JPH04182318A - Production of ferrite material of low chlorine content - Google Patents

Production of ferrite material of low chlorine content

Info

Publication number
JPH04182318A
JPH04182318A JP2306836A JP30683690A JPH04182318A JP H04182318 A JPH04182318 A JP H04182318A JP 2306836 A JP2306836 A JP 2306836A JP 30683690 A JP30683690 A JP 30683690A JP H04182318 A JPH04182318 A JP H04182318A
Authority
JP
Japan
Prior art keywords
chlorine
ferrite
iron oxide
content
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2306836A
Other languages
Japanese (ja)
Inventor
Hiroshi Hagiya
萩屋 尋志
Koji Watanabe
渡邉 宏二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2306836A priority Critical patent/JPH04182318A/en
Publication of JPH04182318A publication Critical patent/JPH04182318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the material capable of obtaining high-performance ferrite at the time of producing the ferrite material from the iron oxide having a high content of chlorine by treating the raw iron oxide with a specified amt. of an alkaline-earth metal compd. CONSTITUTION:When the iron oxide to be used contains several thousand ppm of chlorine, the equimolar alkaline-earth compd. with respect to the chlorine contained in the oxide or the excess of the compd. over the product ferrite is added and wet-mixed. The liq. mixture is then filtered, hence the chlorine content of the uncalcined ferrite material is reduced to <=100ppm, and the ferrite material having an extremely low content of chlorine is obtained. Accordingly, an inexpensive iron oxide obtained by low-temp. calcination, having a high content of chlorine and with the grain size uniformized is used as the material for the high-performance ferrite.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は塩素含有量の多い酸化鉄を用いてフェライトを
製造する際の原料の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for treating raw materials when producing ferrite using iron oxide with a high chlorine content.

(従来の技術) 高性能フェライトの製造には従来、必然的に高品位酸化
鉄が使用されてきた。近年各種技術の進歩から、酸化鉄
の含有不純物の除去や粒径制御および粒度分布は随分改
善されてきた。しかしながら、主な酸化鉄原料が鉄鋼製
造の副産物、塩化鉄溶液であることから含有塩素の問題
は残されていた。
(Prior Art) Conventionally, high-grade iron oxide has necessarily been used in the production of high-performance ferrite. In recent years, advances in various technologies have significantly improved the removal of impurities contained in iron oxide, particle size control, and particle size distribution. However, since the main raw material for iron oxide is iron chloride solution, a by-product of steel manufacturing, the problem of chlorine content remained.

フェライト用酸化鉄の品位は含有される不純物、粒径、
粒度分布および含有される塩素分などにより差別されて
いる。特に含有塩素はフェライト化反応時に腐食性ガス
を発生したり、焼結時に粒径制御が困難になることなど
から、酸化鉄メーカーに低塩素含有の酸化鉄が要求され
ている。
The quality of iron oxide for ferrite depends on the impurities contained, particle size,
They are differentiated by particle size distribution and chlorine content. In particular, chlorine content generates corrosive gas during the ferrite reaction and makes it difficult to control particle size during sintering, so iron oxide manufacturers are demanding iron oxide with low chlorine content.

これに対し酸化鉄メーカーは水洗処理などを施して対応
しているが、コスト高につながっている。
Iron oxide manufacturers have responded to this problem by washing with water, but this has led to higher costs.

また、製品フェライトの価格を考慮すると高性能フェラ
イトの製造といえども、含有塩素量の少ない高価格の酸
化鉄の使用は好まれない。
Furthermore, considering the price of the product ferrite, the use of high-priced iron oxide containing a small amount of chlorine is not preferred, even in the production of high-performance ferrite.

(発明が解決しようとする課題) 本発明はこの問題の解決をフェライト原料としてとらえ
、フェライト製造時に問題となる塩素分が除去されてい
るフェライト原料の製造法を提供することを目的とする
(Problems to be Solved by the Invention) The present invention aims to solve this problem by using a ferrite raw material, and an object of the present invention is to provide a method for producing a ferrite raw material in which chlorine content, which is a problem during ferrite production, is removed.

(課題を解決するための手段) 本発明は塩素含有量の多い酸化鉄を用いて高級フェライ
ト原料を製造する方法において、酸化鉄中の含有塩素量
と等モルのアルカリ土類金属化合物あるいは製品フェラ
イトに必要なアルカリ土類金属化合物を余剰に前記フェ
ライト原料に添加して湿式で成分混合した後、濾過する
ことにより塩素を除去することを特徴とする含有塩素量
の非常に少ないフェライト原料を製造することを特徴と
する。
(Means for Solving the Problems) The present invention provides a method for producing a high-grade ferrite raw material using iron oxide with a high chlorine content. To produce a ferrite raw material with a very low content of chlorine, which is characterized in that an excess of the alkaline earth metal compound necessary for the above is added to the ferrite raw material, the ingredients are mixed in a wet process, and then chlorine is removed by filtration. It is characterized by

(作  用) 以下、本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

フェライト用酸化鉄は大きく分けて二種類ある。There are roughly two types of iron oxide for ferrite.

一つは硫酸鉄を原料とするもの、今一つは塩化鉄を原料
とするものである。一般に汎用されているのは鉄鋼製造
の副産物、塩化鉄溶液を焙焼して製造される酸化鉄であ
り、安価であることが利点で、含有不純物の問題も殆ん
ど解決されてきた。
One uses iron sulfate as a raw material, and the other uses iron chloride as a raw material. Generally, iron oxide, which is produced by roasting iron chloride solution, which is a by-product of steel manufacturing, has the advantage of being inexpensive, and the problem of contained impurities has been largely solved.

しかしながら、このものはその製法上から含有塩素が多
いことは免れない。これの除去のため酸化鉄メーカーは
加熱や水洗で塩素軽減を行っているが、これが酸化鉄の
粒度を悪化したり、コスト高の原因となっている。
However, due to the manufacturing method, this product inevitably contains a large amount of chlorine. To remove this, iron oxide manufacturers reduce chlorine by heating or washing with water, but this worsens the particle size of iron oxide and causes higher costs.

本発明はコスト的にも安価で、かつ製品フェライトに必
要な成分を同時に調整することができる方法を開発した
ものである。即ち、用いる酸化鉄に含有される塩素は数
千ppmあっても、これに含有されている塩素と等モル
のアルカリ土類化合物あるいは製品フェライトに必要な
アルカリ土類化合物を余剰に添加し、湿式で混合した後
、濾過することにより仮焼前フェライト原料に含有され
る塩素は百ppm以下にすることができる。
The present invention has developed a method that is inexpensive and can simultaneously adjust the components necessary for the product ferrite. In other words, even if the iron oxide used contains several thousand ppm of chlorine, an excess of an alkaline earth compound equivalent to the chlorine contained in the iron oxide, or an alkaline earth compound necessary for the product ferrite, is added to the wet process. After mixing and filtering, the chlorine content in the ferrite raw material before calcining can be reduced to 100 ppm or less.

一般にフェライトの製造にはアルカリ土類金属化合物が
使用される。ハードフェライトではその成分としてバリ
ウム、ストロンチウム化合物が、またソフトフェライト
では微量添加物としてカルシウム化合物が、希れにリチ
ウム、ナトリウム、カリウムなどのアルカリ金属化合物
も使用される。
Generally, alkaline earth metal compounds are used in the production of ferrite. Hard ferrite uses barium and strontium compounds as its components, while soft ferrite uses calcium compounds as trace additives, and in rare cases, alkali metal compounds such as lithium, sodium, and potassium are also used.

これらのアルカリまたはアルカリ土類金属化合物を組成
調整時に添加し湿式混合すると、スラリーの液性はアル
カリ性になり、そのため水洗のみに比べ、塩素の溶出量
は大きくなり、除去効果が増すためである。
When these alkali or alkaline earth metal compounds are added during composition adjustment and wet-mixed, the slurry becomes alkaline, which increases the amount of chlorine eluted and increases the removal effect compared to washing with water alone.

このスラリーを遠心、吸引、加圧などの濾過法で濾過し
たものは塩素含有量の非常に少ないフェライト原料とな
る。この時消費されるアルカリまたはアルカリ土類金属
化合物の量は、使用する酸化鉄に含有されている塩素量
とほぼ等モルであり、過剰に添加されたアルカリ土類化
合物は製品成分の有効成分となる。アンモニアの添加も
同様の効果があるが、微量成分の調整が困難である。
When this slurry is filtered by a filtration method such as centrifugation, suction, or pressurization, it becomes a ferrite raw material with a very low chlorine content. The amount of alkali or alkaline earth metal compound consumed at this time is approximately equimolar to the amount of chlorine contained in the iron oxide used, and the alkaline earth compound added in excess is not the active ingredient of the product ingredient. Become. Addition of ammonia has a similar effect, but it is difficult to control trace components.

このように本発明の方法により、塩素含有量は多いが低
温焙焼で粒度の整った安価な酸化鉄を、高性能フェライ
ト原料とすることが可能となる。
As described above, the method of the present invention makes it possible to use inexpensive iron oxide, which has a high chlorine content but is roasted at a low temperature and has a uniform particle size, as a high-performance ferrite raw material.

(実 施 例) 使用した含有塩素原料の酸化鉄の品位を表1に示した。(Example) Table 1 shows the grade of iron oxide used as the chlorine-containing raw material.

その他は試薬1級または特級である。Others are reagents of first grade or special grade.

実施例 1 バリウムフェライト用原料の作成 90.0gの炭酸バリウム、430.0gの酸化鉄、5
50 mlの蒸留水および3.8 kgの3φスチール
ボールを内容積2.51のボールミルに入れ、7Q+p
mで10時間混合した後、濾過し、110℃で12時間
乾燥して成分分析を行った。
Example 1 Preparation of raw materials for barium ferrite 90.0g barium carbonate, 430.0g iron oxide, 5
Put 50 ml of distilled water and 3.8 kg of 3φ steel balls into a ball mill with an internal volume of 2.51, and mix 7Q+p.
After mixing for 10 hours at m, it was filtered, dried at 110°C for 12 hours, and component analysis was performed.

結果は表2に示す。The results are shown in Table 2.

実施例 2 バリウムフェライト用原料の作成 90.0gの炭酸バリウム、430.0gの酸化鉄、1
.50gの酸化珪素、5.40gの炭酸カルシウム、5
50 mlの蒸留水および3.8kgの3φスチールボ
ールを内容積2,51のボールミルに入れ、70+pm
で10時間混合した後、濾過し、110℃で12時間乾
燥して成分分析を行った。
Example 2 Preparation of raw materials for barium ferrite 90.0g barium carbonate, 430.0g iron oxide, 1
.. 50g silicon oxide, 5.40g calcium carbonate, 5
50 ml of distilled water and 3.8 kg of 3φ steel balls were placed in a ball mill with an internal volume of 2.51, and heated to 70+pm.
After mixing for 10 hours, the mixture was filtered and dried at 110° C. for 12 hours, followed by component analysis.

結果は表2に示す。The results are shown in Table 2.

実施例 3 マンガン亜鉛フェライト用原料の作成 27.0gの酸化亜鉛、118.0gの四三酸化マンガ
ン、355.0gの酸化鉄、0.05gの酸化珪素、1
.25gの炭酸カルシウム、550m1の蒸留水および
3.8kgの3φスチールボールを内容積2.5βのボ
ールミルに入れ、70+pmで10時間混合した後、濾
過し、110°Cで12時間乾燥して成分分析を行った
Example 3 Preparation of raw materials for manganese zinc ferrite 27.0 g of zinc oxide, 118.0 g of trimanganese tetroxide, 355.0 g of iron oxide, 0.05 g of silicon oxide, 1
.. 25g of calcium carbonate, 550ml of distilled water, and 3.8kg of 3φ steel balls were placed in a ball mill with an internal volume of 2.5β, mixed at 70+pm for 10 hours, filtered, dried at 110°C for 12 hours, and analyzed for components. I did it.

結果は表2に示す。The results are shown in Table 2.

(比 較 例) 比較例 1 バリ1クムフエライト用原料の作成 90.0gの炭酸バリウム、 430.0 gの酸化鉄
、550 mlの蒸留水および3.8kgの3φスチー
ルボールを内容積2,51のボールミルに入れ、70r
pmで10時間混合した後、110°Cで12時間乾燥
して成分分析を行った。
(Comparative example) Comparative example 1 Preparation of raw materials for bari 1 cum ferrite 90.0 g of barium carbonate, 430.0 g of iron oxide, 550 ml of distilled water, and 3.8 kg of 3φ steel balls were mixed into a container with an internal volume of 2.51 kg. Put it in a ball mill and heat it for 70r.
After mixing at pm for 10 hours, the mixture was dried at 110°C for 12 hours and analyzed for components.

結果は表2に示す。The results are shown in Table 2.

比較例 2 マンガン亜鉛フェライト用原料の作成 27.0gの炭酸亜鉛、118.0gの四二酸化マンガ
ン、355.0gの酸化鉄、550 mlの蒸留水およ
ヒ3.8kgの3φスチールボールを内容積2.51の
ボールミルに入れ、70+pmで10時間混合した後、
濾過し、 110℃で12時間乾燥して成分分析を行っ
た。
Comparative Example 2 Preparation of raw material for manganese zinc ferrite 27.0 g of zinc carbonate, 118.0 g of manganese tetroxide, 355.0 g of iron oxide, 550 ml of distilled water, and 3.8 kg of 3φ steel balls with an internal volume of After mixing in a 2.51 ball mill for 10 hours at 70+pm,
It was filtered, dried at 110°C for 12 hours, and subjected to component analysis.

結果は表2に示す。The results are shown in Table 2.

比較例 3 マンガン亜鉛フェライト用原料の作成 27.0gの炭酸亜鉛、118.Ogの四二酸化マンガ
ン、355.0gの酸化鉄、O,[15gの酸化珪素、
1.25gの炭酸カルシウム、550 mlの蒸留水お
よヒ3.8kgの3φスチールボールを内容積25βの
ボールミルに入れ、7Q+pmで10時間混合した後、
110℃で12時間乾燥して成分分析を行った。
Comparative Example 3 Preparation of raw material for manganese zinc ferrite 27.0 g of zinc carbonate, 118. Og of manganese tetroxide, 355.0g of iron oxide, O, [15g of silicon oxide,
1.25 g of calcium carbonate, 550 ml of distilled water, and 3.8 kg of 3φ steel balls were placed in a ball mill with an internal volume of 25β, and after mixing at 7Q+pm for 10 hours,
It was dried at 110° C. for 12 hours and analyzed for components.

結果は表2に示す。The results are shown in Table 2.

表   1 (w1%) 99.5   0.009  0.005 0.24 
  Q、004 0.19 0.080表   2 実施例185.83   +3.96      0,
20 0.001  0.008  0.010実施例
2  85.16  13.85      0,20
 0.491  0j02  0.006実施例3  
72,13      5.4+   22j8 0.
045  0.0+6  0.008比較例+   8
5.88  13.78      0,20 0.0
GO0,0+0  0.+27比較例2  71,99
      5.47  22,42 0.001  
0.006  0.+12比較例3  71,87  
    5.46  22j9  G、+46  0.
017  0.109実施例2は一般的なハードフェラ
イト原料の湿式製造法であり、これにはアルカリ土類金
属化合物が2種類使用されており、どちらが優先的に塩
素除去に働くか不明だが塩素は明らかに減少しており、
本発明の効果は明らかである。
Table 1 (w1%) 99.5 0.009 0.005 0.24
Q, 004 0.19 0.080 Table 2 Example 185.83 +3.96 0,
20 0.001 0.008 0.010 Example 2 85.16 13.85 0,20
0.491 0j02 0.006 Example 3
72,13 5.4+ 22j8 0.
045 0.0+6 0.008 Comparative example + 8
5.88 13.78 0,20 0.0
GO0,0+0 0. +27 Comparative Example 2 71,99
5.47 22,42 0.001
0.006 0. +12 Comparative Example 3 71,87
5.46 22j9 G, +46 0.
017 0.109 Example 2 is a general wet manufacturing method for hard ferrite raw materials, and it uses two types of alkaline earth metal compounds.It is unclear which one works preferentially to remove chlorine, but chlorine It is clearly decreasing,
The effects of the present invention are obvious.

また、実施例1は実施例2より1種類少ないアルカリ土
類金属化合物の使用であるが、塩素の減少効果が見られ
る。
Further, although Example 1 uses one less alkaline earth metal compound than Example 2, the effect of reducing chlorine can be seen.

実施例3は一般的なソフトフェライト原料の湿式製造法
であり、塩素の減少効果が明らかに見られる。
Example 3 is a general wet manufacturing method for soft ferrite raw materials, and the effect of reducing chlorine is clearly seen.

比較例1,2.3はアルカリ、アルカリ土類金属化合物
の何れも添加しない場合と添加しても濾過工程を施さな
い場合であり、塩素の減少効果はあまり無い。
Comparative Examples 1, 2, and 3 are cases in which neither alkali nor alkaline earth metal compound is added, and cases in which the filtration step is not performed even if they are added, and the effect of reducing chlorine is not so great.

(発明の効果) 本発明は、フェライト原料の調整の際に、使用する酸化
鉄に含有される塩素量と等モルのアルカリ土類金属化合
物を必要とする量より余剰に添加して、成分混合を湿式
で行い、濾過することにより、目標成分組成を保ったま
まで塩素含有量の非常に少ないフェライト原料を製造す
ることができる。
(Effects of the Invention) The present invention is characterized in that when preparing a ferrite raw material, an alkaline earth metal compound is added in an amount equivalent to the amount of chlorine contained in the iron oxide used in excess of the required amount, and the components are mixed. By carrying out this wet process and filtering, it is possible to produce a ferrite raw material with a very low chlorine content while maintaining the target component composition.

これにより低温焙焼により塩素含有量は多いが、安価で
粒度の揃った反応性の高い酸化鉄を用いて高級フェライ
トコアの製造が可能となった。
This has made it possible to produce high-grade ferrite cores using low-temperature roasting, which has a high chlorine content, but is inexpensive, has a uniform particle size, and is highly reactive.

代 理 人  弁理士  茶野木 立 夫−10=Representative Patent Attorney Tatsuo Chanoki -10=

Claims (1)

【特許請求の範囲】[Claims] 塩素含有量の多い酸化鉄を用いて高級フェライト原料を
製造する方法において、酸化鉄中の含有塩素量と、等モ
ルのアルカリ土類金属化合物あるいは製品フェライトに
必要なアルカリ土類金属化合物を余剰に前記フェライト
原料に添加して湿式で成分混合した後、濾過することに
より塩素を除去することを特徴とする含有塩素量の少な
いフェライト原料の製造法。
In the method of manufacturing high-grade ferrite raw materials using iron oxide with a high chlorine content, the amount of chlorine contained in the iron oxide and the equivalent mole of an alkaline earth metal compound or the alkaline earth metal compound necessary for the product ferrite are made to be in excess. A method for producing a ferrite raw material containing a small amount of chlorine, characterized in that chlorine is removed by adding it to the ferrite raw material and mixing the components in a wet manner, and then filtering.
JP2306836A 1990-11-13 1990-11-13 Production of ferrite material of low chlorine content Pending JPH04182318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2306836A JPH04182318A (en) 1990-11-13 1990-11-13 Production of ferrite material of low chlorine content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2306836A JPH04182318A (en) 1990-11-13 1990-11-13 Production of ferrite material of low chlorine content

Publications (1)

Publication Number Publication Date
JPH04182318A true JPH04182318A (en) 1992-06-29

Family

ID=17961843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2306836A Pending JPH04182318A (en) 1990-11-13 1990-11-13 Production of ferrite material of low chlorine content

Country Status (1)

Country Link
JP (1) JPH04182318A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597547A (en) * 1995-04-13 1997-01-28 Shell Oil Company Reduction of residual chloride in iron oxides
WO2004072995A1 (en) 2003-02-14 2004-08-26 Dowa Mining Co., Ltd. Ferrite magnetic powder and method for production thereof
JP2005236132A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Composition of matter for rare earth hybrid bond magnet, and rare earth hybrid bond magnet
JP2010055014A (en) * 2008-08-29 2010-03-11 Powdertech Co Ltd Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP2010166064A (en) * 2010-02-17 2010-07-29 Dowa Holdings Co Ltd Ferrite magnetic powder
JP2011180296A (en) * 2010-02-26 2011-09-15 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and electrophotographic developer using the ferrite carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597547A (en) * 1995-04-13 1997-01-28 Shell Oil Company Reduction of residual chloride in iron oxides
WO2004072995A1 (en) 2003-02-14 2004-08-26 Dowa Mining Co., Ltd. Ferrite magnetic powder and method for production thereof
EP1594144A1 (en) * 2003-02-14 2005-11-09 Dowa Mining Co., Ltd. Ferrite magnetic powder and method for production thereof
US7390424B2 (en) * 2003-02-14 2008-06-24 Dowa Electronics Materials Co., Ltd. Ferrite magnetic powder and method for production thereof
EP1594144A4 (en) * 2003-02-14 2010-12-15 Dowa Electronics Materials Co Ltd Ferrite magnetic powder and method for production thereof
JP2005236132A (en) * 2004-02-20 2005-09-02 Sumitomo Metal Mining Co Ltd Composition of matter for rare earth hybrid bond magnet, and rare earth hybrid bond magnet
JP2010055014A (en) * 2008-08-29 2010-03-11 Powdertech Co Ltd Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP2010166064A (en) * 2010-02-17 2010-07-29 Dowa Holdings Co Ltd Ferrite magnetic powder
JP2011180296A (en) * 2010-02-26 2011-09-15 Powdertech Co Ltd Ferrite carrier core material for electrophotographic developer, ferrite carrier and electrophotographic developer using the ferrite carrier

Similar Documents

Publication Publication Date Title
MXPA06000581A (en) Reducing agent for the soluble chromate content of cement and methods for the production thereof.
RU2011105027A (en) METHOD FOR PRODUCING BRIQUETTES, METHOD FOR PRODUCING RESTORED METAL AND METHOD FOR SEPARATING ZINC OR LEAD
JPH04182318A (en) Production of ferrite material of low chlorine content
CN114195168B (en) Method for preparing NaA molecular sieve from silicomanganese slag
JP2004238668A (en) Magnesium oxide for separation agent for annealing, and grain-oriented electromagnetic steel sheet
JPH08301618A (en) Metal niobate and/or tantalate,its preparation and perovskites generated from them
EP0462344A1 (en) Method for producing composite oxides for use ad starting materials for ferrites
CN112624750A (en) Preparation method of Z-shaped hexaferrite material
CN106830042B (en) A kind of method that the ultra-fine carbonic acid fine particle calcium carbonate of rhombohedron shape is prepared using Weihe north Ordovician limestone
CN108689427A (en) It is a kind of to produce the method and its application that feed grade zinc oxide is recycled in mother liquor from basic zinc chloride
CN107285337B (en) A kind of 4A molecular sieve and preparation method thereof
KR20010083819A (en) Manufacture method of calcium carbonate
JPH0761812A (en) Production of magnesium hydroxide containing additive added thereto and production of magnesium oxide, containing additive therein and utilizing the same
KR100218662B1 (en) Method of making powdered carrier using oyster shell
JP2023518222A (en) Method for producing high-purity aluminum monohydrate and α-alumina
US2554319A (en) Process for producing cuprous oxide
JPH024442A (en) High performance lithium adsorbent and its preparation
JP2006151712A (en) HIGHLY DISPERSIBLE Ca-Mg COMPOSITE CARBONATES AND METHOD FOR PRODUCING THE SAME
CN113832297B (en) Red mud-based composite calcium ferrite and preparation method and application thereof
CN110194485B (en) Low-temperature preparation of CaTiO by using sintered flue gas desulfurization ash3Method for producing powder
JPS5528905A (en) Preparation of fine powder of ammonium yttrium oxalate
KR19980049994A (en) Method for preparing magnesium hydroxide aqueous solution
CN112107973A (en) Drying agent and preparation method thereof
SU1181999A1 (en) Method of producing powder-like calcium and strontium pyroniobates
KR100226907B1 (en) Processing method of a high-purity slurry