JPH04183806A - Manufacture of metallic magnetic powder - Google Patents

Manufacture of metallic magnetic powder

Info

Publication number
JPH04183806A
JPH04183806A JP2314632A JP31463290A JPH04183806A JP H04183806 A JPH04183806 A JP H04183806A JP 2314632 A JP2314632 A JP 2314632A JP 31463290 A JP31463290 A JP 31463290A JP H04183806 A JPH04183806 A JP H04183806A
Authority
JP
Japan
Prior art keywords
gas
magnetic
oxide film
reaction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314632A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
善秋 沢田
Tadashi Teramoto
正 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP2314632A priority Critical patent/JPH04183806A/en
Publication of JPH04183806A publication Critical patent/JPH04183806A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To manufacture magnetic metal powder having oxide film on a surface and excellent magnetic characteristic by supplying transition metal carbonyl compound and high temp. dilution gas into a reaction tube impressing magnetic field and reaction the metal fine powder obtd. with gas phase decomposition reaction and oxygen or steam at the specific temp. CONSTITUTION:Into a lower nozzle part 6 in the reaction tube 7, the high temp. dilution gas of H2, CO, inert gas, etc., from an introducing pipe 1 and low temp. mixed gas mixing the transition metal carbonyl compound 2 and the dilution gas 3 in a mixing chamber 4, are introduced and also the magnetic field is impressed with a magnet 8. The transition metal carbonyl compound is decomposed in a gas phase in the reaction tube 7 to obtain the metal super fine particles controlling acicular shape with the influence of the magnetic field. This is supplied to an oxide film forming reaction tube 10 through a tubular passage 9 and at the same time, the mixed gas 12 of oxidizing gas of O2 or steam, etc., and inert gas of N, etc., and these are mixedly reacted at >=600 deg.C to manufacture the metallic magnetic powder having the oxide film on the surface, high resistance to the coercive force and magnetic variation with the lapse of time, high ignition point and excellent weather resistance.

Description

【発明の詳細な説明】 〔発明の背景〕 (産業上の利用分野) 本発明は、金属磁性粉の製造方法に関する。更に詳しく
は、本発明は、磁気的劣化に対する抵抗力が強く、発火
点の高い、耐候性に優れた金属磁性粉末の簡便かつ経済
的な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] (Field of Industrial Application) The present invention relates to a method for producing metal magnetic powder. More specifically, the present invention relates to a simple and economical method for producing metal magnetic powder that has strong resistance to magnetic deterioration, a high ignition point, and excellent weather resistance.

(従来の技術) 近年、磁気記録媒体の磁性材料として、鉄を主成分とす
る強磁性金属粉末が注目され用いられるようになった。
(Prior Art) In recent years, ferromagnetic metal powder containing iron as a main component has been attracting attention and being used as a magnetic material for magnetic recording media.

この強磁性金属粉末は、従来の酸化鉄系磁性材料と比較
して、保磁力、飽和磁化量に優れており、高密度記録の
達成が可能であるが、他方、耐酸化性が劣るという最大
の欠点を有している。
This ferromagnetic metal powder has superior coercive force and saturation magnetization compared to conventional iron oxide magnetic materials, making it possible to achieve high-density recording, but on the other hand, it has poor oxidation resistance. It has the following disadvantages.

磁気記録媒体に用いられる強磁性金属粉末は、比表面積
が大きく化学的に極めて活性であり、大気中に取り出す
と急激な酸化反応による発熱や発火が起こってしまう。
Ferromagnetic metal powder used in magnetic recording media has a large specific surface area and is extremely chemically active, and if taken out into the atmosphere, heat generation and ignition will occur due to rapid oxidation reactions.

このため、強磁性金属粉末を安定化させる方法として、
金属粉末表面に酸化被膜を形成する方法が提案されてい
て、具体的には金属粉末を有機溶剤中に浸漬して酸素含
有不活性ガスを通して溶液中で酸化被膜を形成する方法
(特開昭52−85054号他)や、気相中で酸素含有
不活性ガスを接触し酸化被膜を形成する方法(特開昭4
8−79153号他)等がある。
For this reason, as a method to stabilize ferromagnetic metal powder,
A method of forming an oxide film on the surface of a metal powder has been proposed. Specifically, a method of immersing the metal powder in an organic solvent and passing an oxygen-containing inert gas to form an oxide film in the solution has been proposed (Japanese Patent Application Laid-Open No. 1983-52). -85054, etc.), and a method of forming an oxide film by contacting oxygen-containing inert gas in the gas phase (Japanese Patent Application Laid-open No. 4
No. 8-79153, etc.).

また、本発明者等は、遷移金属カルボニル化合物を不活
性ガス中に希釈して気相熱分解を行うことによる強磁性
粉末の製造方法を先に提案しく特開昭63−27040
570405号他た強磁性粉末について上記の徐酸化法
により強磁性粉末の安定化を試みている。
In addition, the present inventors have previously proposed a method for producing ferromagnetic powder by diluting a transition metal carbonyl compound in an inert gas and performing gas phase thermal decomposition.
No. 570,405 and others attempted to stabilize the ferromagnetic powder by the above-mentioned slow oxidation method.

しかしながら、これらの徐酸化方法では磁気的に強く凝
集した状態で酸化反応を行うため、酸素の金属粒子表面
層への拡散が不充分で酸化反応が不均一に起こるという
不都合が生じ、酸化被膜の形成反応が不充分で実用的な
使用条件では経時劣化が起こるという問題を残していた
However, in these slow oxidation methods, the oxidation reaction is carried out in a strongly magnetically agglomerated state, resulting in the inconvenience that the oxidation reaction occurs unevenly due to insufficient diffusion of oxygen into the surface layer of the metal particles. The problem remains that the formation reaction is insufficient and deterioration occurs over time under practical usage conditions.

〔発明の概要〕[Summary of the invention]

(要 旨) 本発明者等は、以上の状況に鑑み、耐酸化性が向上した
金属磁性粉の製造方法について鋭意検討の結果、本発明
をなし得た。
(Summary) In view of the above circumstances, the inventors of the present invention have made the present invention as a result of intensive studies on a method for producing metal magnetic powder with improved oxidation resistance.

すなわち、本発明による金属磁性粉の製造法は、水素、
一酸化炭素、不活性ガス、またはこれらの混合物からな
る希釈ガスで希釈された遷移金属カルボニル化合物を気
相熱分解して該金属の磁性粉末を生成させ、次に該磁性
粉末の生成する反応部から捕集部の間で、前記生成磁性
粉末を不活性ガスで希釈されていてもよい酸素および水
蒸気と60℃以上の温度で接触させることにより該生成
磁性粉末の表面に酸化被膜を形成させることを特徴とす
るものである。
That is, the method for producing metal magnetic powder according to the present invention uses hydrogen,
A transition metal carbonyl compound diluted with a diluent gas consisting of carbon monoxide, an inert gas, or a mixture thereof is subjected to vapor phase pyrolysis to produce a magnetic powder of the metal, and then a reaction section where the magnetic powder is produced is produced. and forming an oxide film on the surface of the generated magnetic powder by bringing the generated magnetic powder into contact with oxygen and water vapor, which may be diluted with an inert gas, at a temperature of 60° C. or higher between the collection unit and the collecting section. It is characterized by:

(効 果) 本発明によれば、金属磁性粉上に極めて安定で均一な酸
化被膜を形成することができ、磁気特性(飽和磁化)の
経時変化が小さく、発火点の高い安定な金属磁性粉末を
複雑な操作なしに、容易に得ることができる。
(Effects) According to the present invention, it is possible to form an extremely stable and uniform oxide film on the metal magnetic powder, and the stable metal magnetic powder has a small change in magnetic properties (saturation magnetization) over time and a high ignition point. can be easily obtained without complicated operations.

本発明の方法においては、金属磁性粉への酸化被膜の形
成反応が金属粉の生成直後、希釈ガスに分散された状態
で行われるため、また、水分が粒子間に介在して凝集を
防止するために、捕集後金属磁性粉同志が凝集した状態
で酸化被膜の形成が行われる場合に比較して、酸素の金
属粒子表面層への拡散が充分に行われ、均一な酸化被膜
の形成が行われるため、極めて安定な金属磁性粉末が得
られる。
In the method of the present invention, the formation reaction of an oxide film on the metal magnetic powder is performed immediately after the metal powder is generated, while the metal powder is dispersed in a diluent gas, and moisture is interposed between the particles to prevent agglomeration. Therefore, compared to the case where the oxide film is formed while the metal magnetic particles are aggregated together after collection, oxygen is sufficiently diffused into the surface layer of the metal particles, and a uniform oxide film is formed. As a result, an extremely stable metal magnetic powder can be obtained.

また、本発明の方法によれば、金属磁性粉の酸化被膜形
成が金属粉の移送工程で行われるため、徐酸化のための
特別な反応器を必要とせず、また気相熱分解で用いた稀
釈ガスを流用できるので、希釈ガス量も軽減できること
より経済的にも有利である。
In addition, according to the method of the present invention, since the formation of an oxide film on the metal magnetic powder is carried out during the metal powder transfer process, there is no need for a special reactor for slow oxidation, and there is no need for a special reactor for gradual oxidation. Since the dilution gas can be reused, the amount of dilution gas can also be reduced, which is economically advantageous.

〔発明の詳細な説明〕[Detailed description of the invention]

く金属磁性粉の生成〉 本発明により表面に酸素被膜を形成すべき金属磁性粉は
、例えば、既に本発明者等が出願した特開昭63−27
0405号、同64−83605号、特願昭63−22
1952号、同63−284760号、特願平1−65
724号他に基づいて製造することができる。
Production of Metal Magnetic Powder> The metal magnetic powder on which an oxygen film is to be formed according to the present invention is disclosed in, for example, Japanese Patent Laid-Open No. 63-27 filed by the present inventors.
No. 0405, No. 64-83605, Patent Application No. 1983-22
No. 1952, No. 63-284760, Patent Application No. 1-65
No. 724 and others.

具体的には、例えば、遷移金属カルボニル化合物を水素
、一酸化炭素、または不活性ガスで希釈してその濃度を
3体積%以下とした混合気体を、100ガウス以上の磁
場を印加した反応系内に300℃以上で5秒以下滞留さ
せて気相熱分解反応を行うことにより生成させることが
できる。
Specifically, for example, a gas mixture in which a transition metal carbonyl compound is diluted with hydrogen, carbon monoxide, or an inert gas to a concentration of 3% by volume or less is placed in a reaction system in which a magnetic field of 100 Gauss or more is applied. It can be produced by performing a gas phase thermal decomposition reaction by retaining at 300° C. or higher for 5 seconds or less.

この方法により得られる金属磁性粉は、針状の超微粒子
であり、たとえば長軸径0.5ミクロン以下、短軸径0
.05ミクロン以下、比表面積30rd/g以上の金属
磁性粉末である。
The metal magnetic powder obtained by this method is acicular ultrafine particles, for example, with a major axis diameter of 0.5 microns or less and a minor axis diameter of 0.
.. It is a metal magnetic powder with a specific surface area of 0.05 microns or less and a specific surface area of 30rd/g or more.

第1図は、本発明を実施するための装置の一例を示すも
のである。
FIG. 1 shows an example of an apparatus for implementing the present invention.

第1図において、導入管1より高温の希釈ガスを、また
、導入管5より低温の金属カルボニルと希釈ガスの混合
気体を導入し、両者を磁場の印加されているノズル出口
6の位置で接触させることにより、金属カルボニルの分
解に必要な300℃以上、好ましくは400〜800℃
の範囲、の熱を高温希釈ガスより瞬時に供給することが
できる。
In Fig. 1, a high-temperature diluent gas is introduced through the introduction tube 1, and a mixed gas of metal carbonyl and dilution gas at a low temperature is introduced through the introduction tube 5, and the two are brought into contact at the nozzle outlet 6 where a magnetic field is applied. By heating, the temperature is 300°C or higher, preferably 400 to 800°C, which is necessary for the decomposition of metal carbonyl.
Heat in the range of 100 to 100% can be instantaneously supplied from high-temperature diluent gas.

この際、導入管5内での低温の金属カルボニルの分解反
応による閉塞を防止する為に、導入管11より低温の希
釈ガスを導入し保護する。
At this time, in order to prevent blockage due to the decomposition reaction of low-temperature metal carbonyl in the introduction pipe 5, low-temperature diluent gas is introduced from the introduction pipe 11 for protection.

導入管5より導入される混合気体は、金属カルボニル化
合物(導入管2より導入)と希釈ガス(導入管3より導
入)とを混合室4において混合して、所定の濃度の金属
カルボニル化合物混合気体として得られる。この導入管
5より導入される混合気体中の遷移金属カルボニル化合
物の濃度は、0.1〜30体積%、好ましくは0,5〜
25体積%、の範囲である。この濃度が高過ぎると得ら
れる金属粒子の粒径が大きく成長するので、本発明が目
的とする高保磁力を有する磁性超微粉は得られず、一方
、濃度が低過ぎると生産性が劣る。
The mixed gas introduced through the introduction pipe 5 is produced by mixing a metal carbonyl compound (introduced through the introduction pipe 2) and a diluent gas (introduced through the introduction pipe 3) in the mixing chamber 4 to produce a metal carbonyl compound mixed gas having a predetermined concentration. obtained as. The concentration of the transition metal carbonyl compound in the gas mixture introduced through the introduction pipe 5 is 0.1 to 30% by volume, preferably 0.5 to 30% by volume.
The range is 25% by volume. If this concentration is too high, the particle size of the metal particles obtained will grow large, making it impossible to obtain the magnetic ultrafine powder having a high coercive force, which is the object of the present invention.On the other hand, if the concentration is too low, productivity will be poor.

この導入管5より導入される混合気体は、200℃以下
、好ましくは180〜30°C1の温度範囲であって、
その導入量は導入管1と導入管5および導入管11との
総供給量に対して1〜30体積%、好ましくは3〜20
体積%、である。
The mixed gas introduced through the introduction pipe 5 has a temperature range of 200°C or less, preferably 180 to 30°C,
The amount introduced is 1 to 30% by volume, preferably 3 to 20% by volume, based on the total supply amount of introduction tube 1, introduction tube 5, and introduction tube 11.
% by volume.

導入量が少な過ぎると生産性が劣り、一方、多過ぎると
十分な反応熱が得られないので反応速度が低下し、生成
金属粒子が大きく成長して超微粒子が得られない。また
、この混合ガスの温度が高すぎると、所望の超微粒子は
得られない。
If the amount introduced is too small, the productivity will be poor, while if it is too large, sufficient reaction heat will not be obtained, so the reaction rate will be reduced, and the produced metal particles will grow large, making it impossible to obtain ultrafine particles. Moreover, if the temperature of this mixed gas is too high, desired ultrafine particles cannot be obtained.

また、導入管1より導入される高温の希釈ガスは、40
0℃以上、好ましくは450℃以上(上限は1000℃
程度)であって、その導入量は導入管1と導入管5およ
び導入管11との総供給量に対して96〜55体積%、
好ましくは92〜70体積%、である。このガスの温度
が低すぎたり、導入量が少ないと、十分な反応熱が得ら
れないので反応速度が著しく低下し、金属粒子形成時の
核発生量も減少するので粒径が大きく成長して本発明が
目的とする超微粒子は得られない。
In addition, the high temperature diluent gas introduced from the introduction pipe 1 is
0°C or higher, preferably 450°C or higher (upper limit is 1000°C)
degree), and the amount introduced is 96 to 55% by volume with respect to the total supply amount of introduction tube 1, introduction tube 5, and introduction tube 11,
Preferably it is 92 to 70% by volume. If the temperature of this gas is too low or the amount introduced is too small, sufficient reaction heat will not be obtained and the reaction rate will drop significantly, and the amount of nuclei generated during metal particle formation will also decrease, causing the particle size to grow larger. The ultrafine particles targeted by the present invention cannot be obtained.

また導入管11より導入される低温の希釈ガスは、′2
00℃以下、好ましくは100℃以下であって、その導
入量は総供給量の3〜15体積%、好ましくは5〜10
体積%である。このガス導入量が少ないと、原料金属カ
ルボニル化合物導入管5内での分解反応による閉塞、あ
るいは導入管5先端での付着を防止することができず、
長時間の安定運転が継続できない。一方、多すぎると反
応温度が充分保てず、目的とする超微粒子が得られない
Also, the low temperature diluent gas introduced from the introduction pipe 11 is
00℃ or less, preferably 100℃ or less, and the amount introduced is 3 to 15% by volume of the total supply amount, preferably 5 to 10%.
It is volume %. If the amount of gas introduced is small, it will not be possible to prevent blockage due to decomposition reaction within the raw material metal carbonyl compound introduction tube 5 or adhesion at the tip of the introduction tube 5.
Unable to continue stable operation for long periods of time. On the other hand, if the amount is too large, the reaction temperature cannot be maintained sufficiently and the desired ultrafine particles cannot be obtained.

ノズル出口6の位置で接触混合されたガスは、7の反応
管内で5秒以下、好ましくは2秒以下、滞留して気相分
解反応を行う。
The gases catalytically mixed at the nozzle outlet 6 remain in the reaction tube 7 for 5 seconds or less, preferably 2 seconds or less, to perform a gas phase decomposition reaction.

反応系への磁場の印加は、永久磁石、電磁石、ソレノイ
ドコイル等の装置8のいずれも使用可能である。印加す
る磁場は、300ガウス以上、好ましくは400〜15
00ガウスの範囲である。
Any device 8 such as a permanent magnet, an electromagnet, or a solenoid coil can be used to apply the magnetic field to the reaction system. The applied magnetic field is 300 Gauss or more, preferably 400 to 15
00 Gauss range.

磁場を印加することで、生成する金属超微粒子の針状性
を制御して、保磁力を大きくすることができる。
By applying a magnetic field, the acicularity of the produced ultrafine metal particles can be controlled and the coercive force can be increased.

く酸化被膜の形成〉 本発明による金属磁性粉の酸化被膜の形成は、前記熱分
解によって生成した金属磁性粉末を管路9を経て酸化膜
形成反応管10へ導入し、酸化剤入管12より導入する
酸素及び水蒸気または不活性ガスで希釈された酸素及び
水蒸気と瞬時に接触させることによりなされる。不活性
ガスとしては、窒素、ヘリウム、アルゴン等が通常使用
されるが、好ましくは、安価な窒素が使用される。また
、上記水蒸気の供給は、反応管内の高温により瞬時に気
化するため、液体の水の状態で反応管内へ導入すること
により行うこともできる。
Formation of Oxide Film> Formation of an oxide film on the metal magnetic powder according to the present invention involves introducing the metal magnetic powder generated by the thermal decomposition into the oxide film forming reaction tube 10 through the pipe 9, and introducing it through the oxidizer entry pipe 12. by instantaneous contact with oxygen and water vapor or oxygen and water vapor diluted with an inert gas. Nitrogen, helium, argon, etc. are commonly used as the inert gas, but nitrogen, which is inexpensive, is preferably used. Furthermore, since the water vapor is instantaneously vaporized due to the high temperature inside the reaction tube, the water vapor can also be supplied by introducing it into the reaction tube in the form of liquid water.

反応管10へ導入される金属磁性粉はガス中に充分に希
釈された状態にあり、また、更に水分の介在によって凝
集しにくくなっており、捕集器に捕集された磁性粉のよ
うに粒子間が強く凝集していない。そのため、酸素の金
属粒子表面層への拡散が充分になされるので比較的高温
、短時間の反応条件で安定な酸化被膜を形成することが
できる。
The metal magnetic powder introduced into the reaction tube 10 is sufficiently diluted in the gas, and furthermore, due to the presence of moisture, it is difficult to aggregate, and it does not form like the magnetic powder collected in the collector. Particles are not strongly aggregated. Therefore, oxygen is sufficiently diffused into the surface layer of the metal particles, so that a stable oxide film can be formed under relatively high temperature and short reaction conditions.

反応管10での反応温度は60℃以上、好ましくは80
℃以上300℃以下、滞留時間は1秒以上、好ましくは
10秒以上100秒以下である。
The reaction temperature in the reaction tube 10 is 60°C or higher, preferably 80°C.
℃ or more and 300°C or less, and the residence time is 1 second or more, preferably 10 seconds or more and 100 seconds or less.

また、酸素及び水蒸気、または不活性ガスで希釈した酸
素及び水蒸気の導入量は、反応器10内で管路9よりの
稀釈ガス並びに酸化剤導入管12よりの不活性ガスによ
り希釈された酸素濃度で0.01〜5体積%、好ましく
は0.05〜2体積%であり、また水蒸気濃度で1〜4
0体積%、好ましくは5〜20体積%である。
In addition, the amount of oxygen and water vapor introduced, or the amount of oxygen and water vapor diluted with an inert gas, is the concentration of oxygen diluted in the reactor 10 by the dilution gas from the pipe 9 and the inert gas from the oxidizing agent introduction pipe 12. The water vapor concentration is 0.01 to 5% by volume, preferably 0.05 to 2% by volume, and the water vapor concentration is 1 to 4% by volume.
0% by volume, preferably 5-20% by volume.

反応温度は60℃以下では酸化速度が遅く所望の酸化被
膜を形成させるのに不適であり、300℃を越えると酸
化反応が急激に促進されるためにその制御が困難となり
、酸化被膜のむらを生じ易くなり品質上好ましくない。
If the reaction temperature is below 60°C, the oxidation rate is slow and it is not suitable for forming the desired oxide film, and if it exceeds 300°C, the oxidation reaction is rapidly accelerated, making it difficult to control and causing unevenness of the oxide film. This is not desirable in terms of quality.

また、滞留時間が100秒以上では反応器容積が大きく
なり過ぎて経済的でなく、1秒以下では酸化被膜を形成
する上で不充分である。
Further, if the residence time is 100 seconds or more, the reactor volume becomes too large and it is not economical, and if the residence time is 1 second or less, it is insufficient for forming an oxide film.

酸化被膜を形成した金属粉は、捕集室13へ送って回収
する。捕集した後;従来法に従い更に徐酸化を行って酸
化被膜の形成を完全なものとすることもできる。
The metal powder on which the oxide film has been formed is sent to the collection chamber 13 and collected. After collection, gradual oxidation may be further performed according to a conventional method to complete the formation of an oxide film.

実施例1 第1図に示すような反応装置において、内径27mm、
長さ1mの反応管7に600ガウスの磁場を印加し、下
記の(イ)〜(ホ)の反応条件でF e (CO) s
の気相熱分解反応を行って鉄超微粒子を生成させ、次い
で内径102 mms長さ2mの反応管10内で(へ)
〜(チ)の条件下に酸化被膜の形成を行った。得られた
金属粉は捕集部13で捕集され、60℃、4時間(へ)
の酸素濃度で保持した後、大気中に取り出した。
Example 1 In a reaction apparatus as shown in FIG.
A magnetic field of 600 Gauss was applied to the reaction tube 7 with a length of 1 m, and Fe (CO) s was produced under the reaction conditions (a) to (e) below.
A gas phase pyrolysis reaction is carried out to produce ultrafine iron particles, and then in a reaction tube 10 with an inner diameter of 102 mm and a length of 2 m.
The oxide film was formed under the conditions of ~(h). The obtained metal powder is collected in the collection section 13 and kept at 60°C for 4 hours.
After maintaining the oxygen concentration at , it was taken out into the atmosphere.

(イ) 管路1からの窒素導入量 窒素:500℃、反応管7への流入ガス総量の855体
積 (ロ) 管路5からの混合気体導入量 窒素:60℃、反応管7への流入ガス総量の8.5体積
% F e (CO) 5: 60℃、反応管7への流入ガ
ス総量の1.5体積% (ハ) 管路11からの希釈ガス導入量窒素:60℃、
反応管7への流入ガス総量の5体積% (ニ) 滞留時間  0. 1秒 (ホ) 反応管(7)平均温度  495℃(へ) 管
路12からの窒素、酸素及び水蒸気導入量(反応管7へ
の流入ガス総量100体積部に対して) 窒素:120℃、4体積部 酸素:120℃、1体積部 水蒸気:120℃、5体積部 (ト) 滞留時間  3.2秒 (チ) 反応管(1o)平均温度  180”C得られ
た磁性鉄粉は、透過電子顕微鏡写真の観察により、短軸
径0.02ミクロン、長袖径0.20ミクロンの針状形
を呈し、磁気特性は、飽和磁化(6s)  : 135
en+u/ g、保磁カニ1550 (Oe) 、角形
比:0.5’lであった。
(a) Amount of nitrogen introduced from pipe 1 Nitrogen: 500°C, 855 volume of the total amount of gas flowing into reaction tube 7 (b) Amount of mixed gas introduced from pipe 5 Nitrogen: 60°C, flowing into reaction tube 7 8.5% by volume of the total amount of gas F e (CO) 5: 60°C, 1.5% by volume of the total amount of gas flowing into the reaction tube 7 (c) Amount of diluent gas introduced from the pipe 11 Nitrogen: 60°C,
5% by volume of the total amount of gas flowing into the reaction tube 7 (d) Residence time 0. 1 second (e) Reaction tube (7) average temperature 495°C (f) Amount of nitrogen, oxygen and water vapor introduced from pipe 12 (relative to 100 parts by volume of total gas flowing into reaction tube 7) Nitrogen: 120°C, 4 parts by volume Oxygen: 120°C, 1 part by volume Water vapor: 120°C, 5 parts by volume (T) Residence time 3.2 seconds (H) Reaction tube (1o) Average temperature 180"C The obtained magnetic iron powder was permeated. Observation of electron micrographs reveals that it has a needle-like shape with a short axis diameter of 0.02 microns and a long sleeve diameter of 0.20 microns, and its magnetic properties are saturation magnetization (6s): 135
en+u/g, magnetic coercivity 1550 (Oe), squareness ratio: 0.5'l.

また、この粉末の耐酸化安定性は、空気中60℃、90
%RHの条件下で3日間放置後の68の低下率(Δ6s
)で評価し、0. 5%であった。
In addition, the oxidation stability of this powder is 60°C and 90°C in air.
Decrease rate of 68 after standing for 3 days under the condition of %RH (Δ6s
) and 0. It was 5%.

また、示差熱分析計で発火点を測定したところ、130
℃であった。
In addition, when the ignition point was measured using a differential thermal analyzer, it was found to be 130
It was ℃.

比較例1 実施例1において(へ)〜(チ)の条件下の酸化被膜形
成工程を経ないで捕集した他は、実施例1と全く同様の
操作を行った。
Comparative Example 1 The same operation as in Example 1 was performed except that the sample was collected without going through the oxide film forming step under the conditions (f) to (h) in Example 1.

得られた磁性鉄粉の磁気特性は、飽和磁化(6s)+ 
135cmu/g、保磁カニ1550(Oe)、角形比
:0.51であった。
The magnetic properties of the obtained magnetic iron powder are saturation magnetization (6s) +
135 cmu/g, magnetic coercivity 1550 (Oe), and squareness ratio: 0.51.

また、この粉末の耐酸化安定性は6sの低下率(△6゛
s)で評価し、5.2%であった。
Further, the oxidation resistance stability of this powder was evaluated by the rate of decrease over 6 seconds (△6゛s) and was 5.2%.

また、示差熱分析計で発火点を測定したところ、105
°Cであった。
In addition, when the ignition point was measured using a differential thermal analyzer, it was found to be 105
It was °C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を実施するための装置の一例を示
す概略構成図である。 1・・・高温の稀釈ガス導入管、2・・・遷移金属カル
ボニル化合物導入管、3・・・稀釈ガス導入管、4・・
・混合槽、5・・・混合ガス導入管、6・・・ノズル出
口、7・・・反応管、8・・・磁界印加装置、9・・・
管路、10・・・反応管、11・・・低温の稀釈ガス導
入管、12・・・酸化剤導入管、13・・・捕集室。 出願人代理人  佐  藤  −雄
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... High temperature dilution gas introduction pipe, 2... Transition metal carbonyl compound introduction pipe, 3... Dilution gas introduction pipe, 4...
-Mixing tank, 5...Mixed gas introduction pipe, 6...Nozzle outlet, 7...Reaction tube, 8...Magnetic field application device, 9...
Pipe line, 10... Reaction tube, 11... Low temperature dilution gas introduction tube, 12... Oxidizing agent introduction tube, 13... Collection chamber. Applicant's agent Mr. Sato

Claims (1)

【特許請求の範囲】[Claims] 水素、一酸化炭素、不活性ガス、またはこれらの混合物
からなる希釈ガスで希釈された遷移金属カルボニル化合
物を気相熱分解して該金属の磁性粉末を生成させ、次に
該磁性粉末の生成する反応部から捕集部の間で、前記生
成磁性粉末を不活性ガスで希釈されていてもよい酸素お
よび水蒸気と60℃以上の温度で接触させることにより
該生成磁性粉末の表面に酸化被膜を形成させることを特
徴とする、金属磁性粉の製造法。
vapor phase pyrolysis of a transition metal carbonyl compound diluted with a diluent gas consisting of hydrogen, carbon monoxide, an inert gas, or a mixture thereof to produce a magnetic powder of the metal; Forming an oxide film on the surface of the generated magnetic powder by bringing the generated magnetic powder into contact with oxygen and water vapor, which may be diluted with an inert gas, at a temperature of 60° C. or higher between the reaction section and the collection section. A method for producing metal magnetic powder, characterized by:
JP2314632A 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder Pending JPH04183806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314632A JPH04183806A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314632A JPH04183806A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Publications (1)

Publication Number Publication Date
JPH04183806A true JPH04183806A (en) 1992-06-30

Family

ID=18055656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314632A Pending JPH04183806A (en) 1990-11-20 1990-11-20 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPH04183806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390187A (en) * 2020-03-12 2020-07-10 江苏巨鑫磁业有限公司 Preparation method of permanent magnet powder by applying double-sided wet-warm oxidation treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390187A (en) * 2020-03-12 2020-07-10 江苏巨鑫磁业有限公司 Preparation method of permanent magnet powder by applying double-sided wet-warm oxidation treatment

Similar Documents

Publication Publication Date Title
US5064464A (en) Process for producing ultrafine metal particles
Hyeon Chemical synthesis of magnetic nanoparticles
JPS61106408A (en) Preparation of acicular particle containing iron carbide
JPH02167810A (en) Superfine magnetic particles of epsilon' iron carbide and its production
David et al. Preparation of iron/graphite core–shell structured nanoparticles
JPH04202602A (en) Manufacture of metal magnetic powder
JPH04183806A (en) Manufacture of metallic magnetic powder
JPH0313511A (en) Manufacture of metal magnetic powder
JPH04183807A (en) Manufacture of metallic magnetic powder
JPH01100009A (en) Iron carbide fine particles and production thereof
Andriamandroso et al. New ferromagnetic materials for magnetic recording: The iron carbonitrides
JPS63270405A (en) Production of metal hyperfine powder
GB2058845A (en) Method of producing fine metal particles
JP2005139556A (en) Method of producing nanoiron powder formed with high polymer coating layer
JPS6133241B2 (en)
KR910009759B1 (en) Process for producing ultra-fine magnetic metal power
JPS61111921A (en) Production of acicular particle containing iron carbide
JPH02133503A (en) Manufacture of super fine metal particles
JPH02243707A (en) Manufacture of metal super fine particle
JPH01172501A (en) Manufacture of metal magnetic powder
JPH08153613A (en) Stabilizing method for metal magnetic powder
JPH032303A (en) Manufacture of super fine metal powder
JPH02111804A (en) Manufacture of magnetic metal powder
JPS63270406A (en) Production of metal hyperfine powder
JPS61106410A (en) Particles containing iron carbide, its preparation and use