JPH04181922A - Liquid crystal display element and production thereof - Google Patents

Liquid crystal display element and production thereof

Info

Publication number
JPH04181922A
JPH04181922A JP31173390A JP31173390A JPH04181922A JP H04181922 A JPH04181922 A JP H04181922A JP 31173390 A JP31173390 A JP 31173390A JP 31173390 A JP31173390 A JP 31173390A JP H04181922 A JPH04181922 A JP H04181922A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
display element
crystal display
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31173390A
Other languages
Japanese (ja)
Inventor
Narihiro Sato
成広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31173390A priority Critical patent/JPH04181922A/en
Publication of JPH04181922A publication Critical patent/JPH04181922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve orientability and to eliminate the need for rubbing by using crystalline polyimide materials as oriented films on the surfaces of substrates in contact with a liquid crystal. CONSTITUTION:The liquid crystal 3 is sealed between two sheets of the substrates 2 disposed in such a manner that the surfaces having electrodes 1 face each other. The crystalline polyimide materials 4 are formed on the electrodes 1. Any polyimides are usable as the crystalline polyimide materials, insofar as the polyimides are crystalline. The crystalline polyimide used for the oriented films has the uniform high-polymer chains of the polyimide and, the liquid crystal is considered to orient along these high-polymer chains. The oriented films which have the good orientability and do not require rubbing are obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 配向膜を必要とする液晶表示素子すなわちTN(ツイス
ティノドネマテインク)、5TN(スーパーツイスティ
ッドネマテインク)液晶表示素子。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application Liquid crystal display elements requiring an alignment film, ie TN (twisted nematic) and 5TN (super twisted nematic) liquid crystal display elements.

SH(スーパーホメオトロピンク)液晶表示素子やFL
C(強誘電性液晶表示素子)などに用いることができる
SH (super homeotropic pink) liquid crystal display element and FL
It can be used for C (ferroelectric liquid crystal display element) and the like.

従来の技術 従来、ラビングしない配向膜としてはポリイミドLBI
Iが知られている。例えば、側鎖アルキル型ポリイミド
前駆体LB膜が強誘電性液晶の配向膜として用いること
ができると報告されている(第15回液晶討論会3AO
4(1989)予稿集276ページ)。
Conventional technology Conventionally, polyimide LBI was used as an alignment film without rubbing.
I is known. For example, it has been reported that a side chain alkyl type polyimide precursor LB film can be used as an alignment film for ferroelectric liquid crystals (15th Liquid Crystal Symposium 3AO
4 (1989) Proceedings, page 276).

発明が解決しようとする課題 しかしながら上記のような配向膜では配向安定性が充分
でなく、加熱によって配向性が変化していた。
Problems to be Solved by the Invention However, the alignment film as described above does not have sufficient alignment stability, and the alignment changes upon heating.

そこで本発明は、上記課題に鑑み配向性が良好でラビン
グが不要な配向膜を提供することを目的とする。
Therefore, in view of the above problems, an object of the present invention is to provide an alignment film that has good alignment properties and does not require rubbing.

課題を解決するための手段 液晶と接する面に電極を設けた一対の基板間に液晶が挟
み込まれている液晶表示素子において、基板上の液晶と
接する面に結晶性ポリイミド材料を配向膜として用いる
ことで本発明の課題を解決した。
Means for Solving the Problem In a liquid crystal display element in which liquid crystal is sandwiched between a pair of substrates with electrodes provided on the surfaces in contact with the liquid crystal, a crystalline polyimide material is used as an alignment film on the surface of the substrate in contact with the liquid crystal. This solved the problems of the present invention.

作用 本発明の液晶表示素子の配向膜に用いる結晶性ポリイミ
ドは、ポリイミドの高分子鎖がそろっているため、液晶
がその高分子鎖に沿って配向すると思われる。
Function: Since the crystalline polyimide used for the alignment film of the liquid crystal display element of the present invention has aligned polyimide polymer chains, it is thought that the liquid crystal is oriented along the polymer chains.

実施例 本発明の液晶表示素子について図面を用いて説明する。Example The liquid crystal display element of the present invention will be explained using the drawings.

図面は一実施例の液晶表示素子の一断面図である。電極
1を有する面を向かい合わせた2枚の基板2間に液晶3
を封入する。電極1上には結晶性ポリイミド材料4が形
成されている。液晶3が基板2間からもれないように上
下基板2の周囲をシール材5で接着しである。また上下
基板2の間隔を一定に保つために、スペーサ6が基板2
間に配置されている。
The drawing is a cross-sectional view of a liquid crystal display element according to one embodiment. A liquid crystal 3 is placed between two substrates 2 whose surfaces having electrodes 1 face each other.
Enclose. A crystalline polyimide material 4 is formed on the electrode 1 . The periphery of the upper and lower substrates 2 is bonded with a sealing material 5 so that the liquid crystal 3 does not leak from between the substrates 2. In addition, in order to maintain a constant distance between the upper and lower substrates 2, spacers 6 are placed between the substrates 2.
placed in between.

本発明の結晶性ポリイミド材料4は基板2上の電極1上
に形成される。基板1はガラス、アクリル樹脂、ポリカ
ーボネート樹脂など透明であればどの様なものでも構わ
ないが、ガラスを用いるのが耐環境性の点から好ましい
。また2枚の向かい合う基板2のうち一方だけであれば
、光を反射する物質たとえば、シリコンウェハーやアル
ミニウムなどを用いることもできる。電極1はITO(
インジウムすずオキシド)やSnO2など公知の透明電
極を用いることができる。また2枚の向かい合う基板2
上の電極1のうち一方だけであれば光を反射する物質た
とえば半導体シリコンやアルミニウムなどを用いること
もできる。さらに液晶3の駆動のために電極lを特定の
パターンとしたり、駆動用のトランジスタやダイオード
を基板2上に形成してもよい。
The crystalline polyimide material 4 of the present invention is formed on the electrode 1 on the substrate 2. The substrate 1 may be made of any transparent material such as glass, acrylic resin, polycarbonate resin, etc., but it is preferable to use glass from the viewpoint of environmental resistance. Further, if only one of the two opposing substrates 2 is used, a material that reflects light, such as a silicon wafer or aluminum, may be used. Electrode 1 is ITO (
A known transparent electrode such as indium tin oxide (indium tin oxide) or SnO2 can be used. In addition, two opposing boards 2
If only one of the upper electrodes 1 is used, a material that reflects light, such as semiconductor silicon or aluminum, may be used. Furthermore, the electrodes 1 may have a specific pattern for driving the liquid crystal 3, and driving transistors and diodes may be formed on the substrate 2.

本発明の結晶性ポリイミド材料は結晶性であればどのよ
うなポリイミドを用いることもできる。
As the crystalline polyimide material of the present invention, any polyimide can be used as long as it is crystalline.

本発明で述べる結晶性は、具体的にはポリイミド材料の
薄膜がX線回折により回折ピークを有するという意味で
ある。この結晶性ポリイミド材料のうち、主鎖にアルキ
ル基を含むポリイミドは結晶性が高く好ましい、この主
鎖にアルキル基を有するポリイミドは隣あった高分子鎖
のアルキル基がバッキングして配列する。さらには結晶
性ポリイミドの主鎖に含まれるアルキル基が弐N)で表
される構成単位を含むものが最適である。
Specifically, the crystallinity described in the present invention means that a thin film of a polyimide material has a diffraction peak by X-ray diffraction. Among these crystalline polyimide materials, polyimide containing an alkyl group in its main chain is preferred because of its high crystallinity.In this polyimide having an alkyl group in its main chain, the alkyl groups of adjacent polymer chains are arranged in a backing manner. Furthermore, it is most suitable that the alkyl group contained in the main chain of the crystalline polyimide contains a constitutional unit represented by 2N).

→CH2すT        ・・・・・・(1)(式
中nは5からI2の整数を表わす。)nが5未満である
とアルキル鎖のバッキングが不十分になる。またnが1
2より長くなるとバッキングしたアルキル鎖の向きがバ
ラバラになりやすく液晶配向の安定性が悪くなる。
→CH2ST (1) (In the formula, n represents an integer from 5 to I2.) If n is less than 5, the backing of the alkyl chain will be insufficient. Also, n is 1
If the length is longer than 2, the orientation of the backed alkyl chains tends to be inconsistent, resulting in poor liquid crystal alignment stability.

本発明の結晶性ポリイミド材料4は基板2上の電極1が
形成された面上に作成する。結晶性ポリイミド材料は、
LB法、デイツプ/引き上げ法。
The crystalline polyimide material 4 of the present invention is produced on the surface of the substrate 2 on which the electrode 1 is formed. Crystalline polyimide material is
LB method, dip/pull method.

真空蒸着法などどのような方法で作成してもよい。It may be created by any method such as vacuum evaporation.

最適の方法は、アルキル基を含むジアミンとテトラカル
ボン酸二無水物の真空莢着法あるいはポリアミド酸のL
B腹膜法より基板上にポリアミド酸の膜を形成しそのの
ち加熱して結晶性ポリイミド材料とするものである。
The most suitable method is the vacuum coating method of diamine containing an alkyl group and tetracarboxylic dianhydride, or the L of polyamic acid.
B: A film of polyamic acid is formed on a substrate by the peritoneal method and then heated to form a crystalline polyimide material.

結晶性ポリイミド材料は原料としてジアミンとテトラカ
ルボン酸二無水物を用い、−旦ポリアミド酸を作成し、
加熱または化学的に閉環させてポリイミドとする工程に
より作成するのが一般的である。
The crystalline polyimide material uses diamine and tetracarboxylic dianhydride as raw materials, and then creates polyamic acid.
It is generally produced by heating or chemically ring-closing the polyimide.

本発明に使用できるジアミンのうち好ましいものは、脂
肪族ジアミンでしかも式(I)で表される構成単位を有
しているものである。
Among the diamines that can be used in the present invention, preferred are aliphatic diamines having a structural unit represented by formula (I).

−六CH2−)−7−・・・・・・(1)(式中nは5
から12の整数を表わす。)本発明に使用できるテトラ
カルボン酸二無水物としてはピロメリット酸、3.3’
、4.4’  −ビフェニルテトラカルボン酸、2.3
.3°。
-6CH2-)-7-...(1) (in the formula, n is 5
represents an integer from 12 to 12. ) Examples of the tetracarboxylic dianhydride that can be used in the present invention include pyromellitic acid, 3.3'
, 4.4'-biphenyltetracarboxylic acid, 2.3
.. 3°.

4゛−テトラカルボキンビフェニル、3,3″。4′-Tetracarboquine biphenyl, 3,3″.

4.4゛ −テトラカルボキノビフェニルエーテル、2
.3.3’、4°−テトラカルボキンビフェニルエーテ
ル、3.3’ 、4.4’ −テトラカルボキシヘンシ
フエノン、2,3.3’、4’ −テトラカルボキシヘ
ンシフエノン、2.3,6.7−チトラカルポキシナフ
タレン、I、4.5.7−チトラカルポキンナフタレン
、I、2.5.6−チトラカルポキンナフタレン、3.
3” 、4゜4°−テトラカルボキシジフェニルメタン
、2゜2゛−ビス(3,4−ジカルボキシフェニル)プ
ロパン、3.3’ 、4.4“−テトラカルボキンジフ
ェニルスルホン、1,2,7.8−テトラカルボキシペ
リレン、2.2−ビス+4− (3,4−ジカルポキン
フエノキシ)フェニル)プロパン、3.3”、4,4”
 −ジメチルジフェニルンランテトラカルポン酸、3.
3’、4.4“−テトラフェニルシランテトラカルボン
酸などの芳香族テトラカルボン酸の二無水物、ブタンテ
トラカルボン酸、1,2.3.4−シクロブタンテトラ
カルボン酸、1,2,3.4−シクロペンタンテトラカ
ルボン酸、]、2,3.4−フランテトラカルボン酸な
どの脂肪族または脂環族テトラカルボン酸の二無水物を
あげることができる。
4.4゛-tetracarboquinobiphenyl ether, 2
.. 3.3', 4°-tetracarboxyhensiphenone, 3.3', 4.4'-tetracarboxyhensiphenone, 2,3.3', 4'-tetracarboxyhensiphenone, 2.3, 6.7-Titracarpoquinaphthalene, I, 4.5.7-Titracarpoquinaphthalene, I, 2.5.6-Titracarpoquinaphthalene, 3.
3", 4゜4゜-tetracarboxydiphenylmethane, 2゜2゛-bis(3,4-dicarboxyphenyl)propane, 3.3', 4.4"-tetracarboxydiphenylsulfone, 1,2,7 .8-Tetracarboxyperylene, 2,2-bis+4-(3,4-dicarpoquinphenoxy)phenyl)propane, 3.3", 4,4"
-dimethyldiphenylrantetracarboxylic acid, 3.
Dianhydrides of aromatic tetracarboxylic acids such as 3',4.4''-tetraphenylsilanetetracarboxylic acid, butanetetracarboxylic acid, 1,2.3.4-cyclobutanetetracarboxylic acid, 1,2,3. Examples include dianhydrides of aliphatic or alicyclic tetracarboxylic acids such as 4-cyclopentanetetracarboxylic acid, 2,3,4-furantetracarboxylic acid, and 2,3.4-furantetracarboxylic acid.

これらのテトラカルボンM類のうち好ましくは芳香族テ
トラカルボン酸二無水物、特に好ましいものとしては、
ピロメリット酸二無水物、3゜3°、4.4’  −テ
トラカルポキノヘンゾフエノンニ無水物、2,3.3°
、4−テトラカルポキシヘンゾフェノンニ無水物、2.
3.3′、4゛−テトラカルポキシビフェニルエーテル
ニ無水物、3.3°、4.4’ −ビフェニルテトラカ
ルボン酸二無水物である。
Among these tetracarboxylic M, aromatic tetracarboxylic dianhydrides are preferred, and particularly preferred are:
Pyromellitic dianhydride, 3°3°, 4.4'-tetracarpoquinohenzophenone dianhydride, 2,3.3°
, 4-tetracarpoxyhenzophenone dianhydride, 2.
They are 3.3',4'-tetracarpoxybiphenyl ether dianhydride and 3.3',4.4'-biphenyltetracarboxylic dianhydride.

真空蒸着法ではアルキル基を含むジアミンとテトラカル
ボン酸二無水物を2元蒸着する。真空度は104Tor
r以上が好ましい。ジアミンとテトラカルボン酸二無水
物は加熱して蒸着するがテトラカルボン酸二無水物に比
べ、アルキル基を含むジアミンは蒸気圧が高いので蒸着
源の加熱温度のコントロールが必要である。ハロゲンラ
ンプにより蒸着源を加熱すると温度コントロールがしや
すい。基板は蒸着源からの垂線に対しある角度をもって
配置する。その角度は作成する液晶表示素子における液
晶のプレチルト角によって決定される。
In the vacuum deposition method, a diamine containing an alkyl group and a tetracarboxylic dianhydride are binary deposited. Vacuum level is 104 Torr
R or more is preferable. Diamines and tetracarboxylic dianhydrides are vapor-deposited by heating, but since diamines containing alkyl groups have a higher vapor pressure than tetracarboxylic dianhydrides, it is necessary to control the heating temperature of the vapor deposition source. The temperature can be easily controlled by heating the deposition source with a halogen lamp. The substrate is placed at an angle to the normal from the deposition source. The angle is determined by the pretilt angle of the liquid crystal in the liquid crystal display element to be manufactured.

LBWi、法ではポリイミド膜を直接累積することはで
きないので両親媒性のポリアミド酸の塩を基板上に累積
したのち加熱または化学的に閉環してポリイミドとする
のが最も好ましい。LB膜の基板への累積方法は垂直浸
漬法が最適である。このときポリイミドの分子鎖は重力
により配列する。
Since it is not possible to directly accumulate a polyimide film using the LBWi method, it is most preferable to accumulate an amphiphilic polyamic acid salt on a substrate and then heat or chemically close the ring to form a polyimide. The vertical dipping method is optimal for accumulating the LB film on the substrate. At this time, the polyimide molecular chains align due to gravity.

両親媒性のポリアミド酸の塩は次のようにして作成する
。ジアミンとテトラカルボン酸二無水物よりポリアミド
酸を作成し、ポリアミド酸溶液中にN、N−ジメチルオ
クタデシルアミンを添加することでポリアミド酸の塩を
得る。反応溶媒は通常はN、  N−ジメチルホルムア
ミド、N、N−ジメチルアセトアミド、N、N−ジエチ
ルホルムアミド、N、N−ジエチルアセトアミド、ジメ
チルホルホキンド、N−メチル−2−ピロリドンなどの
有機溶媒である。反応溶媒は単一でも2種類以上を混合
して用いてもよい。また高分子量の樹脂を得るためには
溶媒を脱水して用いるべきである。
The amphiphilic polyamic acid salt is prepared as follows. A polyamic acid is prepared from a diamine and a tetracarboxylic dianhydride, and a salt of the polyamic acid is obtained by adding N,N-dimethyloctadecylamine to the polyamic acid solution. The reaction solvent is usually an organic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N,N-diethylformamide, N,N-diethylacetamide, dimethylformhoquinde, or N-methyl-2-pyrrolidone. be. The reaction solvent may be used alone or in combination of two or more. Further, in order to obtain a high molecular weight resin, the solvent should be dehydrated before use.

以下に具体的な実施例を述べる。Specific examples will be described below.

(実施例1) 厚さ1.1mのコーニング社製47059タイプガラス
基板上にITO電極をスパッタした基板のITO作成面
を蒸着源に向け、蒸着源の垂線と基板のなす角を20度
にして基板を蒸着装置内にセノドした。このとき基板裏
面に茄着源に最も近い部分から離れている部分へ矢印を
書いて高分子鎖方向を示した。
(Example 1) ITO electrodes were sputtered onto a Corning 47059 type glass substrate having a thickness of 1.1 m. The ITO forming side of the substrate was directed toward the evaporation source, and the angle between the perpendicular to the evaporation source and the substrate was set to 20 degrees. The substrate was placed into a deposition apparatus. At this time, arrows were drawn on the back side of the substrate from the part closest to the seeding source to the part farthest from it to indicate the direction of the polymer chains.

蒸着源から基板中心までの距離は200閣とした。チャ
ンバ内を真空でひきながら、基板をヒータで100度に
加熱し、ジアミノドデカンと無水ピロメリット酸を真空
蒸着した。蒸着時の真空度は5XIO4Torrだった
。膜厚が1100nになったときにシャッタを閉し蒸着
を終了した。
The distance from the evaporation source to the center of the substrate was set to 200 mm. While the inside of the chamber was kept under vacuum, the substrate was heated to 100 degrees with a heater, and diaminododecane and pyromellitic anhydride were vacuum-deposited. The degree of vacuum during vapor deposition was 5XIO4 Torr. When the film thickness reached 1100 nm, the shutter was closed and the vapor deposition was completed.

次に蒸着膜付きの基板を取り出し、200°Cで2時間
加熱して、ポリイミド膜とした。ポリイミド膜となった
ことを赤外吸収スペクトルよりイミド環の面外伸縮振動
が720cr’にあることで確認した。
Next, the substrate with the deposited film was taken out and heated at 200°C for 2 hours to form a polyimide film. The formation of a polyimide film was confirmed by an infrared absorption spectrum showing that the out-of-plane stretching vibration of the imide ring was at 720 cr'.

またこのポリイミド膜を、X線回折(CuKα線)で測
定したところ4.2度(面間隔で21. OA)のとこ
ろに回折ピークを有しており、ポリイミドのアルキル鎖
がバッキングしていることを確認した。
Furthermore, when this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 4.2 degrees (planar spacing: 21.OA), indicating that the alkyl chains of the polyimide were backing. It was confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板で矢印の向き(すなわち高分子鎖方
向)が90度をなすようにセットした。この貼り合わせ
た二枚の基板間にチッソ石油化学社製リクソン9150
ネマティック液晶を注入して液晶表示素子を作成した。
At this time, the upper and lower substrates were set so that the arrow directions (that is, the polymer chain directions) were at 90 degrees. Rixon 9150 manufactured by Chisso Petrochemical Co., Ltd. is placed between these two bonded substrates.
A liquid crystal display element was created by injecting nematic liquid crystal.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例2) 厚さ1.1肚のコーニング社製47059タイプガラス
基板上にITO電極をスパッタした基板のfTo作成面
を蒸着源に向け、蒸着源の垂線と基板のなす角を20度
にして基板を蒸着装置内にセットした。このとき基板裏
面に蒸着源に最も近い部分から離れている部分へ矢印を
書いて高分子鎖方向を示した。
(Example 2) An ITO electrode was sputtered on a Corning 47059 type glass substrate having a thickness of 1.1 degrees. The fTo forming surface of the substrate was directed toward the evaporation source, and the angle between the perpendicular to the evaporation source and the substrate was set to 20 degrees. Then, the substrate was set in the vapor deposition apparatus. At this time, arrows were drawn on the back surface of the substrate from the part closest to the evaporation source to the part farthest from it to indicate the direction of the polymer chains.

蒸着源から基板中心までの距離は200mmとした。チ
ャンバ内を真空でひきながら、基板をヒータで100度
に加熱し、ジアミノデカンと無水ピロメリット酸を真空
蕉着した。蒸着時の真空度は5X10’Torrだった
。膜厚が1100nになったときにシャッタを閉じ蒸着
を終了した。次に蒸着膜付きの基板を取り出し、200
 ’Cで2時間加熱して、ポリイミド膜とした。ポリイ
ミド膜となったことを赤外吸収スペクトルよりイミド環
の面外伸縮振動が7201°1にあることで確認した。
The distance from the vapor deposition source to the center of the substrate was 200 mm. While the inside of the chamber was kept under vacuum, the substrate was heated to 100 degrees with a heater, and diaminodecane and pyromellitic anhydride were vacuum-deposited. The degree of vacuum during vapor deposition was 5×10'Torr. When the film thickness reached 1100 nm, the shutter was closed and the deposition was completed. Next, take out the substrate with the deposited film and
It was heated for 2 hours at 'C to form a polyimide film. It was confirmed from the infrared absorption spectrum that the polyimide film was formed, as the out-of-plane stretching vibration of the imide ring was at 7201°1.

またこのポリイミド膜を、X線回折(CuKα線)で測
定したとくろ5.5度(面間隔で16.1 A)のとこ
ろに回折ピークを有しており、ポリイミドのアルキル鎖
がバッキングしていることを確認した。
Furthermore, when this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 5.5 degrees (planar spacing: 16.1 A), indicating that the alkyl chains of the polyimide were backing. I confirmed that there is.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板で矢印の向き(すなわち高分子鎖方
向)が90度をなすようにセントした。この貼り合わせ
た二枚の基板間にチッソ石油化学社製リクソン9150
ネマティック液晶を注入して液晶表示素子を作成した。
At this time, the upper and lower substrates were centered so that the direction of the arrow (that is, the polymer chain direction) was at 90 degrees. Rixon 9150 manufactured by Chisso Petrochemical Co., Ltd. is placed between these two bonded substrates.
A liquid crystal display element was created by injecting nematic liquid crystal.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例3) 厚さ1.1園のコーニング社製#7059タイプガラス
基板上にITO1ft極をスパッタした基板のITO作
成面を蒸着源に向け、仄看源の垂線と基板のなす角を2
0度にして基板を蒸着装置内にセットした。このとき基
板裏面に蒸着源に最も近い部分から離れている部分へ矢
印を書いて高分子鎖方向を示した。
(Example 3) A 1-ft ITO pole was sputtered onto a Corning #7059 type glass substrate with a thickness of 1.1 mm.The ITO surface of the substrate was directed toward the evaporation source, and the angle between the perpendicular to the source and the substrate was 2
The temperature was set at 0 degrees and the substrate was set in a vapor deposition apparatus. At this time, arrows were drawn on the back surface of the substrate from the part closest to the evaporation source to the part farthest from it to indicate the direction of the polymer chains.

蒸着源から基板中心までの距離は200mとした。チャ
ンバ内を真空でひきながら、基板をヒータで100度に
加熱し、ジアミノベンクンと無水ピロメリット酸を真空
蒸着した。蒸着時の真空度は5X10’Torrだった
。膜厚カ月00nmになったときにシャンクを閉し茶着
を終了した。
The distance from the vapor deposition source to the center of the substrate was 200 m. While the inside of the chamber was kept under vacuum, the substrate was heated to 100 degrees with a heater, and diaminobencune and pyromellitic anhydride were vacuum-deposited. The degree of vacuum during vapor deposition was 5×10'Torr. When the film thickness reached 00 nm, the shank was closed and the tea ceremony was completed.

次に蒸着膜付きの基板を取り出し、200 ’Cで2時
間加熱して、ポリイミド膜とした。ポリイミド膜となっ
たことを赤外吸収スペクトルよりイミド環の面外伸縮振
動が720CIII+にあることで確認した。
Next, the substrate with the deposited film was taken out and heated at 200'C for 2 hours to form a polyimide film. The formation of a polyimide film was confirmed by an infrared absorption spectrum showing that the out-of-plane stretching vibration of the imide ring was at 720CIII+.

またこのポリイミド膜を、X線回折(CuKα線)で測
定したところ7.8度(面間隔で11.3 A)のとこ
ろに回折ピークを有しており、ポリイミドのアルキル鎖
がバッキングしていることを確認した。
Furthermore, when this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 7.8 degrees (planar spacing: 11.3 A), indicating that the alkyl chains of the polyimide were backing. It was confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせたこのとき上下の基板で
矢印の向き(すなわち高分子鎖方向)が90度をなすよ
うにセントした。この貼り合わせた二枚の基板間にチッ
ソ石油化学社製リクソン9150不マテインク液晶を注
入して液晶表示素子を作成した。この液晶表示素子を駆
動させながら偏光顕微鏡で観察したところ良好な配向性
が得られていた。
The two substrates having the polyimide films were bonded together using a sealant with the polyimide films facing each other with a gap of 5 microns.At this time, the upper and lower substrates were bonded in the direction of the arrow (i.e., in the direction of the polymer chain). ) made a 90 degree cent. Rixon 9150 ink-free liquid crystal manufactured by Chisso Petrochemical Co., Ltd. was injected between the two bonded substrates to produce a liquid crystal display element. When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例4) 厚さ1.1園のコーニング社製#7059タイプガラス
基板上に+To電極をスパッタした基板のITO作成面
を蒸着源に向け、蒸着源の垂線と基板のなす角を20度
にして基板を蒸着装置内にセットした。このとき基板裏
面に蒸着源に最も近い部分から離れている部分へ矢印を
書いて高分子鎖方向を示した。
(Example 4) A +To electrode was sputtered on a Corning #7059 type glass substrate with a thickness of 1.1 mm. The ITO forming side of the substrate was directed toward the evaporation source, and the angle between the perpendicular to the evaporation source and the substrate was 20 degrees. The substrate was set in the vapor deposition apparatus. At this time, arrows were drawn on the back surface of the substrate from the part closest to the evaporation source to the part farthest from it to indicate the direction of the polymer chains.

蒸着源から基板中心までの距離は200閣とした。チャ
ンバ内を真空でひきながら、基板をヒータで100度に
加熱し、ジアミノドデカンと3゜3°、4.4゛ −テ
トラカルポキシヘンゾフエノンニ無水物を真空蕉着した
。蒸着時の真空度は5X104Torrだった。膜厚が
1100nになったときにシャ、夕を閉し蒸着を終了し
た。次に蒸着膜付きの基板を取り出し、200°Cで2
時間加熱して、ポリイミド膜とした。ポリイミド膜とな
ったことを赤外吸収スペクトルよりイミド環の面外伸縮
振動が720cm′lにあることで確認した。
The distance from the evaporation source to the center of the substrate was set to 200 mm. While the chamber was being evacuated, the substrate was heated to 100 degrees with a heater, and diaminododecane and 3°3°, 4.4°-tetracarpoxyhenzophenone dianhydride were vacuum-deposited. The degree of vacuum during vapor deposition was 5×10 4 Torr. When the film thickness reached 1100 nm, the shutter was closed and the vapor deposition was completed. Next, take out the substrate with the vapor-deposited film and heat it at 200°C for 2 hours.
It was heated for a period of time to form a polyimide film. It was confirmed from the infrared absorption spectrum that the polyimide film was formed by out-of-plane stretching vibration of the imide ring at 720 cm'l.

またこのポリイミド膜を、X線回折(CuKα線)で測
定したところ4.2度(面間隔で21. OA)のとこ
ろに回折ピークを有しており、ポリイミドのアルキル鎖
がバッキングしていることを確認しこのポリイミド膜を
有する基板2枚を、ポリイミド膜同士が向かい合うよう
にして間隔5ミクロンに保ってシール材で二枚の基板を
貼り合わせた。
Furthermore, when this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 4.2 degrees (planar spacing: 21.OA), indicating that the alkyl chains of the polyimide were backing. After confirming this, the two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other and maintaining a gap of 5 microns.

このとき上下の基板で矢印の向き(すなわち高分子鎖方
向)が90度をなすようにセットした。この貼り合わせ
た二枚の基板間にチッソ石油化学社製リクソン915o
*マチイック液晶を注入して液晶表示素子を作成した。
At this time, the upper and lower substrates were set so that the arrow directions (that is, the polymer chain directions) were at 90 degrees. Rixon 915o manufactured by Chisso Petrochemical Co., Ltd. is placed between these two bonded substrates.
*A liquid crystal display element was created by injecting Machiic liquid crystal.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例5) まず容量200dの丸底フラスコにジアミノドデカン 
1.0g、5mmol)をいれ、そこへN−メチル−2
−ピロリドン(NMP)400紙を加えて溶解した。溶
液を攪拌しながら昇華精製した無水ピロメリット酸(1
,1g、5mmo I)を約15分かけて加えた。さら
に室温で2時間攪拌して反応させた。この溶液を0.2
μmのメンブレンフィルタで濾過した。この溶液中にN
、N−ジメチルオクタデシルアミン(4,5g 、  
15mmol)加え、ポリアミド酸の塩を得た。
(Example 5) First, diaminododecane was added to a round bottom flask with a capacity of 200 d.
1.0g, 5mmol) and N-methyl-2
- Pyrrolidone (NMP) 400 paper was added and dissolved. Pyromellitic anhydride (1
, 1g, 5mmol I) was added over approximately 15 minutes. The reaction mixture was further stirred at room temperature for 2 hours. Add this solution to 0.2
It was filtered with a μm membrane filter. In this solution, N
, N-dimethyloctadecylamine (4.5g,
15 mmol) to obtain a polyamic acid salt.

これを純水の上に展開して気水界面上に単分子膜を作成
した。ここで厚さ1.11III11のコーニング社製
#7059タイプガラス基板上にITO電極をスパッタ
した基板の表面を紫外光照射により清浄化したのち、基
板をトラフに垂直に浸漬して単分子膜を基板上に5層累
積した。
This was spread on pure water to create a monomolecular film on the air-water interface. Here, an ITO electrode was sputtered onto a Corning #7059 type glass substrate with a thickness of 1.11III11. After cleaning the surface of the substrate by irradiation with ultraviolet light, the substrate was immersed vertically in a trough to coat the monomolecular film on the substrate. Five layers were accumulated on top.

その後この基板を200°Cで2時間加熱してイミド化
した。
Thereafter, this substrate was heated at 200°C for 2 hours to imidize it.

このポリイミド膜を、X線回折(CuKα線)で測定し
たところ4.2度(面間隔で21. OA)のところに
回折ピークを有しており、ポリイミドのアルキル鎖がバ
ッキングしていることを確認した。
When this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 4.2 degrees (planar spacing: 21.OA), indicating that the polyimide alkyl chain was backing. confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板でLB腹膜作成時基板引き上げ方向
(すなわち高分子鎖方向)が90度をなすようにセット
した。この貼り合わせた二枚の基板間にチッソ石油化学
社製リクソン915(Inマチイック液晶を注入して液
晶表示素子を作成した。
At this time, the upper and lower substrates were set so that the direction in which the substrates were pulled up (ie, the direction of the polymer chains) at the time of creating the LB peritoneum was at 90 degrees. Rixon 915 (Inmatic liquid crystal manufactured by Chisso Petrochemical Co., Ltd.) was injected between the two bonded substrates to produce a liquid crystal display element.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得・られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例6) まず容量2,001dの丸底フラスコにジアミノオクタ
ン(2,2g+  15mmo l)いれ、そこへN−
メチル−2−ピロリドン(NMP)100mを加えて溶
解した。溶液を攪拌しながら昇華精製した無水ピロメリ
ット酸(1,1g、5mmo l)を約15分かけて加
えた。さらに室温で2時間攪拌して反応させた。この溶
液を0.2μmのメンブレンフィルタで濾過した。この
7容液中にN、N−ジメチルオクタデシルアミン(4,
5g、  15mmol)加え、ポリアミド酸の塩を得
た。
(Example 6) First, diamino octane (2.2 g + 15 mmol) was placed in a round bottom flask with a capacity of 2,001 d, and N-
100 m of methyl-2-pyrrolidone (NMP) was added and dissolved. While stirring the solution, pyromellitic anhydride (1.1 g, 5 mmol) purified by sublimation was added over about 15 minutes. The reaction mixture was further stirred at room temperature for 2 hours. This solution was filtered through a 0.2 μm membrane filter. In this 7 volume solution, N,N-dimethyloctadecylamine (4,
5 g, 15 mmol) to obtain a polyamic acid salt.

これを純水の上に展開して気水界面上に単分子膜を作成
した。ここで厚さ1.1閣のコーニング社製47059
タイプガラス基板上にITO電極をスパッタした基板の
表面を紫外光照射により清浄化したのち、基板をトラフ
に垂直に浸漬して単分子膜を基板上に5層累積した。
This was spread on pure water to create a monomolecular film on the air-water interface. Here, 47059 manufactured by Corning with a thickness of 1.1 mm
After cleaning the surface of a type glass substrate with an ITO electrode sputtered by irradiation with ultraviolet light, the substrate was immersed vertically in a trough to accumulate five monomolecular films on the substrate.

その後この基板を200 ”Cで2時間加熱してイミド
化した。
Thereafter, this substrate was heated at 200''C for 2 hours to imidize it.

このポリイミド膜を、X線回折(CuKα線)で測定し
たところ6.4度(面間隔で13.8 A)のところに
回折ピークを有しており、ポリイミドのアルキル鎖がバ
ッキングしていることを確認した。
When this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 6.4 degrees (planar spacing: 13.8 A), indicating that the polyimide alkyl chain was backing. It was confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板で矢印の向き(すなわち高分子鎖方
向)が90度をなすようにセットした。この貼り合わせ
た二枚の基板間にチッソ石油化学社製リクソン9150
ネマティック液晶を注入して液晶表示素子を作成した。
At this time, the upper and lower substrates were set so that the arrow directions (that is, the polymer chain directions) were at 90 degrees. Rixon 9150 manufactured by Chisso Petrochemical Co., Ltd. is placed between these two bonded substrates.
A liquid crystal display element was created by injecting nematic liquid crystal.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例7) まず容量200 mlの丸底フラスコにジアミノペンク
ン(0,51,g、  5mmo I )をいれ、そこ
へN−メチル−2−ピロリドン(NMP)100IR1
を加えて熔解した。溶液を攪拌しながら昇華精製した無
水ピロメリット酸(1,1g、5mmo l)を約15
分かけて加えた。さらに室温で2時間攪拌して反応させ
た。この溶液を0.2μmのメンブレンフィルタで濾過
した。この溶液中にN、N−ジメチルオクタデシルアミ
ン(4,5g 、  15mmol)加え、ポリアミド
酸の塩を得た。
(Example 7) First, diaminopenkune (0.51, g, 5 mmol) was placed in a round bottom flask with a capacity of 200 ml, and 100 IR of N-methyl-2-pyrrolidone (NMP) was added thereto.
was added and melted. While stirring the solution, add about 1.5 g of pyromellitic anhydride (1.1 g, 5 mmol) purified by sublimation.
I added it over a period of time. The reaction mixture was further stirred at room temperature for 2 hours. This solution was filtered through a 0.2 μm membrane filter. N,N-dimethyloctadecylamine (4.5 g, 15 mmol) was added to this solution to obtain a polyamic acid salt.

これを純水の上に展開して気水界面上に単分子膜を作成
した。ここで厚さ1.1mのコーニング社製#7059
タイプガラス基板上にITO電極をスパッタした基板の
表面を紫外光照射により清浄化したのち、基板をトラフ
に垂直に浸漬して単分子膜を基板上に5N累積した。
This was spread on pure water to create a monomolecular film on the air-water interface. Here, #7059 manufactured by Corning Co., Ltd. with a thickness of 1.1 m
After cleaning the surface of a type glass substrate with an ITO electrode sputtered by irradiation with ultraviolet light, the substrate was immersed vertically in a trough to accumulate 5N of a monomolecular film on the substrate.

その後この基板を200°Cで2時間加熱してイミド化
した。
Thereafter, this substrate was heated at 200°C for 2 hours to imidize it.

このポリイミド膜を、X線回折(CuKα線)で測定し
たところ7.8度(面間隔で11.3 A)の゛ところ
に回折ピークを有しており、ポリイミドのアルキル鎖が
バッキングしていることを確認した。
When this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 7.8 degrees (planar spacing: 11.3 A), indicating that the alkyl chains of the polyimide were backing. It was confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板で矢印の向き(すなわち高分子鎖゛
方向)が90度をなすようにセットした。この貼り合わ
せた二枚の基板間にチッソ石油化学社製リクソン915
0ネマティック液晶を注入して液晶表示素子を作成した
。この液晶表示素子を駆動させながら偏光顕微鏡で観察
したところ良好な配向性が得られていた。
At this time, the upper and lower substrates were set so that the directions of the arrows (that is, the direction of the polymer chains) were at 90 degrees. Rixon 915 manufactured by Chisso Petrochemical Co., Ltd. is placed between the two bonded substrates.
A liquid crystal display element was prepared by injecting zero nematic liquid crystal. When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(実施例8) まず容量200IRQの丸底フラスコにジアミノドデカ
ン(1,0g、5mmo ] )いれ、そこへ]N−メ
チルー2−ピロリドンNMP)100a+2を加えて溶
解した。溶液を攪拌しながら昇華精製した無水ピロメリ
ット酸(1,1g、5mmo l)を約15分かけて加
えた。さらに室温で2時間攪拌して反応させた。この溶
液を0.2μmのメンブレンフィルりで濾過した。この
ン容液中にN、N−ジメチルオクタデシルアミン(4,
5g、15mmo l)加え、ポリアミド酸の塩を得た
(Example 8) First, diaminododecane (1.0 g, 5 mmol) was placed in a round bottom flask with a capacity of 200 IRQ, and N-methyl-2-pyrrolidone (NMP) 100a+2 was added thereto and dissolved. While stirring the solution, pyromellitic anhydride (1.1 g, 5 mmol) purified by sublimation was added over about 15 minutes. The reaction mixture was further stirred at room temperature for 2 hours. This solution was filtered through a 0.2 μm membrane filter. In this solution, N,N-dimethyloctadecylamine (4,
5 g, 15 mmol) to obtain a polyamic acid salt.

これを純水の上に展開して気水界面上に単分子膜を作成
した。ここで厚さ1.1mのコーニング社製#7059
タイプガラス基板上にITO!極をスパッタした基板の
表面を紫外光照射により清浄化したのち、基板をトラフ
に垂直に浸漬して単分子膜を基板上に5層累積した。
This was spread on pure water to create a monomolecular film on the air-water interface. Here, #7059 manufactured by Corning Co., Ltd. with a thickness of 1.1 m
ITO on type glass substrate! After cleaning the surface of the substrate onto which the electrode was sputtered by irradiation with ultraviolet light, the substrate was immersed vertically into the trough to accumulate five monolayers on the substrate.

その後この基板を200°Cで2時間加熱してイミド化
した。
Thereafter, this substrate was heated at 200°C for 2 hours to imidize it.

このポリイミド膜を、X線回折(CuKα線)で測定し
たところ4.2度(面間隔で21. OA)のところに
回折ピークを有しており、ポリイミドのアルキル鎖がバ
ッキングしていることを確認した。
When this polyimide film was measured by X-ray diffraction (CuKα rays), it had a diffraction peak at 4.2 degrees (planar spacing: 21.OA), indicating that the polyimide alkyl chain was backing. confirmed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板でLB腹膜作成時基板引き上げ方向
(すなわち高分子鎖方向)が90度をなすようにセット
した。この貼り合わせた二枚の基板間にチッソ石油化学
社製リクソン9150ネマティ、り液晶を注入して液晶
表示素子を作成した。
At this time, the upper and lower substrates were set so that the direction in which the substrates were pulled up (ie, the direction of the polymer chains) at the time of creating the LB peritoneum was at 90 degrees. A liquid crystal display element was prepared by injecting Rixon 9150 Nemati liquid crystal manufactured by Chisso Petrochemical Co., Ltd. between the two bonded substrates.

この液晶表示素子を駆動させながら偏光顕微鏡で観察し
たところ良好な配向性が得られていた。
When this liquid crystal display element was observed under a polarizing microscope while being driven, good alignment was obtained.

(比較例) 厚さ1.111111のコーニング社製47059タイ
プガラス基板上にITO電極をスパッタした基板のIT
O作成面を蒸着源に向け、蒸着源の垂線と基板のなす角
を20度にして基板を蒸着装置内ム二セットした。この
とき基板裏面に蒸着源に最も近い部分から離れている部
分へ矢印を書いて高分子鎖方向を示した。
(Comparative example) IT of a substrate in which ITO electrodes were sputtered on a Corning 47059 type glass substrate with a thickness of 1.111111 mm.
The substrate was set in the vapor deposition apparatus with the O-forming surface facing the vapor deposition source and the angle between the perpendicular to the vapor deposition source and the substrate being 20 degrees. At this time, arrows were drawn on the back surface of the substrate from the part closest to the evaporation source to the part farthest from it to indicate the direction of the polymer chains.

蒸着源から基板中心までの距離は200mとした。チャ
ンバ内を真空でひきながら、基板をヒータで100度G
こ加熱し、ジアミノブタンと無水ピロメリット酸を真空
蒸着した。蒸着時の真空度は5X10’Torrだった
。膜厚が1100nになったときにシャンクを閉し蒸着
を終了した。次に蒸着膜付きの基板を取り出し、200
°Cで2時間加熱して、ポリイミド膜とした。
The distance from the vapor deposition source to the center of the substrate was 200 m. While creating a vacuum inside the chamber, heat the substrate to 100 degrees G with a heater.
This was heated to vacuum deposit diaminobutane and pyromellitic anhydride. The degree of vacuum during vapor deposition was 5×10'Torr. When the film thickness reached 1100 nm, the shank was closed and the deposition was completed. Next, take out the substrate with the deposited film and
It was heated at °C for 2 hours to form a polyimide film.

このポリイミド膜を、X線回折(CuKα線)で測定し
たところ回折ピークが見られなかった。
When this polyimide film was measured by X-ray diffraction (CuKα rays), no diffraction peak was observed.

このポリイミド膜を有する基板2枚を、ポリイミド膜同
士が向かい合うようにして間隔5ミクロンに保ってシー
ル材で二枚の基板を貼り合わせた。
The two substrates having the polyimide films were bonded together using a sealing material with the polyimide films facing each other with a gap of 5 microns maintained.

このとき上下の基板で矢印の向き(すなわち高分子鎖方
向)が90度をなすようにセットした。この貼り合わせ
た二枚の基板間にチッソ石油化学社製リクソン9150
ネマティック液晶を注入して液晶表示素子を作成した。
At this time, the upper and lower substrates were set so that the arrow directions (that is, the polymer chain directions) were at 90 degrees. Rixon 9150 manufactured by Chisso Petrochemical Co., Ltd. is placed between these two bonded substrates.
A liquid crystal display element was created by injecting nematic liquid crystal.

しかしこの液晶表示素子は配向が不均一であった。However, this liquid crystal display element had non-uniform alignment.

発明の効果 本発明の結晶性ポリイミドで本発明の製造法を用いるこ
とで、配向性が良好でラビングが不要な配向膜を提供す
ることができた。
Effects of the Invention By using the manufacturing method of the present invention with the crystalline polyimide of the present invention, it was possible to provide an oriented film with good orientation and no need for rubbing.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の液晶配向膜を用いた液晶表示素子の一実施
例の断面図である。 】・・・・・・電極、2・・・・・・基板、3・・・・
・・液晶、4・・・・・・液晶配向膜、5・・・・・・
ソール材、6・・・・・・スペーサ。 代理人の氏名 弁理士小鍜治明 ほか2名+−−−1昏 ?−9幕枯 3−E復式 4−−−立晶鵡乙勺り裏 5−・−シーrL科 6−−−スX−ケ
The figure is a cross-sectional view of one embodiment of a liquid crystal display element using the liquid crystal alignment film of the present invention. ]... Electrode, 2... Substrate, 3...
...Liquid crystal, 4...Liquid crystal alignment film, 5...
Sole material, 6...Spacer. Name of agent: Patent attorney Haruaki Ogata and 2 others +---1? -9 Maku dry 3-E return formula 4--Riseki parrot tsukiri back 5--Se rL class 6--S X-ke

Claims (6)

【特許請求の範囲】[Claims] (1)液晶と接する面に電極を設けた一対の基板間に液
晶が挟み込まれている液晶表示素子において、基板上の
液晶と接する面に結晶性ポリイミド材料を配向膜として
用いることを特徴とする液晶表示素子。
(1) A liquid crystal display element in which a liquid crystal is sandwiched between a pair of substrates with electrodes provided on the surfaces in contact with the liquid crystal, characterized in that a crystalline polyimide material is used as an alignment film on the surface of the substrate in contact with the liquid crystal. Liquid crystal display element.
(2)液晶と接する面に電極を設けた一対の基板間に液
晶が挟み込まれている液晶表示素子において基板の液晶
と接する面に設ける配向膜材料が、主鎖にアルキル基を
含むことを特徴とする液晶表示素子。
(2) In a liquid crystal display element in which a liquid crystal is sandwiched between a pair of substrates with electrodes provided on the surfaces in contact with the liquid crystal, the alignment film material provided on the surface of the substrate in contact with the liquid crystal contains an alkyl group in the main chain. A liquid crystal display element.
(3)主鎖に含まれるアルキル基が式( I )で表され
る構成単位を含むことを特徴とする請求項(2)記載の
液晶表示素子。 ▲数式、化学式、表等があります▼……( I ) (式中nは5から12の整数を表す。)
(3) The liquid crystal display element according to claim (2), wherein the alkyl group contained in the main chain contains a structural unit represented by formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In the formula, n represents an integer from 5 to 12.)
(4)基板上にアルキル基を含むジアミンと、テトラカ
ルボン酸二無水物を真空蒸着したのち加熱することで結
晶性ポリイミド材料からなる配向膜を作成することを特
徴とする液晶表示素子の製造法。
(4) A method for producing a liquid crystal display element, which comprises vacuum-depositing a diamine containing an alkyl group and a tetracarboxylic dianhydride on a substrate and then heating the substrate to create an alignment film made of a crystalline polyimide material. .
(5)アルキル基を含むジアミンが式( I )で表され
る構成単位を有することを特徴とする請求項(4)記載
の液晶表示素子の製造法。 ▲数式、化学式、表等があります▼……( I ) (式中nは5から12の整数を表す。)
(5) The method for producing a liquid crystal display element according to claim (4), wherein the diamine containing an alkyl group has a structural unit represented by formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In the formula, n represents an integer from 5 to 12.)
(6)基板上にポリアミド酸をLB法で作成したのち加
熱することで結晶性ポリイミド材料からなる配向膜を作
成することを特徴とする液晶表示素子の製造法。
(6) A method for manufacturing a liquid crystal display element, which comprises forming polyamic acid on a substrate by the LB method and then heating it to form an alignment film made of a crystalline polyimide material.
JP31173390A 1990-11-16 1990-11-16 Liquid crystal display element and production thereof Pending JPH04181922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31173390A JPH04181922A (en) 1990-11-16 1990-11-16 Liquid crystal display element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31173390A JPH04181922A (en) 1990-11-16 1990-11-16 Liquid crystal display element and production thereof

Publications (1)

Publication Number Publication Date
JPH04181922A true JPH04181922A (en) 1992-06-29

Family

ID=18020821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31173390A Pending JPH04181922A (en) 1990-11-16 1990-11-16 Liquid crystal display element and production thereof

Country Status (1)

Country Link
JP (1) JPH04181922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579140A (en) * 1993-04-22 1996-11-26 Sharp Kabushiki Kaisha Multiple domain liquid crystal display element and a manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579140A (en) * 1993-04-22 1996-11-26 Sharp Kabushiki Kaisha Multiple domain liquid crystal display element and a manufacturing method of the same

Similar Documents

Publication Publication Date Title
US20060142538A1 (en) Liquid crystal orientating agent and liquid crystal display element using it
JPH08208835A (en) Production of polyimide-based copolymer, thin film-forming agent, liquid crystal oriented film and its production
WO1997033191A1 (en) Method for liquid crystal alignment
US6274695B1 (en) Aligning agent for liquid crystal
JPS62165628A (en) Liquid crystal display element
US5135678A (en) Liquid crystal device
JPH02176631A (en) Composition for liquid crystal oriented film liquid crystal oriented film and liquid crystal display element
KR100238161B1 (en) Optical alignment polymer, optical alignment layer formed therefrom and liquid crystal display having the optical alignmnet layer
WO2018051956A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2841095B2 (en) Liquid crystal alignment film and liquid crystal display device
KR100230436B1 (en) Optical alignment composition, aligment layer formed therefrom, liquid crystal device employing the alignment layer
JP2573824B2 (en) Liquid crystal cell and method of manufacturing the same
JPH04181922A (en) Liquid crystal display element and production thereof
US5328714A (en) Method for manufacturing liquid crystal orientation film
JP3612751B2 (en) Liquid crystal alignment agent
JPH0572537A (en) Liquid crystal display device
JP7311047B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2841792B2 (en) Liquid crystal alignment film and liquid crystal display device
JPS63242373A (en) Film forming method
JPS6378130A (en) Liquid crystal display element
JPH01239525A (en) Material for liquid crystal orientation film
JPH0749501A (en) Orienting agent for liquid crystal
JPH0618889A (en) Liquid crystal element
JPH0423832A (en) Fluorine-containing polyamide compound and fluorine-containing polyimide compound
JPH05127168A (en) Liquid crystal display element