium load or higher, so if the entire amount of fuel is injected in the latter half of the compression stroke, the ignition plug 16
This is because the air-fuel mixture region formed in the vicinity becomes overrich as a whole, and the amount of fuel air becomes insufficient in this region, resulting in incomplete combustion, which may result in exhaust smoke or insufficient output.

第3図(a)は吸気行程初期における第1回の燃料噴射
を示す。この状態では吸気弁66が開弁しており吸気ポ
ートからシリンダ室64内に新気が流入している。従っ
て燃料噴射弁5から噴射された燃料は吸気ポートから流
入する新気流により生じる乱れRによって拡散され、吸
気行程から圧縮行程に至る間にシリンダ室64内に均一
な混合気Pが形成される(第3図(b))。この混合気
Pの空燃比はかなりリーンになっており点火栓16によ
り直接着火することは困難であるが一旦着火した場合に
は着火火炎が伝播できる程度以上の空燃比とされている
。次いで吸気弁6Gが閉弁した後、圧縮行程後期(第3
図(C))では第2回目の燃料噴射が行なわれる。この
圧縮行程後期に噴射された燃料は第2図の場合と同様に
点火栓16近傍に着火可能な濃度の混合気を含む混合気
領域Kを形成する。
FIG. 3(a) shows the first fuel injection at the beginning of the intake stroke. In this state, the intake valve 66 is open and fresh air is flowing into the cylinder chamber 64 from the intake port. Therefore, the fuel injected from the fuel injection valve 5 is diffused by the turbulence R caused by the fresh air flowing from the intake port, and a uniform air-fuel mixture P is formed in the cylinder chamber 64 from the intake stroke to the compression stroke. Figure 3(b)). The air-fuel ratio of this air-fuel mixture P is quite lean, making it difficult to ignite it directly with the ignition plug 16, but once ignited, the air-fuel ratio is at least high enough to allow the ignition flame to propagate. Next, after the intake valve 6G closes, the second half of the compression stroke (third
In Figure (C)), the second fuel injection is performed. The fuel injected in the latter half of the compression stroke forms an air-fuel mixture region K near the spark plug 16 containing an air-fuel mixture with an ignitable concentration, as in the case of FIG.

従って点火栓16により着火が行なわれると混合気領域
Kを中心に燃焼が進行し、その周辺から順次混合気Pに
火炎が伝播し燃焼が進行する。中負荷程度の領域におい
ては燃料噴射量があまり多くないため、吸気行程時に全
燃料を噴射させてシリンダ室64内に均一に拡散させる
と、点火栓16による着火が困難となるが、上記のよう
に吸気行程と圧縮行程とに分割して燃料を噴射し、着火
火炎伝播が可能な程度以上の濃度の混合気と、点火栓1
6による点火が可能な濃度の成層混合気とを形成するこ
とにより、全体としてリーンな混合気を着火、燃焼させ
ることができる。また、本実施例では、負荷が増大して
燃料噴射量が増大し、シリンダ室64内に点火栓16に
よる着火が可能な濃度の均一な混合気を形成できる量に
達したときには、圧縮行程中の噴射は停止し、吸気行程
初期に全量の燃料を噴射するようにされている。
Therefore, when ignition is performed by the ignition plug 16, combustion progresses centering around the air-fuel mixture region K, and flame propagates sequentially to the air-fuel mixture P from the periphery, and combustion progresses. Since the amount of fuel injected is not very large in a medium load region, if all the fuel is injected during the intake stroke and diffused uniformly within the cylinder chamber 64, it will be difficult for the ignition plug 16 to ignite. The fuel is injected separately into an intake stroke and a compression stroke, and the mixture with a concentration higher than that which allows ignition and flame propagation is injected into the spark plug 1.
By forming a stratified mixture with a concentration that can be ignited by 6, it is possible to ignite and burn an overall lean mixture. In addition, in this embodiment, when the load increases and the fuel injection amount increases and reaches an amount that can form an air-fuel mixture with a uniform concentration that can be ignited by the spark plug 16 in the cylinder chamber 64, during the compression stroke. injection is stopped, and the entire amount of fuel is injected at the beginning of the intake stroke.

第4図は吸入行程時の燃料噴射量QS 吉圧縮行程時の
燃料噴射量Q。との関係を示す図で、横軸は合計噴射量
Q、 −Q、十Q。を縦軸は合計噴射量QTの圧縮行程
噴射量Q。と吸入行程噴射量Q。
Figure 4 shows the fuel injection amount QS during the intake stroke and the fuel injection amount Q during the compression stroke. The horizontal axis is the total injection amount Q, -Q, and 10Q. The vertical axis is the compression stroke injection amount Q of the total injection amount QT. and suction stroke injection amount Q.

とへの配分を示している。図かられかるように合計噴射
量Q、がQ1以下の場合(区間I)はQ。
It shows the distribution to. As shown in the figure, when the total injection amount Q is less than or equal to Q1 (section I), it is Q.

はぜ口とされ、全量が圧縮行程中に噴射される。The entire amount is injected during the compression stroke.

またOoがQ1以以上2以下である場合(区間■)には
Q。は点火栓近傍に着火可能な成層混合気を形成するの
に充分なQCIまで減少され、それ以外の量は吸気行程
中に噴射される。また、○、がQ2以上になった場合(
区間■)には圧縮行程噴射量Qcはゼロとされ、全燃料
が吸気行程中に噴射される。Q2はシリンダ室64内に
点火栓16による着火が可能な均一混合気を形成するの
に充分な燃料噴射量である。
Also, if Oo is greater than or equal to Q1 and less than or equal to 2 (section ■), Q. is reduced to a QCI sufficient to form an ignitable stratified mixture near the spark plug, and the remaining amount is injected during the intake stroke. Also, if ○ becomes Q2 or higher (
In section (3), the compression stroke injection amount Qc is set to zero, and all the fuel is injected during the intake stroke. Q2 is a fuel injection amount sufficient to form a homogeneous air-fuel mixture in the cylinder chamber 64 that can be ignited by the ignition plug 16.

本実施例では合計燃料噴射量がQ2以下、特にQl よ
り少ない領域ではシリンダ室内の燃焼は成層温合気燃焼
が中心となっている。このため前述のようにシリンダ壁
温が上昇せず混合気温度も低くなることから着火後の燃
焼が不安定になりやすい。本実施例では負荷(合計燃料
噴射量)に応じて吸気バルブの開閉タイミングを変える
ことによりシリング室内に残留する既燃ガス量を増大さ
せてこの問題を解決している。
In this embodiment, in a region where the total fuel injection amount is less than Q2, particularly less than Ql, the combustion in the cylinder chamber is mainly stratified temperature amixture combustion. For this reason, as described above, the cylinder wall temperature does not rise and the air-fuel mixture temperature also becomes low, which tends to make combustion after ignition unstable. In this embodiment, this problem is solved by increasing the amount of burnt gas remaining in the shilling chamber by changing the opening and closing timing of the intake valve according to the load (total fuel injection amount).

第5図(a)、  (b)は吸排気弁のハルブクイミン
グを示した図であり、図のTDC,BDCはそれぞれピ
ストンの上死点と下死点を示し、E、O,ECは排気弁
の開弁時期と閉弁時期を、I[]、 ICは吸気弁の開
弁時期と閉弁時期とを示している。図中斜線で示した部
分は吸、排気弁の両方が開弁じている時期(バルブオー
バラップ)を示している。排気弁は膨張行程においてピ
ストンがBDCに到達する前に開弁じ、シリンダ内の高
圧高温の既燃ガスを排気系に排出して、ピストンが排気
行程のTDCに達した後に閉弁する。一方、吸気弁は膨
張行程でピストンがTDCに達する前に開弁じ、排気弁
閉弁後の吸気行程で新気をシリンダ内に吸入し、ピスト
ンが吸気行程のBDCを過ぎて圧縮行程に入ったときに
閉弁するようにされており、吸気弁閉弁後は吸排気弁両
方が閉じた状態で圧縮、点火を行ない、膨張行程のBD
C前になると排気弁が開弁じて上記行程を繰り返してい
る。排気行程始めの排気弁開弁時(EO)にはシリンダ
内は高圧の既燃ガスが充満しており、排気行程が進むに
つれてシリンダ室内から排気ポートへと流出する。排気
行程におけるピストンの上昇動作はこの排気を促進する
Figures 5(a) and 5(b) are diagrams showing the hull swimming of the intake and exhaust valves, where TDC and BDC in the figures indicate the top dead center and bottom dead center of the piston, respectively, and E, O, and EC indicate the exhaust valve. I[] indicates the opening timing and closing timing of the intake valve, and IC indicates the opening timing and closing timing of the intake valve. The shaded area in the figure indicates the period when both the intake and exhaust valves are open (valve overlap). The exhaust valve opens before the piston reaches BDC in the expansion stroke, discharges high-pressure, high-temperature burnt gas in the cylinder to the exhaust system, and closes after the piston reaches TDC in the exhaust stroke. On the other hand, the intake valve opens before the piston reaches TDC during the expansion stroke, fresh air is sucked into the cylinder during the intake stroke after the exhaust valve closes, and the piston enters the compression stroke after passing BDC of the intake stroke. After the intake valve is closed, compression and ignition are performed with both intake and exhaust valves closed, and the expansion stroke BD
Before C, the exhaust valve opens and the above process is repeated. When the exhaust valve opens (EO) at the beginning of the exhaust stroke, the cylinder is filled with high-pressure burnt gas, which flows out from the cylinder chamber to the exhaust port as the exhaust stroke progresses. The upward movement of the piston during the exhaust stroke facilitates this exhaustion.

しかし、排気行程終期になると、吸気弁が開弁じてバル
ブオーバラップが生じるため、高圧既燃ガスの一部は排
気ポートだけでなく低圧の吸気ポートに逆流することに
なる。この逆流既燃ガスは排気弁が閉弁(EC)して吸
気行程に入ると吸気ポートから再度シリンダ室内に流入
してシリンダ室内で新気と混合する。従って吸気ポート
に逆流する既燃ガス量、すなわち次の行程でシリンダ内
に残留することになる既燃ガス量はノ\ルブオーノ\ラ
ップ期間が長い程、また吸気弁が早い時期(シリンダ内
圧力が高い時期)に開弁する程多くなることがわかる。
However, at the end of the exhaust stroke, the intake valve opens and valve overlap occurs, so a portion of the high-pressure burnt gas flows back not only to the exhaust port but also to the low-pressure intake port. When the exhaust valve closes (EC) and the intake stroke begins, this backflow burnt gas flows into the cylinder chamber again from the intake port and mixes with fresh air in the cylinder chamber. Therefore, the amount of burned gas that flows back into the intake port, that is, the amount of burned gas that will remain in the cylinder in the next stroke, increases as the nolbuono/wrap period increases. It can be seen that the more the valves open during the high season), the more they increase.

本実施例においては負荷が高い場合、すなわち気筒的燃
焼が均一混合気燃焼主体となっている場合には第5図(
a)に示すように比較的バルブオーバラップが少くなる
ように吸気弁開弁時期を設定し、低、中負荷時の成層混
合気燃焼が行なわれるときには、第5図(b)に示すよ
うに吸気弁の開弁タイミングを早めてバルブオーバラッ
プを増大するようにしている。
In this example, when the load is high, that is, when cylinder combustion is mainly homogeneous mixture combustion, as shown in Fig. 5 (
The intake valve opening timing is set so that the valve overlap is relatively small as shown in a), and when stratified mixture combustion is performed at low to medium loads, as shown in Fig. 5 (b). The valve overlap is increased by advancing the opening timing of the intake valve.

中低負荷時にバルブオーバラップを増大させることによ
りシリンダ内の高温残留既燃ガス量が増大するため新気
吸入後の混合気温度が上昇する。
By increasing the valve overlap at medium to low loads, the amount of high-temperature residual burnt gas in the cylinder increases, so the temperature of the air-fuel mixture after fresh air intake increases.

これにより燃料の気化が促進され燃焼速度も増大するた
め、成層混合気燃焼の場合の前述の燃焼不安定化の問題
が解消される。なお、通常のスロットル弁を有するエン
ジンでは、低負荷時には吸入空気Nが絞られるためバル
ブオーバラップを増大すると残留既燃ガス量の増大によ
り相対的に新気量が低下して燃焼不安定を生じるが、本
実施例のく15) ように吸入空気量制御を行なわないエンジンでは、もと
もと空気過剰率が非常に大きくなっているた必、残留既
燃ガス量を増大してシリンダ室内の着火前ガス温度を上
げた方が燃焼状態が向上する。
This accelerates the vaporization of the fuel and increases the combustion speed, so the problem of combustion instability mentioned above in the case of stratified mixture combustion is solved. In addition, in engines with normal throttle valves, the intake air N is throttled at low loads, so if the valve overlap is increased, the amount of fresh air will relatively decrease due to the increase in the amount of residual burnt gas, causing combustion instability. However, in an engine that does not control the amount of intake air as shown in Example 15), it is necessary to increase the amount of residual burnt gas to reduce the amount of pre-ignition gas in the cylinder chamber, since the excess air ratio is already very large. Increasing the temperature improves the combustion state.

次に第6図に本実施例に使用する可変ハルツタイミング
装置30を示す。本実施例では可変バルブタイミング装
置30として、特開昭58−135310号公報に記載
したものを用いているが別の形式の可変バルブタイミン
ク゛装置も使用可能である。
Next, FIG. 6 shows a variable Hartz timing device 30 used in this embodiment. In this embodiment, the variable valve timing device 30 described in Japanese Unexamined Patent Publication No. 135310/1982 is used, but other types of variable valve timing devices can also be used.

以下第6図から第8図を用いて特開昭58−1.353
10号公報の可変バルブクイミンク装置について説明す
る。第6図は可変バルブタイミング装置の構造を示す断
面で、本実施例においては吸気弁に本可変バルブタイミ
ング装置を用いている。図において201はカム軸駆動
用のタイミングギヤで、図示しないベルトによりクラン
ク軸から回転駆動されている。又202はカム軸で、吸
気弁を駆動しており、タイミングギヤ201とカム軸2
02とはそれぞれアウタスリーブ203とインナスリー
フ204とに固定されている。アウタスリーブ203と
204とは互いに相対回転可能に取付けられていて、そ
れぞれのスリーブの外周には第7図に示すように軸対称
の位置に1対のスリット205.205Bと206.2
06Bとが穿設されている。アウタスリーブ上のスリッ
ト205とインナスリーブ上のスリット206とは第8
図に示すようにカム軸202の軸線方向に対して互いに
反対方向に傾斜して穿設され、スリット205と206
との交叉部分には互いに独立して回転できるローラベア
リング207と208とがそれぞれスリブh 205と
206の内壁の一方に接触するように設けられている。
JP 58-1.353 using Figures 6 to 8 below.
The variable valve control device disclosed in Japanese Patent No. 10 will be explained. FIG. 6 is a cross-sectional view showing the structure of a variable valve timing device, and in this embodiment, this variable valve timing device is used for an intake valve. In the figure, 201 is a timing gear for driving the camshaft, which is rotationally driven from the crankshaft by a belt (not shown). Also, 202 is a camshaft that drives the intake valve, and the timing gear 201 and camshaft 2.
02 are fixed to the outer sleeve 203 and inner leaf 204, respectively. The outer sleeves 203 and 204 are attached to be rotatable relative to each other, and each sleeve has a pair of slits 205.205B and 206.2 at axially symmetrical positions on the outer circumference, as shown in FIG.
06B is drilled. The slit 205 on the outer sleeve and the slit 206 on the inner sleeve are the eighth
As shown in the figure, the slits 205 and 206 are formed so as to be inclined in opposite directions with respect to the axial direction of the camshaft 202.
Roller bearings 207 and 208, which can rotate independently of each other, are provided at the intersection with each other so as to contact one of the inner walls of the sleeves h 205 and 206, respectively.

ここで第8図に示したものと軸対称の位置にあるスリブ
) 205Bと206Bの内壁にも同様にローラベアリ
ング207Bと208Bとが接しているが、接触してい
る内v2o5.206は第8図とは反対になっている。
Here, roller bearings 207B and 208B are also in contact with the inner walls of the sleeves 205B and 206B (located in an axially symmetrical position to that shown in FIG. It is the opposite of the picture.

従ってローラベアリング207、208及び207B、
  208Bを同時にカム軸の軸線方向に前後移動させ
ることによりバックラッシュを生じずにアウタスリーブ
203とインナスリーブ204とを相対的に回転させる
ことができる。前述のようにアウタスリーブ203はタ
イミングギャ201に、又インナスリーブ204はカム
軸202にそれぞれ一体に固定されているた必上記アウ
クスリーブ203とインナスリーブ204 との相対回
転によりタイミングギヤ201とカム軸202との位相
が変化することになりバルブ開閉タイミングのクランク
軸に対する位相角を変えることができる。
Therefore, roller bearings 207, 208 and 207B,
By simultaneously moving 208B back and forth in the axial direction of the camshaft, outer sleeve 203 and inner sleeve 204 can be rotated relative to each other without causing backlash. As mentioned above, the outer sleeve 203 is integrally fixed to the timing gear 201, and the inner sleeve 204 is integrally fixed to the camshaft 202. Therefore, the relative rotation between the outer sleeve 203 and the inner sleeve 204 causes the timing gear 201 and the camshaft 202 to rotate. As a result, the phase angle of the valve opening/closing timing with respect to the crankshaft can be changed.

次に上記ローラベアリング207(B)と208 (B
 )とをカム軸の軸線方向に沿って移動させる機構につ
いて説明する。第6図と第7図とに示すように、ローラ
ベアリング207(Bl 20g(B)は、スライダ2
09の直径部員通孔210に挿通支持されたベアリング
軸211に回転自在に支持されており、スライダ209
は軸方向には移動可能だが回転方向には固定された非回
転の駆動スリーブ212にベアリング213を介して回
転自在に支持されている。ベアリング213はそのアウ
クレースとインナレースがそれぞれスライダ209と駆
動スリーブ212とに固定されている。このため駆動ス
リーブ212が非回転のまま軸方向に移動するとスライ
ダ209、ベアリング軸211はアウタスリーブ203
、インナスリーブ204と共にスライダ209の周囲に
回転自在に保持されたまま軸方向に移動することができ
る。
Next, the roller bearings 207 (B) and 208 (B)
) along the axial direction of the camshaft will be explained. As shown in FIGS. 6 and 7, the roller bearing 207 (Bl 20g (B)
The slider 209 is rotatably supported by a bearing shaft 211 inserted into and supported by the diameter member through hole 210 of the slider 209.
is rotatably supported via a bearing 213 by a drive sleeve 212 which is movable in the axial direction but is fixed in the rotational direction. The bearing 213 has an aucle race and an inner race fixed to the slider 209 and the drive sleeve 212, respectively. Therefore, when the drive sleeve 212 moves in the axial direction without rotating, the slider 209 and the bearing shaft 211 move to the outer sleeve 203.
, can be moved in the axial direction while being rotatably held around the slider 209 together with the inner sleeve 204.

また、上記駆動スリーブ内面には螺条が設けられており
、ハウジング214に固定されたステップモータ215
の出力軸216の螺条と螺合している。駆動スリーブ2
12はハウジングに設けた軸方向スプライン217によ
り回転に対して固定されているためステップモータによ
り出力軸216を回転させると駆動スリーブ212は軸
方向に移動する。すなわちステップモータ215を回転
させることによりスライダ209とo−ラヘ71J ン
ク’207(B)、  208(B)がステップモータ
215の回転に応じた距離だけ軸方向に移動し、アウタ
スリーブ203とインナスリーブ204を相対回転させ
カム軸202のクランク軸に対する位相を変更すること
ができる。なお、上述の説明から明らかなように本実施
例では吸気弁の開弁時期と閉弁時期とは同時に同じ位相
だけ変化し、開弁期間は一定に保たれる。
Further, a thread is provided on the inner surface of the drive sleeve, and a step motor 215 fixed to the housing 214 is connected to the drive sleeve.
It is threadedly engaged with the thread of the output shaft 216. Drive sleeve 2
12 is fixed against rotation by an axial spline 217 provided in the housing, so when the step motor rotates the output shaft 216, the drive sleeve 212 moves in the axial direction. That is, by rotating the step motor 215, the slider 209 and the o-rails 71J' 207 (B), 208 (B) are moved in the axial direction by a distance corresponding to the rotation of the step motor 215, and the outer sleeve 203 and the inner sleeve are moved. The phase of the camshaft 202 with respect to the crankshaft can be changed by relatively rotating the camshaft 204. As is clear from the above description, in this embodiment, the opening timing and closing timing of the intake valve change at the same time by the same phase, and the opening period is kept constant.

本実施例では第9図に示すように機関が比較的低負荷ぐ
低トルク)で運転される領域、すなわち圧縮行程で燃料
噴射が行なわれる領域で吸気弁開閉時期の進角を行なう
ようにしてオーハラツブを増大させ、成層混合気燃焼時
の燃焼状態向上を図っている。
In this embodiment, as shown in Fig. 9, the intake valve opening/closing timing is advanced in a region where the engine is operated at relatively low load and low torque, that is, in a region where fuel injection is performed during the compression stroke. The Ohala lump is increased to improve combustion conditions during stratified mixture combustion.

次に第10図のフローチャートを用いて本実施例の[E
CU20による制御動作を説明する。
Next, using the flowchart in FIG. 10, [E
The control operation by the CU 20 will be explained.

第10図は燃料噴射制御ルーチンを示し、本ルーチンは
一定クランク角毎の割り込みによって実行される。
FIG. 10 shows a fuel injection control routine, and this routine is executed by interruption at every fixed crank angle.

図において、まずステップ100において機関回転数N
eおよびアクセル開度θヶが読み込まれる。
In the figure, first in step 100, the engine speed N
e and the accelerator opening degree θ are read.

ステップ102ではマツプ1 (第11図)から、Ne
およびθヶに基ついて要求燃料噴射量QTが算出される
。第11図を参照するとQ、はθいが増大するにつれて
増大し、Neが4000rpm付近で最大値を有する。
In step 102, from map 1 (Fig. 11), Ne
The required fuel injection amount QT is calculated based on and θ. Referring to FIG. 11, Q increases as θ increases, and Ne has a maximum value near 4000 rpm.

ステップ104では、要求燃料噴射量Q’rがQl(第
4図参照)以下か否か判定される。肯定判定された場合
、ステップ106以下で要求燃料噴射量QTの全量が圧
縮行程において噴射される。すなわち、ステップ106
で圧縮行程燃料噴射量Qcが要求燃料噴射量Q’rに設
定され、ステップ108で吸気行程燃料噴射量Q、は0
とされる。ステップ110で圧縮行程燃料噴射期間T。
In step 104, it is determined whether the required fuel injection amount Q'r is equal to or less than Ql (see FIG. 4). If the determination is affirmative, the entire required fuel injection amount QT is injected in the compression stroke from step 106 onwards. That is, step 106
At step 108, the compression stroke fuel injection amount Qc is set to the required fuel injection amount Q'r, and at step 108, the intake stroke fuel injection amount Q is set to 0.
It is said that In step 110, the compression stroke fuel injection period T is started.

がマツプ2 (第12図)からQ。に基づいて算出され
る。第12図を参照するとT。はQcが増大するにつれ
て直線的に増大する。ステップ112では吸気行程燃料
噴射期間T、がOとされる。ステップ114ではマツプ
3 (第13図)から圧縮行程燃料噴射量Q。および機
関回転数Neに基づいて圧縮行程燃料噴射開始時期T。
is Q from Map 2 (Figure 12). Calculated based on. Referring to FIG. 12, T. increases linearly as Qc increases. In step 112, the intake stroke fuel injection period T is set to O. In step 114, the compression stroke fuel injection amount Q is determined from Map 3 (Fig. 13). and the compression stroke fuel injection start timing T based on the engine speed Ne.

1が算出されステップ115でフラグθADVに1をセ
ットして本ルーチンを終了する。第13図を参照すると
、Telは圧縮上死点からの噴射進角で示されている。
1 is calculated, and in step 115, the flag θADV is set to 1, and this routine ends. Referring to FIG. 13, Tel is shown as an injection advance angle from compression top dead center.

Tc1は、NeおよびQ。が増大するにつれ早必られる
。θADVは後述するように吸気弁開閉タイミングを表
わすフラグでありθADV−1のとき吸気弁開閉タイミ
ングは所定量進角される。
Tc1 is Ne and Q. It becomes necessary as the number increases. As will be described later, θADV is a flag representing the intake valve opening/closing timing, and when θADV-1, the intake valve opening/closing timing is advanced by a predetermined amount.

ステップ104で否定判定された場合は次にステップ1
16で要求燃料噴射量0工がの、(第4図参照)以下か
否かが判定される。肯定判定された場合ステップ118
以下で要求燃料噴射it Q Tは圧縮行程と吸気行程
とに分割噴射される。ステップ118では圧縮行程燃料
噴射量Q。にQ。1(第4図参照)が入れられる。ステ
ップ120では吸気行程燃料噴射量Q、にQ□−Q。1
が入れられる。すなわち吸気行程燃料噴射量0.と圧縮
行程燃料噴射量Q。
If a negative determination is made in step 104, then step 1
At step 16, it is determined whether the required fuel injection amount is less than or equal to (see FIG. 4). If affirmative determination is made, step 118
In the following, the required fuel injection it QT is divided into a compression stroke and an intake stroke. In step 118, the compression stroke fuel injection amount Q is determined. Q. 1 (see Figure 4) is entered. In step 120, the intake stroke fuel injection amount Q is changed to Q□-Q. 1
can be entered. In other words, the intake stroke fuel injection amount is 0. and compression stroke fuel injection amount Q.

との和が要求噴射量Q、になるようにされる。ステップ
122と124ではマツプ2 (第12図)からQ。。
The sum of the required injection amount Q is made to be the required injection amount Q. Steps 122 and 124 are map 2 (Figure 12) to Q. .

Q、に基づいて圧縮行程燃料噴射期間T。と吸気行程燃
料噴射期間T、とがそれぞれ算出される。
The compression stroke fuel injection period T based on Q. and the intake stroke fuel injection period T are calculated.

次にステップ126ではマツプ4 (第14図)から要
求噴射量Q、および機関回転数Neに基づいて圧縮行程
燃料噴射開始時期T。lが算出される。第14図を参照
すると、TCIは圧縮上死点からの噴射進角で示されて
おり、TCIはNeおよび0.が増大するにつれて早必
られる。ステップ128ではマツプ5 (第15図)か
ら吸気行程燃料噴射量QSおよび機関回転数Neに基づ
いて吸気行程燃料噴射開始時期TSIが算出される。第
15図を参照すると、TSIは圧縮上死点からの噴射進
角で示されており、TSIはNeが増大するにつれて早
められるが、Q5によっては変化せしめられない。これ
は、吸気行程噴射では燃料が拡散して混合気を形成する
のに十分な時間があるため、Q、の多少に応じて変化さ
せる必要がないからである。以上のステップ終了後ステ
ップ129でフラグθADVに1をセットしてルーチン
を終了する。
Next, in step 126, the compression stroke fuel injection start timing T is determined from map 4 (FIG. 14) based on the required injection amount Q and the engine speed Ne. l is calculated. Referring to FIG. 14, TCI is shown by the injection advance angle from compression top dead center, and TCI is determined by Ne and 0. As the number of people increases, it becomes necessary. In step 128, the intake stroke fuel injection start timing TSI is calculated from map 5 (FIG. 15) based on the intake stroke fuel injection amount QS and the engine speed Ne. Referring to FIG. 15, TSI is shown as an injection advance from compression top dead center, and TSI is advanced as Ne increases, but is not changed by Q5. This is because in intake stroke injection, there is sufficient time for the fuel to diffuse and form an air-fuel mixture, so there is no need to change it depending on the amount of Q. After completing the above steps, the flag θADV is set to 1 in step 129, and the routine ends.

ステップ116で否定判定された場合はステップ130
以下で要求燃料噴射量Q1の全量が吸気行程中に噴射さ
れる。すなわち、ステップ130では吸気行程燃料噴射
量QS は要求燃料噴射量QTに設定され、ステップ1
32で圧縮行程燃料噴射量Q。
If the determination in step 116 is negative, step 130
In the following, the entire required fuel injection amount Q1 is injected during the intake stroke. That is, in step 130, the intake stroke fuel injection amount QS is set to the required fuel injection amount QT, and in step 1
32 is the compression stroke fuel injection amount Q.

は0とされる。またステップ134で圧縮行程燃料噴射
期間T。もOとされ、ステップ136でマツプ2 (第
12図)からQ3に基づいて吸気行程燃料噴射期間TS
が算出される。次にステップ138では0、とNeとに
基づいてマツプ5 (第15図)から吸気行程燃料噴射
開始時期TS+が算出され、ステップ139でフラグθ
A[]Vを0にリセットしてルーチンを終了する。
is taken to be 0. Further, in step 134, the compression stroke fuel injection period T is started. is set to O, and in step 136, the intake stroke fuel injection period TS is determined based on Q3 from map 2 (Fig. 12).
is calculated. Next, in step 138, the intake stroke fuel injection start timing TS+ is calculated from map 5 (FIG. 15) based on 0, and Ne, and in step 139, the flag θ
A[]V is reset to 0 and the routine ends.

以上のステップ終了後図示しない他のルーチンによって
燃料噴射が実行される。また同様に図示しない他のルー
チンによって要求燃料噴射量Q7と機関回転数Neとに
基づいて点火時期が設定される。
After the above steps are completed, fuel injection is performed by another routine (not shown). Similarly, the ignition timing is set based on the required fuel injection amount Q7 and the engine speed Ne by another routine not shown.

次に第16図は吸気弁の開閉タイミング(オーバラップ
)制御を示すルーチンである。本ルーチンは一定クラン
ク角毎の割込によって実行される。
Next, FIG. 16 is a routine showing the opening/closing timing (overlap) control of the intake valves. This routine is executed by interruption at every fixed crank angle.

図においてステップ150ではθ2、IIVが0か否か
の判定が行なわれ、θア。ヮが0であった場合は吸気弁
開閉タイミンク′の進角設定は行なわず吸気弁開弁時期
θ1は所定のクランク角θ8にセットされる(ステップ
152)。θ4は各排気弁のハルフォーハラツブ量が比
較的小さくなる角度(第5図(a)参照)であり、θ工
が02に設定されるとシリンダ室内の残留既燃ガス量は
減少する。また、ステップ150でθADVが1であっ
た場合は吸気弁開閉タイミングは進角設定され吸気弁開
弁時期は所定のクランク角θ5にセットされる(ステッ
プ154)。
In the figure, in step 150, it is determined whether θ2 and IIV are 0, and θa. If ヮ is 0, the intake valve opening/closing timing ' is not advanced and the intake valve opening timing θ1 is set to a predetermined crank angle θ8 (step 152). θ4 is an angle at which the amount of half-force exhaust of each exhaust valve becomes relatively small (see FIG. 5(a)), and when θ4 is set to 02, the amount of residual burnt gas in the cylinder chamber decreases. Further, if θADV is 1 in step 150, the intake valve opening/closing timing is advanced and the intake valve opening timing is set to a predetermined crank angle θ5 (step 154).

これにより吸気弁開弁時期は所定量早められ、吸排気弁
のオーバラップが増大するため、(第5図(b)参照)
シリンダ室内の残留既燃ガス量が増大して成層混合気の
燃焼を安定させる。
As a result, the intake valve opening timing is advanced by a predetermined amount, and the overlap of the intake and exhaust valves increases (see Fig. 5 (b)).
The amount of residual burnt gas in the cylinder chamber increases to stabilize the combustion of the stratified mixture.

上記によりθ1の設定が完了するとステップ156でθ
1の値を可変バルブタイミング装置の駆動回路に出力し
、可変バルブタイミング装置30のステップモータ21
5を駆動し吸気弁開弁時期が変更される。
When the setting of θ1 is completed as described above, in step 156, θ1 is set.
The value of 1 is output to the drive circuit of the variable valve timing device, and the step motor 21 of the variable valve timing device 30 is
5 to change the intake valve opening timing.

なお、本実施例では、吸気弁開閉タイミンクは、通常値
θ8と進角値θ8との2通りに固定されているが、圧縮
行程燃料噴射量又は吸気行程燃料噴射量に応じて吸気弁
開閉タイミングを連続的に変化させても良い。
In this embodiment, the intake valve opening/closing timing is fixed in two ways, the normal value θ8 and the advance value θ8, but the intake valve opening/closing timing is changed depending on the compression stroke fuel injection amount or the intake stroke fuel injection amount. may be changed continuously.

〔発明の効果〕〔Effect of the invention〕

本発明による筒内直接噴射式火花点火機関は機関低負荷
時において高負荷時より吸排気弁のオーバラップを増大
させるようにしたことにより、成層温合気燃焼を安定化
させ、低負荷運転時における出力向上と排気ガス性状の
改善を可能とする優れた効果を奏する。
The in-cylinder direct injection spark ignition engine according to the present invention increases the overlap of the intake and exhaust valves when the engine is under low load compared to when the engine is under high load, thereby stabilizing stratified temperature amixture combustion and stabilizing stratified temperature amixture combustion during low load operation. It has an excellent effect of increasing output and improving exhaust gas properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した機関の一実施例を示す全体構
成図、第2図は圧縮行程燃料噴射時のシリンダ室内の混
合気状態を示す図、第3図は分割噴射時のシリンダ室内
の混合気状態を示す図、第4図は圧縮行程噴射と吸気行
程噴射の燃料噴射量を示す図、第5図はバルブオーバラ
ップを示す図、第6図から第8図は可変バルブタイミン
グ装置の構造を示す図、第9図は燃料噴射のパターンと
バルブオーバラップ設定との関係を示す図、第10図は
燃料噴射制御動作を示すフローチャート、第月図から第
15図は第10図の制御パラメータ設定に用いるマツプ
、第16図はバルブオーバランプ制御動作を示すフロー
チャートである。 1・・・エンジン本体、  2・・・吸気管、3・・・
エアクリーナ、  4・・・サージタンク、5・・・燃
料噴射弁、   6・・・高圧リザーバ、7・・・高圧
ポンプ、   9・・・燃料タンク、10・・・低圧ポ
ンプ、  16・・・点火栓、20・・・電子制御ユニ
ット、 30・・・可変ハルブクイミング装置。
Fig. 1 is an overall configuration diagram showing an embodiment of an engine to which the present invention is applied, Fig. 2 is a diagram showing the air-fuel mixture state in the cylinder chamber during compression stroke fuel injection, and Fig. 3 is a diagram showing the air-fuel mixture state in the cylinder chamber during split injection. Figure 4 is a diagram showing the fuel injection amount of compression stroke injection and intake stroke injection, Figure 5 is a diagram showing valve overlap, and Figures 6 to 8 are diagrams showing the variable valve timing device. Figure 9 is a diagram showing the relationship between the fuel injection pattern and valve overlap setting, Figure 10 is a flowchart showing the fuel injection control operation, and Figures 1 to 15 are the diagrams shown in Figure 10. The map used for setting control parameters, FIG. 16, is a flowchart showing valve overramp control operation. 1... Engine body, 2... Intake pipe, 3...
Air cleaner, 4...Surge tank, 5...Fuel injection valve, 6...High pressure reservoir, 7...High pressure pump, 9...Fuel tank, 10...Low pressure pump, 16...Ignition Plug, 20...Electronic control unit, 30...Variable hull swimming device.

Claims (1)

【特許請求の範囲】[Claims] 1、機関の筒内に燃料を直接噴射可能な燃料噴射弁を備
え、機関負荷が所定値以下の場合に機関運転状態に応じ
た要求燃料噴射量の少なくとも一部を気筒内に噴射して
点火栓の近傍に混合気を形成する筒内直接噴射式火花点
火機関において、吸気弁と排気弁の少くとも一方に可変
バルブタイミング装置を設け、機関低負荷運転時には機
関高負荷運転よりも吸排気弁のオーバラップを増大させ
るようにしたことを特徴とする筒内直接噴射式火花点火
機関。
1. Equipped with a fuel injection valve that can directly inject fuel into the cylinder of the engine, and when the engine load is below a predetermined value, at least a part of the required fuel injection amount according to the engine operating state is injected into the cylinder and ignited. In direct injection spark ignition engines that form a mixture near the stopper, a variable valve timing device is installed on at least one of the intake and exhaust valves, so that when the engine is running at low load, the intake and exhaust valves are set at a lower speed than when the engine is running at high load. An in-cylinder direct injection spark ignition engine, characterized in that the overlap between the two is increased.
JP2311656A 1990-11-19 1990-11-19 Cylinder direct injection type spark ignition engine Pending JPH04183945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311656A JPH04183945A (en) 1990-11-19 1990-11-19 Cylinder direct injection type spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311656A JPH04183945A (en) 1990-11-19 1990-11-19 Cylinder direct injection type spark ignition engine

Publications (1)

Publication Number Publication Date
JPH04183945A true JPH04183945A (en) 1992-06-30

Family

ID=18019908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311656A Pending JPH04183945A (en) 1990-11-19 1990-11-19 Cylinder direct injection type spark ignition engine

Country Status (1)

Country Link
JP (1) JPH04183945A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494008A (en) * 1993-09-09 1996-02-27 Toyota Jidosha Kabushiki Kaisha Valve timing control apparatus for engine
EP0661432A3 (en) * 1993-12-28 1996-08-07 Hitachi Ltd Apparatus for and method of controlling internal combustion engine.
EP0893596A2 (en) * 1997-07-23 1999-01-27 Nissan Motor Company, Limited In-cylinder injection spark-ignition internal combustion engine
WO1999046491A1 (en) * 1998-03-11 1999-09-16 Daimlerchrysler Ag Method for operating a spark-ignition engine with direct injection
FR2781011A1 (en) * 1998-07-13 2000-01-14 Inst Francais Du Petrole Control of operation of turbo-charged IC, by controlling timing of opening inlet valves before exhaust valves are fully closed
JP2003511600A (en) * 1999-10-06 2003-03-25 フオルクスワーゲン・アクチエンゲゼルシヤフト Direct injection internal combustion engine with reduced NOx emission
EP1531249A2 (en) 2003-11-11 2005-05-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and control method thereof
FR2913065A1 (en) * 2007-02-26 2008-08-29 Inst Francais Du Petrole METHOD FOR FACILITATING VAPORIZATION OF A FUEL FOR A DIRECT INJECTION INTERNAL COMBUSTION ENGINE OF DIESEL TYPE
FR2933450A1 (en) * 2008-07-03 2010-01-08 Inst Francais Du Petrole Fuel vaporization facilitating method for diesel engine, involves introducing intake fluid into combustion chamber, closing exhaust valve before end of intake phase, and closing intake valve in vicinity of end of intake phase

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494008A (en) * 1993-09-09 1996-02-27 Toyota Jidosha Kabushiki Kaisha Valve timing control apparatus for engine
US6644270B2 (en) 1993-12-28 2003-11-11 Hitachi, Ltd. Apparatus for and method of controlling internal combustion engine
US6453871B1 (en) 1993-12-28 2002-09-24 Hitachi, Ltd. Apparatus for and method of controlling internal combustion engine
EP0661432A3 (en) * 1993-12-28 1996-08-07 Hitachi Ltd Apparatus for and method of controlling internal combustion engine.
US6148791A (en) * 1993-12-28 2000-11-21 Hitachi, Ltd. Apparatus for and method of controlling internal combustion engine
US6343585B1 (en) 1993-12-28 2002-02-05 Hitachi, Ltd. Apparatus for and method of controlling internal combustion engine
EP0893596A2 (en) * 1997-07-23 1999-01-27 Nissan Motor Company, Limited In-cylinder injection spark-ignition internal combustion engine
US5967114A (en) * 1997-07-23 1999-10-19 Nissan Motor Co., Ltd. In-cylinder direct-injection spark-ignition engine
EP0893596A3 (en) * 1997-07-23 2000-07-05 Nissan Motor Company, Limited In-cylinder injection spark-ignition internal combustion engine
WO1999046491A1 (en) * 1998-03-11 1999-09-16 Daimlerchrysler Ag Method for operating a spark-ignition engine with direct injection
US6390056B1 (en) 1998-03-11 2002-05-21 Daimlerchrysler Ag Method for operating a spark ignition engine with direct fuel injection
FR2781011A1 (en) * 1998-07-13 2000-01-14 Inst Francais Du Petrole Control of operation of turbo-charged IC, by controlling timing of opening inlet valves before exhaust valves are fully closed
JP2003511600A (en) * 1999-10-06 2003-03-25 フオルクスワーゲン・アクチエンゲゼルシヤフト Direct injection internal combustion engine with reduced NOx emission
EP1531249A2 (en) 2003-11-11 2005-05-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and control method thereof
US7178327B2 (en) 2003-11-11 2007-02-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and control method thereof
US7654243B2 (en) 2007-02-26 2010-02-02 Ifp Method for facilitating vaporization of a fuel for a diesel type direct-injection internal-combustion engine
FR2913065A1 (en) * 2007-02-26 2008-08-29 Inst Francais Du Petrole METHOD FOR FACILITATING VAPORIZATION OF A FUEL FOR A DIRECT INJECTION INTERNAL COMBUSTION ENGINE OF DIESEL TYPE
EP1965057A1 (en) * 2007-02-26 2008-09-03 Ifp Method for facilitating the vaporisation of fuel for a direct injection diesel internal combustion engine
FR2933450A1 (en) * 2008-07-03 2010-01-08 Inst Francais Du Petrole Fuel vaporization facilitating method for diesel engine, involves introducing intake fluid into combustion chamber, closing exhaust valve before end of intake phase, and closing intake valve in vicinity of end of intake phase

Similar Documents

Publication Publication Date Title
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
EP0905360B1 (en) Direct fuel injection engine
KR19980081769A (en) Injectable spark-ignition engine
KR20080007260A (en) Direct-injection internal combustion engine and method of controlling the same
JPH07119507A (en) Inter-cylinder injection type spark ignition engine
US6668791B2 (en) Control system for in-cylinder direct injection engine
JPH03281915A (en) Multiple suction valve type engine
JPH04183945A (en) Cylinder direct injection type spark ignition engine
JP3921732B2 (en) In-cylinder injection type spark ignition engine
JP2009121416A (en) Internal combustion engine
JPH05248277A (en) Cylinder injection spark ignition engine
JP4622852B2 (en) Spark ignition direct injection engine
JP4586670B2 (en) Premixed compression ignition internal combustion engine
KR100512391B1 (en) Internal combustion engine
JPH04365928A (en) Two cycle engine for cylinder injection of fuel
JPH0531659B2 (en)
JP2000265891A (en) Cylinder injection control device
JPH0486355A (en) Fuel injection internal combustion engine
JP4148009B2 (en) Fuel injection system for internal combustion engine
JPH09177572A (en) Output controller of internal combustion engine
JP4029737B2 (en) Direct-injection spark ignition internal combustion engine
JP2023131577A (en) internal combustion engine
US11773802B2 (en) Internal combustion engine
JPH09317505A (en) Lean burning type internal combustion engine
JPH10325330A (en) Direct cylinder fuel injection type spark ignition internal combustion engine