JPH04183921A - Internal combustion engine - Google Patents
Internal combustion engineInfo
- Publication number
- JPH04183921A JPH04183921A JP2311660A JP31166090A JPH04183921A JP H04183921 A JPH04183921 A JP H04183921A JP 2311660 A JP2311660 A JP 2311660A JP 31166090 A JP31166090 A JP 31166090A JP H04183921 A JPH04183921 A JP H04183921A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- catalyst
- temperature
- fuel
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 32
- 230000001473 noxious effect Effects 0.000 abstract 1
- 239000000446 fuel Substances 0.000 description 70
- 238000002347 injection Methods 0.000 description 48
- 239000007924 injection Substances 0.000 description 48
- 230000006835 compression Effects 0.000 description 21
- 238000007906 compression Methods 0.000 description 21
- 239000000203 mixture Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- 230000035515 penetration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008241 heterogeneous mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/14—Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/04—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成層燃焼可能な内燃機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an internal combustion engine capable of stratified combustion.
燃焼室内に燃料を直接噴射するための燃料噴射弁を備え
、低負荷時には圧縮行程後半に燃料を噴射せしめ、中・
高負荷時には吸気行程と圧縮行程後半とにおいて燃料を
噴射せしめるようにした、いわゆる成層燃焼を行なう内
燃機関が公知である(特開平2−169834号公報参
照)。Equipped with a fuel injection valve to directly inject fuel into the combustion chamber, fuel is injected in the latter half of the compression stroke at low loads,
An internal combustion engine is known that performs so-called stratified combustion, in which fuel is injected during the intake stroke and the latter half of the compression stroke when the load is high (see Japanese Patent Laid-Open No. 2-169834).
ところで、排気通路に設けられる触媒は温度が予め定め
られた温度より低いときには触媒として作用せず、この
ため排気ガス中の有害成分を除去することができない。By the way, the catalyst provided in the exhaust passage does not act as a catalyst when the temperature is lower than a predetermined temperature, and therefore cannot remove harmful components in the exhaust gas.
前述の内燃機関では成層燃焼のために吸入空気量が過剰
であり、このため排気ガス温度が低い。In the above-mentioned internal combustion engine, the amount of intake air is excessive due to stratified combustion, and therefore the exhaust gas temperature is low.
従って触媒を予め定められた温度以上に過熱するために
は比較的長時間を要し、このため、この間において触媒
が作用せず多量の有害成分が排気ガスと共に大気中に放
出されるという問題を生ずる。Therefore, it takes a relatively long time to heat the catalyst above a predetermined temperature, which causes the problem that the catalyst does not function during this time and a large amount of harmful components are released into the atmosphere together with the exhaust gas. arise.
上記問題点を解決するため本発明によれば、排気通路に
触媒を備え成層燃焼可能な内燃機関において、触媒より
下流の排気通路に排気通路の流路抵抗を変更せしめる抵
抗変更手段を設け、触媒の温度が予め定められた温度よ
り低いときには抵抗変更手段によって排気通路の流路抵
抗を増大せしめるようにしている。In order to solve the above problems, according to the present invention, in an internal combustion engine that includes a catalyst in the exhaust passage and is capable of stratified combustion, a resistance changing means for changing the flow path resistance of the exhaust passage is provided in the exhaust passage downstream of the catalyst. When the temperature of the exhaust passage is lower than a predetermined temperature, the resistance changing means increases the flow resistance of the exhaust passage.
触媒の温度が予め定められた温度より低いときには抵抗
変更手段によって排気通路の流路抵抗を増大せしめる。When the temperature of the catalyst is lower than a predetermined temperature, the flow resistance of the exhaust passage is increased by the resistance changing means.
これによって排圧が高まり吸入空気量が減少するために
排気ガス温度が上昇する。As a result, the exhaust pressure increases and the amount of intake air decreases, causing the exhaust gas temperature to rise.
第1図を参照すると、lは機関本体、2は吸気管、3は
排気管である。吸気管2の途中にはスロットル弁4が配
置される。このスロットル弁4はモータ45によって開
閉制御せしめられ、アイドル運転時以外および減速運転
時以外においてはほぼ全開状態とされる。排気管3には
触媒5が設けられ、触媒5下流の排気管3には排気マフ
ラ6が設けられる。触媒5と排気マフラ6の間の排気管
3には排気管3の流路抵抗を制御するための排気側御弁
7が設けられる。排気制御弁7はアクチュエータ8によ
って開閉制御せしめられる。アクチュエータ8はダイヤ
フラム8aによって負圧室8bと大気圧室8Cとに区画
形成され、ダイヤフラム8aは圧縮コイルばね8dによ
って大気圧室8Cに向かつて付勢されている。ダイヤフ
ラム8aはロッド8eを介して排気制御弁7に接続され
ている。負圧室8bは導管9を介して□切換弁10の第
1ポーHOaに接続されている。切換弁10の第2ポー
)10bは負圧管11を介して負圧タンク12に接続さ
れ、負圧管11は負圧ポンプ13に接続されている。Referring to FIG. 1, 1 is the engine body, 2 is an intake pipe, and 3 is an exhaust pipe. A throttle valve 4 is arranged in the middle of the intake pipe 2. This throttle valve 4 is controlled to open and close by a motor 45, and is kept substantially fully open except during idle operation and deceleration operation. A catalyst 5 is provided in the exhaust pipe 3, and an exhaust muffler 6 is provided in the exhaust pipe 3 downstream of the catalyst 5. The exhaust pipe 3 between the catalyst 5 and the exhaust muffler 6 is provided with an exhaust side control valve 7 for controlling flow path resistance of the exhaust pipe 3. The exhaust control valve 7 is controlled to open and close by an actuator 8. The actuator 8 is divided into a negative pressure chamber 8b and an atmospheric pressure chamber 8C by a diaphragm 8a, and the diaphragm 8a is urged toward the atmospheric pressure chamber 8C by a compression coil spring 8d. Diaphragm 8a is connected to exhaust control valve 7 via rod 8e. The negative pressure chamber 8b is connected to the first port HOa of the □ switching valve 10 via a conduit 9. A second port 10b of the switching valve 10 is connected to a negative pressure tank 12 via a negative pressure pipe 11, and the negative pressure pipe 11 is connected to a negative pressure pump 13.
切換弁10の第3ポー)10cは図示しないエアクリー
ナに接続されている。導管9がエアクリーナに連通せし
められると負圧室8bには大気が導入され排気制御弁7
は全開とされる。一方、導管9が負圧管11に連通せし
められると負圧室8bには負圧が導入され、このため排
気制御弁7は閉弁方向に駆動され、排気管3の流路抵抗
が増大せしめられる。A third port 10c of the switching valve 10 is connected to an air cleaner (not shown). When the conduit 9 is brought into communication with the air cleaner, the atmosphere is introduced into the negative pressure chamber 8b and the exhaust control valve 7
is considered to be fully open. On the other hand, when the conduit 9 is brought into communication with the negative pressure pipe 11, negative pressure is introduced into the negative pressure chamber 8b, and therefore the exhaust control valve 7 is driven in the valve closing direction, and the flow path resistance of the exhaust pipe 3 is increased. .
電子制御ユニット20はディジタルコンピュータからな
り、双方向性バス21によって和室に接続されたROM
(リードオンリメモリ)22、RAM(ランダムアク
セスメモリ)23、CPU(マイクロプロセッサ)24
、人力ボート25および出力ポート26を具備する。触
媒5の温度を検出する温度センサ40はA’D変換器2
7を介して入力ポート25に接続される。触媒5上流の
排気管3に配置され空−比を検出する空燃比センサ41
はAD変換器28を介して人力ボート25に接続される
。スロットル弁4のアイドル開度を検出するアイドルス
イッチ42は入力ポート25に接続される。機関回転数
を検出するためのクランク角センサ43は入力ポート2
5に接続される。図示しないアクセルペダルの踏込み量
を検出するためのアクセル開度センサ44はAD変換器
29を介して入力ポート25に接続される。The electronic control unit 20 consists of a digital computer and a ROM connected to the Japanese-style room by a bidirectional bus 21.
(read only memory) 22, RAM (random access memory) 23, CPU (microprocessor) 24
, a human-powered boat 25 and an output port 26. A temperature sensor 40 that detects the temperature of the catalyst 5 is connected to the A'D converter 2.
7 to the input port 25. An air-fuel ratio sensor 41 that is arranged in the exhaust pipe 3 upstream of the catalyst 5 and detects the air-fuel ratio.
is connected to the human-powered boat 25 via an AD converter 28. An idle switch 42 that detects the idle opening degree of the throttle valve 4 is connected to the input port 25. A crank angle sensor 43 for detecting engine speed is connected to input port 2.
Connected to 5. An accelerator opening sensor 44 for detecting the amount of depression of an accelerator pedal (not shown) is connected to the input port 25 via an AD converter 29.
一方、出力ポート26は各駆動回路30.31を介して
夫々切換弁IO、モータ45に接続される。On the other hand, the output port 26 is connected to the switching valve IO and the motor 45 via respective drive circuits 30 and 31, respectively.
第2図には第1図の機関の縦断面図を示す。第2図を参
照すると、60はシリンダブロック、61はシリンダヘ
ッド、62はピストン、63はピストン62の頂面に形
成された略円筒状凹部、64はピストン62頂面とシリ
ンダヘッド61内壁面間に形成されたシリンダ室を夫々
示す。点火栓65はシリンダ室64に臨んでシンリダヘ
ッド61のほぼ中央部に取り付けられる。図面には示さ
ないがシリンダヘッド61内には吸気ボートおよび排気
ポートが形成され、これら吸気ポートおよび排気ポート
のシリンダ室64内への開口部には夫々吸気弁および排
気弁が配置される。燃料噴射弁66はスワール型の燃料
噴射弁であり、広がり角が大きく貫徹力の弱い噴霧状の
燃料を噴射する。燃料噴射弁66は、斜め下方を指向し
て、シリンダ室64の頂部に配置され、点火栓65近傍
に向かって燃料噴射するように配置される。また、燃料
噴射弁66の燃料噴射方向および燃料噴射時期は、噴射
燃料がピストン62頂部に形成された凹部63を指向す
るように決められる。FIG. 2 shows a longitudinal sectional view of the engine shown in FIG. 1. Referring to FIG. 2, 60 is a cylinder block, 61 is a cylinder head, 62 is a piston, 63 is a substantially cylindrical recess formed on the top surface of the piston 62, and 64 is a space between the top surface of the piston 62 and the inner wall surface of the cylinder head 61. The cylinder chambers formed in the figure are shown respectively. The ignition plug 65 is attached to a substantially central portion of the cylinder head 61 facing the cylinder chamber 64. Although not shown in the drawings, an intake boat and an exhaust port are formed in the cylinder head 61, and an intake valve and an exhaust valve are arranged at the openings of these intake ports and exhaust ports into the cylinder chamber 64, respectively. The fuel injection valve 66 is a swirl type fuel injection valve, and injects fuel in the form of a spray with a large spread angle and a weak penetration force. The fuel injection valve 66 is arranged at the top of the cylinder chamber 64 so as to face obliquely downward, and is arranged to inject fuel toward the vicinity of the ignition plug 65 . Further, the fuel injection direction and fuel injection timing of the fuel injection valve 66 are determined so that the injected fuel is directed toward the recess 63 formed at the top of the piston 62.
第3図には本実施例の圧縮行程噴射と吸気行程噴射の制
御パターンを示す。第3図を参照すると、横軸は機関の
負□荷を表しており、第3図では負荷として燃料噴射量
Qをとり、縦軸には燃料噴射量Qをとっている。低負荷
から燃料噴射量Q3までは、圧縮行程においてだけ燃料
が噴射される。圧縮行程燃料噴射iQ。はQSまで漸次
増大せしめられる。燃料噴射量Q、においで、圧縮行程
燃料噴射iQ。はQDまで急激に減少せしめられると共
に吸気行程燃料噴射量Q1 はQ、まで急激に増大せし
められる。QS は中負荷付近の燃料噴射量であり、Q
、とQ、との和として次式で示される。FIG. 3 shows control patterns for compression stroke injection and intake stroke injection in this embodiment. Referring to FIG. 3, the horizontal axis represents the engine load, and in FIG. 3, the load is the fuel injection amount Q, and the vertical axis is the fuel injection amount Q. From low load to fuel injection amount Q3, fuel is injected only in the compression stroke. Compression stroke fuel injection iQ. is gradually increased up to QS. Fuel injection amount Q, smell, compression stroke fuel injection iQ. is rapidly decreased to QD, and the intake stroke fuel injection amount Q1 is rapidly increased to Q. QS is the fuel injection amount near medium load, and Q
, and Q, is expressed by the following equation.
Q5=Qo +Q、。Q5=Qo+Q,.
ここで、QDは点火栓65により着火可能な混合気を形
成し得る最小限の圧縮行程燃料噴射量であり、QPは吸
気行程において噴射された燃料がシリンダ室64内に均
質に拡散した際に点火栓65による着火火災が伝播可能
な最小限の吸気行程燃料噴射量である。Here, QD is the minimum compression stroke fuel injection amount that can form an air-fuel mixture that can be ignited by the spark plug 65, and QP is the minimum fuel injection amount in the compression stroke that can form a mixture that can be ignited by the spark plug 65. This is the minimum intake stroke fuel injection amount at which the fire ignited by the spark plug 65 can propagate.
燃料噴射量がQ5より大きい負荷領域においては、要求
燃料噴射量Ωを圧縮行程と吸気行程とに分割して噴射し
、圧縮行程燃料噴射量QDは負荷によらず一定とし吸気
行程燃料噴射量QP は負荷の増大に伴って増大せしめ
ろ。In a load region where the fuel injection amount is larger than Q5, the required fuel injection amount Ω is divided into the compression stroke and the intake stroke, and the compression stroke fuel injection amount QD is constant regardless of the load, and the intake stroke fuel injection amount QP is Let it increase as the load increases.
中負荷付近Q5より低い負荷領域においては、第2図に
示されるように、圧縮行程後期に圧縮行程噴射が実行さ
れ、燃料噴射弁66から点火栓65およびピストン62
頂面の凹部63を指向して燃料が噴射される。この噴射
燃料は貫徹力が弱く、またシリンダ室64内の圧力が高
くかつ空気流動が弱いため、噴射燃料は点火栓65付近
の領域Kに偏在する。この領域に内の燃料分布は不均一
であり、リッチな混合気層がら空気層まで変化するため
、領域に内には最も燃焼し易い理論空燃比付近の可燃混
合気層が存在する。従って点火栓65付近の可燃混合気
層が容易に着火され、この着火火災が不均一混合気層全
体に伝播して燃焼が完了する。このように、中負荷より
低い低負荷領域においては、圧縮行程後期に点火栓65
付近に燃料を噴射し、これによって点火栓65付近に可
燃混合気層を形成し、斯くして良好な着火および燃焼が
得られることとなる。In a load region lower than the medium load vicinity Q5, as shown in FIG.
Fuel is injected toward the recess 63 on the top surface. This injected fuel has a weak penetrating force, and since the pressure inside the cylinder chamber 64 is high and the air flow is weak, the injected fuel is unevenly distributed in the region K near the ignition plug 65. The fuel distribution within this region is non-uniform and changes from a rich mixture layer to an air layer, so within this region there is a combustible mixture layer near the stoichiometric air-fuel ratio where combustion is most likely to occur. Therefore, the combustible mixture layer near the ignition plug 65 is easily ignited, and this ignition fire propagates throughout the heterogeneous mixture layer to complete combustion. In this way, in the low load region lower than medium load, the spark plug 65 is activated in the latter half of the compression stroke.
Fuel is injected near the spark plug 65, thereby forming a combustible mixture layer near the spark plug 65, thus achieving good ignition and combustion.
一方中負荷付近Q5より高い負荷領域においては、第4
図に示されるように、吸気行程初期(第4図(a))に
吸気行程噴射が実行され、燃料噴射弁66から点火性6
5およびピストン62頂面の凹部63を指向して燃料が
噴射される。この噴射燃料は、広がり角が大きく貫徹力
の弱い噴霧状の燃料であり、噴射燃料の一部はシリンダ
室64内に浮遊し、他は凹部63に衝突する。これらの
噴射燃料は、吸気ポートからシリンダ室64内に流入す
る吸入空気流によって生ずるシリンダ室64内の乱れR
によってシリンダ室64内に拡散され、吸気行程から圧
縮行程に至る間に予混合気Pが形成される(第4図(b
))。この予混合気Pの空燃比は、着火火災が伝播でき
る程度の空燃比である。尚、第4図(b)の状態では噴
射燃料の中心軸線の延長がシリンダ壁に指向しているた
め、噴射燃料の貫徹力が強い場合には噴霧の一部が直接
シリンダ壁に付着するおそれがある。本実施例では比較
的貫徹力の弱い噴射を行なっているため特に問題はない
が、この実施例ではこの期間を無噴射期間とすることに
より、燃料シリンダ壁面への付着防止効果を高めている
。続いて圧縮行程後期(第4図(C))に圧縮行程噴射
が実行され、燃料噴射弁66から点火栓65近傍および
ピストン62頂面の凹部63を指向して燃料が噴射され
る。この噴射燃料は元々点火栓65に指向しているうえ
貫徹力が弱く、またシリンダ室64内の圧力が大きいた
め、噴射燃料は点火栓65付近の領域Kに偏在する。こ
の領域に内の燃料分布も不均一であり、リッチな混合気
層から空気層まで変化するため、この領域に内には最も
燃焼し易い理論空燃比付近の可燃混合気層が存在する。On the other hand, in the load region higher than Q5 near medium load, the fourth
As shown in the figure, intake stroke injection is performed at the beginning of the intake stroke (FIG. 4(a)), and the fuel injection valve 66 sends the ignitability 6
5 and the recess 63 on the top surface of the piston 62. This injected fuel is a spray-like fuel with a large spread angle and a weak penetration force, and a part of the injected fuel floats in the cylinder chamber 64 and the other part collides with the recess 63. These injected fuels are caused by turbulence R in the cylinder chamber 64 caused by the intake air flow flowing into the cylinder chamber 64 from the intake port.
is diffused into the cylinder chamber 64, and a premixture P is formed between the intake stroke and the compression stroke (see Fig. 4(b)).
)). The air-fuel ratio of this premixture P is such that an ignition fire can propagate. In the state shown in Figure 4(b), the central axis of the injected fuel is directed toward the cylinder wall, so if the penetration force of the injected fuel is strong, there is a risk that part of the spray may directly adhere to the cylinder wall. There is. In this embodiment, there is no particular problem because the injection is performed with a relatively weak penetration force, but in this embodiment, by making this period a non-injection period, the effect of preventing fuel from adhering to the fuel cylinder wall surface is enhanced. Subsequently, compression stroke injection is performed in the latter half of the compression stroke (FIG. 4(C)), and fuel is injected from the fuel injection valve 66 toward the vicinity of the spark plug 65 and the recess 63 on the top surface of the piston 62. This injected fuel is originally directed toward the ignition plug 65 and has a weak penetrating force, and the pressure inside the cylinder chamber 64 is high, so the injected fuel is unevenly distributed in the area K near the ignition plug 65. The fuel distribution within this region is also non-uniform and changes from a rich mixture layer to an air layer, so within this region there is a combustible mixture layer near the stoichiometric air-fuel ratio where combustion is most likely to occur.
従って点火栓65付近の可燃混合気層が着火されると、
不均一混合気領域Kを中心に燃焼が進行するく第4図(
d))。この燃焼過程で体積膨張した燃焼ガスBの周辺
から順次、予混合気Pに火災が伝播し燃焼が完了する。Therefore, when the flammable mixture layer near the spark plug 65 is ignited,
As combustion progresses centering around the heterogeneous mixture region K, Figure 4 (
d)). During this combustion process, the fire propagates from the vicinity of the combustion gas B, which has expanded in volume, to the premixture P, and combustion is completed.
このように、中負荷および高負荷領域においては、吸気
行程初期において燃料を噴射することにより火災伝播用
の混合気をシリンダ室64内全体に形成すると共に、圧
縮行程後期において燃料を噴射することにより点火栓6
5近傍に比較的濃い混合気を形成して着火および火災核
形成用の混合気を形成する。斯くして良好な着火と空気
利用率の高い燃焼が得られる。In this manner, in medium load and high load regions, fuel is injected at the beginning of the intake stroke to form a mixture for fire propagation throughout the cylinder chamber 64, and fuel is injected at the latter half of the compression stroke to form a mixture for fire propagation throughout the cylinder chamber 64. Spark plug 6
A relatively rich mixture is formed in the vicinity of 5 to form a mixture for ignition and fire nucleation. In this way, good ignition and combustion with high air utilization efficiency can be obtained.
なお、燃料噴射量はアクセル開度と機関回転数のマツプ
に基づいて計算され、スロットル弁開度は燃料噴射量と
機関回転数に基づいて計算される。Note that the fuel injection amount is calculated based on a map of the accelerator opening and the engine speed, and the throttle valve opening is calculated based on the fuel injection amount and the engine speed.
ところで、触媒5は温度が低いと触媒として十分に作用
せず、例えば300℃以上にならないと排気ガス中の有
害成分を除去する晶ができない。By the way, the catalyst 5 does not function sufficiently as a catalyst when the temperature is low, and cannot form crystals that remove harmful components in exhaust gas unless the temperature is 300° C. or higher, for example.
一方、本実施例の機関のように成層燃焼を行なう機関に
おいては、シリンダ内に供給される燃料量に比較して吸
入空気量が多いために排気ガス温度は低くなる。On the other hand, in an engine that performs stratified combustion like the engine of this embodiment, the exhaust gas temperature is low because the amount of intake air is large compared to the amount of fuel supplied into the cylinder.
従って、触媒5の温度が上昇するまでに長い時間を要し
、この間において排気ガス中の有害成分を除去できない
という問題を生ずる。Therefore, it takes a long time for the temperature of the catalyst 5 to rise, causing the problem that harmful components in the exhaust gas cannot be removed during this time.
そこで第1の実施例では触媒温度が低い場合において空
燃比が予め定められた値以上の場合には、排気制御弁7
の開度を低減せしめるようにしている。このときの開度
は、アイドル時および低・中負荷時の走行に支障のない
程度の中間開度とされている。排気制御弁7の開度を低
減せしめて排気管3を絞ると流路抵抗が増大するために
排圧が高まり、シンリダ内に供給される空気量が減少し
、このために排気ガス温度が上昇する。この結果、触媒
5を短時間で昇温することができ、有害成分の排出量を
低減せしめることができる。Therefore, in the first embodiment, when the catalyst temperature is low and the air-fuel ratio is above a predetermined value, the exhaust control valve 7
The opening degree of the opening is reduced. The opening degree at this time is set to be an intermediate opening degree that does not interfere with running at idle and under low/medium load conditions. When the opening degree of the exhaust control valve 7 is reduced and the exhaust pipe 3 is throttled, the flow path resistance increases, which increases the exhaust pressure, reduces the amount of air supplied to the cylinder, and as a result, the exhaust gas temperature rises. do. As a result, the temperature of the catalyst 5 can be increased in a short time, and the amount of harmful components discharged can be reduced.
第5図には排気制御弁7を制御するためのルーチンを示
す。このルーチンは一定時間毎の割込みによって実行さ
れる。まずステップ70において触媒温度Tが300℃
以下か否か判定される。T〉300℃の場合、触媒は触
媒作用を十分に実行できるため、ステップ71に進んで
排気制御弁7を全開せしめて本ルーチンを終了する。一
方、16300℃の場合にはステップ72に進み、空燃
比が例えば17以上か否か判定される。空燃比が17よ
り小さい場合にはステップ71に進み、排気制御弁7が
全開とされる。空燃比が17より小さい場合には燃焼に
多量の空気を必要とし、排気制御弁7を閉弁せしめて開
度を小さくすると空気量が不足して出力が低下するふそ
れがあるため、この場合には排気制御弁7を全開として
いる。一方、空燃比が17以上の場合にはステップ73
に進み排気制御弁7を閉弁せしめる。この場合の閉弁と
は全開状態ではなく、中間開度とされる。空燃比17以
上のような運転状態においては、もともと十分に空気が
存在するもとての燃焼であるので、排気制御弁7の開度
を低減せしめてシリンダ内に供給さるれ空気量を低減せ
しめても燃焼に支障をきたすことはない。FIG. 5 shows a routine for controlling the exhaust control valve 7. This routine is executed by interrupts at regular intervals. First, in step 70, the catalyst temperature T is 300°C.
It is determined whether or not the value is less than or equal to the value. If T>300° C., the catalyst can sufficiently perform its catalytic action, so the routine proceeds to step 71, where the exhaust control valve 7 is fully opened, and this routine ends. On the other hand, if the temperature is 16,300° C., the process proceeds to step 72, where it is determined whether the air-fuel ratio is, for example, 17 or higher. If the air-fuel ratio is smaller than 17, the process proceeds to step 71, where the exhaust control valve 7 is fully opened. If the air-fuel ratio is less than 17, a large amount of air is required for combustion, and if the exhaust control valve 7 is closed and the opening degree is reduced, there is a risk that the air amount will be insufficient and the output will decrease. In this case, the exhaust control valve 7 is fully opened. On the other hand, if the air-fuel ratio is 17 or more, step 73
Then, the exhaust control valve 7 is closed. In this case, the closed valve is not a fully open state, but an intermediate opening. In operating conditions where the air-fuel ratio is 17 or more, combustion occurs even though there is sufficient air to begin with, so the opening degree of the exhaust control valve 7 is reduced to reduce the amount of air supplied into the cylinder. However, it will not interfere with combustion.
第6図には排気制御弁7の制御の第2の実施例のルーチ
ンを示す。このルーチンは一定時間毎の割込みによって
実行される。このルーチンは第5図に示すルーチンとほ
ぼ同様であり、同一ステップには同一ステップ番号を付
してその説明を省略する。第6図を参照すると、触媒温
度Tが300℃以下の場合にはステップ74に進み、ア
イドル運転か否か判定される。アイドル運転か否かは、
アイドルスイッチ42の検出信号およびクランク角セン
サ43の検出信号によって判定される。アイドル運転時
でなければ排気制御弁7は全開とされ、アイドル運転時
であれば排気制御弁7は閉弁される。FIG. 6 shows a routine for controlling the exhaust control valve 7 in a second embodiment. This routine is executed by interrupts at regular intervals. This routine is almost the same as the routine shown in FIG. 5, and the same steps are given the same step numbers and their explanations will be omitted. Referring to FIG. 6, if the catalyst temperature T is 300° C. or less, the process proceeds to step 74, where it is determined whether or not the engine is in idle operation. Whether it is idling or not,
The determination is made based on the detection signal of the idle switch 42 and the detection signal of the crank angle sensor 43. The exhaust control valve 7 is fully open when the engine is not idling, and is closed when the engine is idling.
なおアイドル運転時においては排気管3が絞られること
によってシリンダ内に残留する排気ガス量が増大する。Note that during idling operation, the exhaust pipe 3 is constricted, so that the amount of exhaust gas remaining in the cylinder increases.
すなわち内部EGR(排気ガス再循環〉量が増大するた
めに良好な燃焼が得られる。In other words, good combustion can be obtained because the amount of internal EGR (exhaust gas recirculation) increases.
なお以上の実施例においては排気制御弁7を用いて排気
管3の流路抵抗を増大せしめているが、他の手段によっ
て流路抵抗を増大せしめてもよい。In the above embodiment, the exhaust control valve 7 is used to increase the flow path resistance of the exhaust pipe 3, but the flow path resistance may be increased by other means.
また、1つの燃料噴射弁66によって吸気行程噴射およ
び圧縮行程噴射を実行するようにしているが、2つの燃
料噴射弁を有し、一方の燃料噴射弁で吸気行程噴射を実
行すると共に他方の燃料噴射弁によって圧縮行程噴射を
実行するようにしてもよい。Further, although one fuel injection valve 66 executes intake stroke injection and compression stroke injection, it has two fuel injection valves, and one fuel injection valve executes intake stroke injection while the other fuel injection valve 66 executes intake stroke injection and compression stroke injection. Compression stroke injection may be performed by an injection valve.
触媒の温度が予め定められた温度より低いときには排気
通路の流路抵抗を増大せしめて排気ガス温度が高められ
るために、触媒の昇温時間が短縮せしめられる。この結
果、有害成分の排出量を低減せしめることができる。When the temperature of the catalyst is lower than a predetermined temperature, the flow resistance of the exhaust passage is increased and the exhaust gas temperature is increased, so that the time required to raise the temperature of the catalyst is shortened. As a result, the amount of harmful components discharged can be reduced.
第1図は内燃機関の全体図、第2図は機関の縦断面図、
第3図は圧縮行程噴射と吸気行程噴射の制御パターンの
一例を示す線図、第4図は燃料噴射の状態を示す説明図
、第5図は排気制御弁を制御するた於の第1の実施例の
フローチャート、第6図は排気制御弁を制御するための
第2の実施例のフローチャー1・である。
3・・・排気管、 5・・・触媒、7・・・排
気制御弁、 40・・・温度センサ。Figure 1 is an overall view of the internal combustion engine, Figure 2 is a longitudinal cross-sectional view of the engine,
Fig. 3 is a diagram showing an example of control patterns for compression stroke injection and intake stroke injection, Fig. 4 is an explanatory diagram showing the state of fuel injection, and Fig. 5 is a diagram showing an example of control patterns for compression stroke injection and intake stroke injection. Flowchart of the Embodiment, FIG. 6 is a flowchart 1 of the second embodiment for controlling the exhaust control valve. 3... Exhaust pipe, 5... Catalyst, 7... Exhaust control valve, 40... Temperature sensor.
Claims (1)
て、前記触媒より下流の前記排気通路に前記排気通路の
流路抵抗を変更せしめる抵抗変更手段を設け、前記触媒
の温度が予め定められた温度より低いときには前記抵抗
変更手段によって前記排気通路の流路抵抗を増大せしめ
るようにした内燃機関。In an internal combustion engine that includes a catalyst in an exhaust passage and is capable of stratified combustion, the exhaust passage downstream of the catalyst is provided with resistance changing means for changing the flow resistance of the exhaust passage, and the temperature of the catalyst is lower than a predetermined temperature. When the resistance is low, the flow resistance of the exhaust passage is increased by the resistance changing means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2311660A JPH04183921A (en) | 1990-11-19 | 1990-11-19 | Internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2311660A JPH04183921A (en) | 1990-11-19 | 1990-11-19 | Internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04183921A true JPH04183921A (en) | 1992-06-30 |
Family
ID=18019955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2311660A Pending JPH04183921A (en) | 1990-11-19 | 1990-11-19 | Internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04183921A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100262326B1 (en) * | 1996-12-28 | 2000-08-01 | 정몽규 | Method for catalyst fail control |
WO2002053889A1 (en) * | 2000-12-28 | 2002-07-11 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine |
US6711892B2 (en) | 2001-02-26 | 2004-03-30 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifier for internal combustion engines |
US6751949B2 (en) | 2001-01-29 | 2004-06-22 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control device of internal-combustion engine |
US6968677B2 (en) | 2002-03-15 | 2005-11-29 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control apparatus for internal combustion engine |
KR100566690B1 (en) * | 2001-11-13 | 2006-04-03 | 미쓰비시 지도샤 고교(주) | Exhaust gas purifying device of spark-plug type internal combustion engine |
US7216479B2 (en) | 2002-01-17 | 2007-05-15 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control system for vehicle internal combustion engine |
-
1990
- 1990-11-19 JP JP2311660A patent/JPH04183921A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100262326B1 (en) * | 1996-12-28 | 2000-08-01 | 정몽규 | Method for catalyst fail control |
WO2002053889A1 (en) * | 2000-12-28 | 2002-07-11 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine |
US6729123B2 (en) | 2000-12-28 | 2004-05-04 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust purification device for intracylindrical injection-type spark-ignition internal combustion engine |
US6751949B2 (en) | 2001-01-29 | 2004-06-22 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control device of internal-combustion engine |
US6711892B2 (en) | 2001-02-26 | 2004-03-30 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifier for internal combustion engines |
KR100566690B1 (en) * | 2001-11-13 | 2006-04-03 | 미쓰비시 지도샤 고교(주) | Exhaust gas purifying device of spark-plug type internal combustion engine |
US7216479B2 (en) | 2002-01-17 | 2007-05-15 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control system for vehicle internal combustion engine |
DE10301647B4 (en) * | 2002-01-17 | 2007-06-06 | Mitsubishi Jidosha Kogyo K.K. | Exhaust emission control arrangement for a vehicle engine |
US6968677B2 (en) | 2002-03-15 | 2005-11-29 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission control apparatus for internal combustion engine |
DE10311356B4 (en) * | 2002-03-15 | 2006-12-28 | Mitsubishi Jidosha Kogyo K.K. | Exhaust gas purification device for internal combustion engines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3257423B2 (en) | Exhaust heating device | |
EP2044307B1 (en) | Control apparatus and control method for direct injection spark ignition internal combustion engine | |
JPH04219445A (en) | Fuel injection control device for multicylinder internal combustion engine | |
JP3123474B2 (en) | Exhaust gas purification device for internal combustion engine | |
CA3013284C (en) | Control method and control device for internal combustion engine | |
EP2047091A1 (en) | Control apparatus and control method of in-cylinder injection type spark ignition internal combusion engine | |
JP2010053716A (en) | Control device of internal combustion engine | |
JPH04183921A (en) | Internal combustion engine | |
JP2007032379A (en) | Control device for cylinder direct injection type spark ignition internal combustion engine | |
JP4803056B2 (en) | Premixed compression ignition internal combustion engine | |
JPH1136959A (en) | Direct injection spark ignition type internal combustion engine | |
JP2005188314A (en) | Exhaust recirculation device for engine | |
WO2008102910A1 (en) | Fuel injection control device for in-cylinder injection internal combustion engine | |
KR100187978B1 (en) | Air fuel ratio control method of lean burn engine | |
JPH05321718A (en) | Control device of internal combustion engine | |
JP4240083B2 (en) | In-cylinder injection spark ignition internal combustion engine control device | |
JP4374761B2 (en) | Fuel injection amount control device for internal combustion engine | |
JP4057984B2 (en) | Fuel injection control device for internal combustion engine | |
JP2006266119A (en) | Control device for in-cylinder direct injection type spark ignition internal combustion engine | |
JPH0599032A (en) | Idling controller of inter-cylinder injection type internal combustion engine | |
JPH0347453A (en) | Egr timing adjustable engine | |
JP2688838B2 (en) | Exhaust recirculation control device for diesel engine | |
JP4135233B2 (en) | Internal combustion engine | |
JPH02125954A (en) | Exhaust gas recirculation control device of diesel engine | |
JP2024154920A (en) | Engine System |