JPH04181112A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPH04181112A
JPH04181112A JP31101090A JP31101090A JPH04181112A JP H04181112 A JPH04181112 A JP H04181112A JP 31101090 A JP31101090 A JP 31101090A JP 31101090 A JP31101090 A JP 31101090A JP H04181112 A JPH04181112 A JP H04181112A
Authority
JP
Japan
Prior art keywords
light
output
target object
amount
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31101090A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
一行 飯塚
Kunio Oi
大井 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP31101090A priority Critical patent/JPH04181112A/en
Publication of JPH04181112A publication Critical patent/JPH04181112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To enable distance to an object to be measured measured easily and accurately by comparing an output sum of a light-receiving region with a reference voltage and controlling an amount of projected light of an light-projection element so that the comparison result may be a constant. CONSTITUTION:A voltage which is equal to an output sum of a light-receiving element 2 when a target object is at a closest position within a measurement range is set to a reference voltage Vth 10, an output sum obtained by adding 7 outputs Va - Vc of light-receiving regions 2a - 2c of the element 2 which is divided into three parts and the voltage Vth are compared 8, and the differential voltage Vs is input to a light-projection control circuit 6. This voltage Vs increases according to decrease in the amount of received light accompanied by remoteness of the target object, the circuit 6 controls the amount of projection light of the light-projection element 1 according to the level of the voltage Vs and maintains the amount of received light of the element 2 to be constant regardless of change in the target object. Then, the output Vc of the region 2c is output as a distance output V through an amplifier 9 but the amount of received light is exclusively due to change in inclination angle of the reflection light so that the output Vc (output V) is in straight-line relationship with a distance to the target object, thus enabling distance to the target object to be measured accurately.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、対象物体乙こ対し光を投光する投光素子と
、投光素子の投光方向に垂直な方向に投光素子から一定
基線長離れた位置で対象物体における反射光を受光して
受光量に応した信号を出力する受光素子と、を備えた三
角測距方式の距離測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Field of Application This invention relates to a light projecting element that projects light onto a target object, and a light emitting element that emits light from the light projecting element in a direction perpendicular to the light projecting direction of the light projecting element. The present invention relates to a triangulation type distance measuring device that includes a light receiving element that receives reflected light from a target object at a position separated by a certain baseline length and outputs a signal corresponding to the amount of received light.

(b)従来の技術 三角測距方式によって対象物体までの距離を測定する距
離測定装置では、一般に第5図に示すように投光素子1
の光を投光レンズ4を介して対象物体3に投光し、この
対象物体3における反射光を受光レンズ5を介して受光
素子20により受光する。投光レンズ4と受光レンズ5
とは投光素子1の投光方向に対して垂直な方向に基線長
しだけ離れて設置されている。この構成において投光レ
ンズ4から対象物体3までの距離が変わると、対象物体
3において反射した光の受光レンズ5に対する入射角が
変わり、受光素子20における受光点が変わる。この受
光点の変位によって受光素子20の受光量が変化し、こ
の受光素子20の出力を検出することによって投光部と
対象物体との距tlRを検出するようにしている。
(b) Conventional technology In a distance measuring device that measures the distance to a target object using a triangulation method, generally a light emitting element 1 is used as shown in FIG.
The light is projected onto the target object 3 through the light projecting lens 4, and the reflected light from the target object 3 is received by the light receiving element 20 through the light receiving lens 5. Emitter lens 4 and receiver lens 5
and are installed apart from each other by the base line length in a direction perpendicular to the light projection direction of the light projection element 1. In this configuration, when the distance from the light projecting lens 4 to the target object 3 changes, the incident angle of the light reflected from the target object 3 to the light receiving lens 5 changes, and the light receiving point on the light receiving element 20 changes. The amount of light received by the light receiving element 20 changes due to the displacement of the light receiving point, and by detecting the output of this light receiving element 20, the distance tlR between the light projecting section and the target object is detected.

このような距離測定装置では、汎用性を考慮して使用状
況に合わせて測距範囲を設定できるようにする必要があ
る。そこで、従来は基線長りを可変にし、対象物体3の
位置が変化しなくともその反射光の受光素子20に対す
る入射角が変わるようにしていた。すなわち、受光素子
20の相異なる領域の出力(例えば第5図の分割領域2
0a。
In such a distance measuring device, it is necessary to take versatility into consideration and to be able to set the distance measuring range according to the usage situation. Therefore, conventionally, the length of the base line is made variable so that the angle of incidence of the reflected light on the light receiving element 20 changes even if the position of the target object 3 does not change. That is, the outputs of different regions of the light receiving element 20 (for example, the outputs of divided regions 2 in FIG.
0a.

20b)が一致するようにレンズ5を変位させて距離検
出出力を可変できるようにしていた。
20b), the distance detection output can be varied by displacing the lens 5 so that the distance detection output matches the distance detection output.

具体的に説明すると、上記の状態で対象物体との距離R
が変化して距HR′になった場合、受光素子20におけ
る受光点が変わり、領域20aと領域20bとの出力は
一致しなくなる。逆に言えば領域20aと領域20bと
が一致したときに距AiIRとなることを示している。
To explain specifically, in the above state, the distance R to the target object
When the distance changes to become the distance HR', the light receiving point on the light receiving element 20 changes, and the outputs of the regions 20a and 20b no longer match. Conversely, it shows that when the region 20a and the region 20b match, the distance AiIR is reached.

このことによりレンズ5を移動させて希望する距離を設
定することが可能となり、そのときの出力情報を得るこ
とができるようにしていた。
This makes it possible to set a desired distance by moving the lens 5, and to obtain output information at that time.

[C)発明が解決しようとする課題 しかしながら、上記従来の距離測定装置では、基線長を
変えるためにレンズを変位させなければならず、このた
めの機構が必要になって構造の複雑化および大型化を招
く問題があった。
[C) Problems to be Solved by the Invention However, in the conventional distance measuring device described above, the lens must be displaced in order to change the base line length, and a mechanism for this is required, resulting in a complicated and large structure. There was a problem that led to

この発明の目的は、受光素子に対する対象物体からの反
射光の入光量が一定になるように投光素子の投光量を制
御するとともに、この一定量を変更できるようにするこ
とにより、受光素子における同一の出力信号に対応する
対象物体の移動範囲を任意に変えることができるように
し、レンズの移動に係る複雑な機構を不要にして装置の
小型化を実現できる距離測定装置を提供することにある
(d)課題を解決するための手段 この発明の距離測定装置は、対象物体に対して光を投光
する投光素子と、投光素子の投光方向に垂直な方向に投
光素子から一定基線長離れた位置で対象物体における反
射光を受光して受光量に応じた信号を出力する受光素子
と、を備えた三角測距方式の距離測定装置において、 前記受光素子の受光領域を前記基線長方向に複数に分割
し、複数の受光領域のうちの一部の受光領域の出力を測
距出力とし、残る受光領域または全ての受光領域の出力
和を基準電圧と比較する比較手段と、前記基準電圧を任
意に設定する基準電圧設定手段と、比較手段の比較結果
が一定値となるように投光素子の投光量を制御する投光
制御手段と、を設けたことを特徴とする。
An object of the present invention is to control the amount of light emitted by a light emitting element so that the amount of reflected light from a target object enters the light receiving element is constant, and to make it possible to change this constant amount. An object of the present invention is to provide a distance measuring device that can arbitrarily change the movement range of a target object in response to the same output signal, and that can reduce the size of the device by eliminating the need for a complicated mechanism related to lens movement. (d) Means for Solving the Problems The distance measuring device of the present invention includes a light projecting element that projects light onto a target object, and a constant direction from the light projecting element in a direction perpendicular to the light projecting direction of the light projecting element. In a triangulation type distance measuring device comprising a light receiving element that receives reflected light from a target object at a position separated by a baseline length and outputs a signal according to the amount of received light, the light receiving area of the light receiving element is set to the baseline. Comparing means that divides the light receiving area into a plurality of parts in the longitudinal direction, sets the output of a part of the plurality of light receiving areas as a ranging output, and compares the remaining light receiving area or the sum of outputs of all the light receiving areas with a reference voltage; The present invention is characterized in that it includes a reference voltage setting means for arbitrarily setting a reference voltage, and a light projection control means for controlling the amount of light emitted by the light emitting element so that the comparison result of the comparison means becomes a constant value.

te1作用 この発明においては、投光素子から投光された光の対象
物体における反射光を受光素子において受光し、この受
光素子の受光量に基づいて対象物体までの距離を測定す
る三角測距が行われる。このような三角測距方式におい
ては、第1図に示すように対象物体までの距離が変化す
ることによって受光素子に対する反射光の入射角が変化
し、受光素子において反射光の受光点(受光範囲の中心
)が変化する。即ち、第1図の位置3aに対象物体があ
る場合において、受光点が受光領域2cの中央部であっ
たとすると、対象物体が位置3bから位置3cに遠ざか
るに従って受光点は受光素子2Cの左側に移動する。こ
のため、受光素子2cにおける受光量は対象物体が遠ざ
かるに従って徐々に減少していく。また、対象物体が遠
ざかるに従って、投光素子lから対象物体を経由して受
光素子2に至る光路が長くなり、これに伴って光の減衰
量が増加して受光素子2の全体に入射する光量が減少す
る。
te1 effect In this invention, triangulation distance measurement is performed in which the light reflected from the target object of the light projected from the light projecting element is received by the light receiving element, and the distance to the target object is measured based on the amount of light received by the light receiving element. It will be done. In such a triangulation distance measurement method, as the distance to the target object changes, the angle of incidence of the reflected light on the light receiving element changes as shown in Figure 1, and the light receiving point (light receiving range) of the reflected light on the light receiving element changes. center) changes. That is, when the target object is at position 3a in FIG. 1, if the light receiving point is at the center of the light receiving area 2c, as the target object moves away from position 3b to position 3c, the light receiving point moves to the left side of the light receiving element 2C. Moving. Therefore, the amount of light received by the light receiving element 2c gradually decreases as the target object moves away. Additionally, as the target object moves away, the optical path from the light projecting element l to the light receiving element 2 via the target object becomes longer, and the amount of attenuation of the light increases accordingly, causing the amount of light that enters the entire light receiving element 2. decreases.

この時、受光素子2の任意の受光領域2a、2bまたは
全受光領域2a〜2cの出力の和が比較手段において基
準電圧と比較され、この比較手段の比較結果が一定値を
とるように投光素子1の投光量が制御される。これによ
って、受光素子2の全体に入射する光量が常に一定にな
る。したがって、受光領域2cの出力Vcは対象物体の
変位による入射角の変化、即ち、受光点の変位のみに従
って変化し、受光領域2cの出力Vcを検出することに
よって対象物体の位置を特定できる。
At this time, the sum of the outputs of any light-receiving areas 2a, 2b or all light-receiving areas 2a to 2c of the light-receiving element 2 is compared with a reference voltage in the comparison means, and light is emitted so that the comparison result of this comparison means takes a constant value. The amount of light emitted from element 1 is controlled. As a result, the amount of light incident on the entire light receiving element 2 is always constant. Therefore, the output Vc of the light-receiving region 2c changes only according to the change in the angle of incidence due to the displacement of the target object, that is, the displacement of the light-receiving point, and the position of the target object can be specified by detecting the output Vc of the light-receiving region 2c.

ここで、比較手段における基準電圧を変えると受光索子
2の全体に入射される光の光量が変わる。このため、対
象物体が同一位置にある場合でも、基準電圧の切換の前
後において受光領域2Cの出力が変化する。言い換える
と、基準電圧の切換の前後において受光領域2Cの出力
信号に対応する対象物体の位置が変わる。したがって、
基準電圧を適当に設定することにより、受光素子2の出
力信号の範囲に対応する対象物体の移動範囲を任意に設
定できる。
Here, if the reference voltage in the comparison means is changed, the amount of light incident on the entire light receiving cable 2 is changed. Therefore, even if the target object is at the same position, the output of the light receiving area 2C changes before and after switching the reference voltage. In other words, the position of the target object corresponding to the output signal of the light receiving area 2C changes before and after switching the reference voltage. therefore,
By appropriately setting the reference voltage, the movement range of the target object corresponding to the range of the output signal of the light receiving element 2 can be arbitrarily set.

(f)実施例 第2図は、この発明の実施例である距離測定装置の構成
を示すブロック図である。
(f) Embodiment FIG. 2 is a block diagram showing the configuration of a distance measuring device that is an embodiment of the present invention.

LED等によって構成される投光素子1は投光制御回路
6によって駆動される。この投光制御回路6には比較器
8の出力が入力される。この比較器8においては、加算
回路7の出力が基準電圧Vt1と比較される。加算回路
7は、受光素子(多分割フォトダイオード)2において
3分割にされたそれぞれの受光領域2a〜2cの出力V
a−Vcを加算して出力和を演算する。したがって、投
光制御回路6には受光素子2の出力和と基準電圧Viと
の差が入力される。
A light projecting element 1 composed of an LED or the like is driven by a light projecting control circuit 6. The output of the comparator 8 is input to the light projection control circuit 6 . In this comparator 8, the output of the adder circuit 7 is compared with the reference voltage Vt1. The adder circuit 7 receives the output V of each of the light receiving areas 2a to 2c divided into three in the light receiving element (multi-division photodiode) 2.
The output sum is calculated by adding a−Vc. Therefore, the difference between the output sum of the light receiving elements 2 and the reference voltage Vi is input to the light projection control circuit 6.

比較器8における基準電圧Vthは、基準電圧設定回路
10から供給される。この基準電圧設定回路10におい
ては比較器8に供給する基準電圧Vlを任意の値に設定
することができる。基準電圧設定回路10は、対象物体
が測定範囲の最近接位置にある場合における受光素子2
の出力和に等しい電圧を基準電圧vthとして設定し、
比較器8の出力、即ち投光制御回路6に入力される差分
電圧Vsは、対象物体の遠隔化に伴う受光素子2の受光
量の減少に従って増加する。
The reference voltage Vth in the comparator 8 is supplied from a reference voltage setting circuit 10. In this reference voltage setting circuit 10, the reference voltage Vl supplied to the comparator 8 can be set to any value. The reference voltage setting circuit 10 controls the light receiving element 2 when the target object is at the closest position to the measurement range.
Set a voltage equal to the output sum of as the reference voltage vth,
The output of the comparator 8, that is, the differential voltage Vs input to the light projection control circuit 6 increases as the amount of light received by the light receiving element 2 decreases as the target object becomes more remote.

投光制御回路6はこの差分電圧Vsが大きくなるに従っ
て、投光素子1に印加する駆動電圧を増加する。これに
よって投光素子1の投光量は差分電圧Vsの大きさに応
じて変わり、受光素子2における受光量が対象物体の変
化に関わらず常に一定になるように制御される。
The light projection control circuit 6 increases the drive voltage applied to the light projection element 1 as the differential voltage Vs increases. As a result, the amount of light emitted by the light projecting element 1 changes depending on the magnitude of the differential voltage Vs, and the amount of light received by the light receiving element 2 is controlled so as to be always constant regardless of changes in the target object.

このようにして受光量が一定に維持される受光素子2の
一部を構成する受光領域2cの出力Vcが、増幅器9を
介して測距出力Vとして取り出される。受光素子2に入
射する対象物体からの反射光の光量は常に一定に保たれ
るため、受光領域2Cにおける受光量は専ら対象物体か
らの反射光の入射角度の変化によることになり、受光領
域2cの出力電圧Vc(測距出力V)は第4図中実線で
示すように所定範囲において、対象物体までの距離Rと
直線的関係になる。したがって、この所定範囲を測定範
囲とすることにより測距出力Vから対象物体までの距離
Rを容易かつ正確に測定することができる。
The output Vc of the light-receiving region 2c forming part of the light-receiving element 2 in which the amount of light received is maintained constant in this way is taken out as the ranging output V via the amplifier 9. Since the amount of light reflected from the target object that enters the light-receiving element 2 is always kept constant, the amount of light received in the light-receiving area 2C depends exclusively on changes in the angle of incidence of the light reflected from the target object. The output voltage Vc (distance measurement output V) has a linear relationship with the distance R to the target object within a predetermined range, as shown by the solid line in FIG. Therefore, by setting this predetermined range as the measurement range, the distance R from the ranging output V to the target object can be easily and accurately measured.

ここで、基準電圧設定回路10における基準電圧設定回
路10における基準電圧Vいをより低い基準電圧■い′
に切り換えると、基準電圧■いにおいて、距離R3に対
応していた測距出力V、は、基準電圧■い′において距
離R2に対応することになる。このように、基準電圧■
いの値を変えることによって測距出力Vに対応する対象
物体の距離Rが変化する。基準電圧Vtk′においても
受光素子2に対する受光量が一定になるように投光素子
1の投光量が制御されるため、測距出力Vと距離Rとの
関係は第4図中破線で示すように直線関係となる。ここ
で、基準電圧Vthと基準電圧Vい′との比は第4図に
おける距Is Rl と距離R2との比に等しいから、
基準電圧Vいを変えることによって他の回路構成を変え
ることなく、測距出力Vの出力範囲に対応する対象物体
の移動範囲を任意に変えることができる。
Here, the reference voltage V in the reference voltage setting circuit 10 is set to a lower reference voltage V'
When switched to , the distance measurement output V, which corresponded to the distance R3 at the reference voltage I, corresponds to the distance R2 at the reference voltage I'. In this way, the reference voltage
By changing the value of , the distance R to the target object corresponding to the distance measurement output V changes. Since the amount of light emitted from the light emitting element 1 is controlled so that the amount of light received by the light receiving element 2 is constant even at the reference voltage Vtk', the relationship between the ranging output V and the distance R is as shown by the broken line in FIG. There is a linear relationship between Here, since the ratio between the reference voltage Vth and the reference voltage V' is equal to the ratio between the distance Is Rl and the distance R2 in FIG. 4,
By changing the reference voltage V, the movement range of the target object corresponding to the output range of the ranging output V can be arbitrarily changed without changing other circuit configurations.

なお、受光素子2の分割数は3に限るものではない。Note that the number of divisions of the light receiving element 2 is not limited to three.

第3図は、この発明の別の実施例に係る距離測定装置の
構成を示す図である。
FIG. 3 is a diagram showing the configuration of a distance measuring device according to another embodiment of the present invention.

同図に示すように受光素子12を2分割に構成し、一方
の受光領域12bの出力vbを測距出力Vとするととも
に、他方の受光領域12aの出力Vaを比較器22にお
いて基準電圧V1と比較し、その差分電圧Vsを投光制
御回路21に出力するようにしている。対象物体が測定
範囲内で変位しても受光領域12aにおける受光量が十
分てある場合には、この受光領域12aのみの受光量で
受光素子12に対する対象物体からの反射光の大光量と
し、第2図に示す加算回路7を削除して装置の構成をよ
り簡単することができる。この場合において受光領域1
2aおよび12bの範囲は同一である必要がなく、受光
領域12aを受光領域12bより大きくするようにして
もよい。
As shown in the figure, the light-receiving element 12 is divided into two parts, and the output vb of one light-receiving area 12b is used as the ranging output V, and the output Va of the other light-receiving area 12a is set as the reference voltage V1 in the comparator 22. A comparison is made, and the difference voltage Vs is outputted to the light projection control circuit 21. If the amount of light received in the light-receiving area 12a is sufficient even if the target object is displaced within the measurement range, the amount of light received by only this light-receiving area 12a is considered to be a large amount of light reflected from the target object to the light-receiving element 12, and the second The configuration of the device can be further simplified by eliminating the adder circuit 7 shown in FIG. In this case, the light receiving area 1
The ranges of 2a and 12b do not need to be the same, and the light receiving area 12a may be larger than the light receiving area 12b.

(沿発明の効果 この発明によれば、受光索子における受光量が一定にな
るように投光素子の投光量を制御するとともに、受光素
子における受光量の一定値を変更できるようにすること
により、受光素子の一部の受光領域の受光量と対象物体
の距離との直線関係を任意の範囲に設定することができ
、レンズの変位に係る複雑な機構を必要とすることなく
対象物体の距離の測定範囲を任意に設定できる利点があ
る。
(Effects of the Invention According to this invention, the amount of light emitted by the light emitting element is controlled so that the amount of light received by the light receiving element is constant, and the constant value of the amount of light received by the light receiving element can be changed. , the linear relationship between the amount of light received by a part of the light-receiving area of the light-receiving element and the distance to the target object can be set to an arbitrary range, and the distance to the target object can be determined without the need for a complicated mechanism related to lens displacement. This has the advantage that the measurement range can be set arbitrarily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の作用効果を示す光路図である。第2
図はこの発明の実施例である距離測定装置の構成を示す
図、第3図はこの発明の別の実施例に係る距離測定装置
の構成を示す図である。第4図はこの発明の実施例にお
ける測距出力と距離との関係を示す図である。また、第
5図はこの発明の実施例を含む一般的な距離測定装置の
投光素子、受光素子および対象物体の位置関係を示す図
である。 1−投光素子、2−受光素子、 2a〜2c−受光領域、6−投光制御回路、10−基準
電圧設定回路。
FIG. 1 is an optical path diagram showing the effects of this invention. Second
This figure is a diagram showing the configuration of a distance measuring device according to an embodiment of the present invention, and FIG. 3 is a diagram showing the configuration of a distance measuring device according to another embodiment of the present invention. FIG. 4 is a diagram showing the relationship between ranging output and distance in the embodiment of the present invention. Further, FIG. 5 is a diagram showing the positional relationship between a light projecting element, a light receiving element, and a target object of a general distance measuring device including an embodiment of the present invention. 1-light emitting element, 2-light receiving element, 2a-2c-light receiving area, 6-light emitting control circuit, 10-reference voltage setting circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)対象物体に対して光を投光する投光素子と、投光
素子の投光方向に垂直な方向に投光素子から一定基線長
離れた位置で対象物体における反射光を受光して受光量
に応じた信号を出力する受光素子と、を備えた三角測距
方式の距離測定装置において、 前記受光素子の受光領域を前記基線長方向に複数に分割
し、複数の受光領域のうちの一部の受光領域の出力を測
距出力とし、任意の受光領域または全ての受光領域の出
力和を基準電圧と比較する比較手段と、前記基準電圧を
任意に設定する基準電圧設定手段と、比較手段の比較結
果が一定値となるように投光素子の投光量を制御する投
光制御手段と、を設けたことを特徴とする距離測定装置
(1) A light projecting element that projects light onto a target object, and a light projecting element that receives reflected light from the target object at a position a certain baseline length away from the light projecting element in a direction perpendicular to the light projection direction of the light projecting element. A triangular distance measuring device comprising a light receiving element that outputs a signal according to the amount of received light, the light receiving area of the light receiving element being divided into a plurality of parts in the base line length direction, a comparison means that uses the output of some of the light-receiving areas as a ranging output and compares the output sum of any light-receiving area or all of the light-receiving areas with a reference voltage; and a reference voltage setting means that arbitrarily sets the reference voltage; A distance measuring device comprising: a light projection control means for controlling the amount of light emitted by a light emitting element so that the comparison result of the means becomes a constant value.
JP31101090A 1990-11-15 1990-11-15 Distance measuring device Pending JPH04181112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31101090A JPH04181112A (en) 1990-11-15 1990-11-15 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31101090A JPH04181112A (en) 1990-11-15 1990-11-15 Distance measuring device

Publications (1)

Publication Number Publication Date
JPH04181112A true JPH04181112A (en) 1992-06-29

Family

ID=18012039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31101090A Pending JPH04181112A (en) 1990-11-15 1990-11-15 Distance measuring device

Country Status (1)

Country Link
JP (1) JPH04181112A (en)

Similar Documents

Publication Publication Date Title
US10330780B2 (en) LIDAR based 3-D imaging with structured light and integrated illumination and detection
US4332477A (en) Flatness measuring apparatus
JPH0726806B2 (en) Distance measuring device
US4488813A (en) Reflectivity compensating system for fiber optic sensor employing dual probes at a fixed gap differential
WO1992004619A1 (en) Reflective optical instrument
JP6604623B2 (en) Light wave distance meter
CA1284202C (en) Pulse proximity detection
US10942260B2 (en) MEMS mirror with extended field of view useful for vehicle LIDAR
US5369284A (en) Active edge position measuring device
JP3215232B2 (en) Photoelectric distance sensor
JPH04181112A (en) Distance measuring device
JPS6270709A (en) Reflection type photoelectric switch
JP2002323315A (en) Adjusting device for range finder
EP0420172A1 (en) Speckle velocity sensor
US3765772A (en) Interferometric angular sensor and reference
JP2638607B2 (en) Distance measuring device
JPH04181114A (en) Distance measuring device
JP2882813B2 (en) Distance measuring device
JPH07286847A (en) Optical device
JPH09178551A (en) Reflective photosensor
JPH0382909A (en) Optical reflector detecting apparatus
JPH0750569A (en) Photoelectric switch
JPH06265777A (en) Range-finding device for camera
SU1553868A1 (en) Focometer
JP2817800B2 (en) Electric load averaging method and apparatus therefor