JPH04180920A - Copolyester - Google Patents

Copolyester

Info

Publication number
JPH04180920A
JPH04180920A JP30721590A JP30721590A JPH04180920A JP H04180920 A JPH04180920 A JP H04180920A JP 30721590 A JP30721590 A JP 30721590A JP 30721590 A JP30721590 A JP 30721590A JP H04180920 A JPH04180920 A JP H04180920A
Authority
JP
Japan
Prior art keywords
modulus
young
polyester
formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30721590A
Other languages
Japanese (ja)
Inventor
Akio Nakaishi
昭夫 中石
Masatsugu Enomori
榎森 正嗣
Shunichi Matsumura
俊一 松村
Hiroo Inada
稲田 博夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP30721590A priority Critical patent/JPH04180920A/en
Publication of JPH04180920A publication Critical patent/JPH04180920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To obtain a highly versatile copolyester which can give a fiber, a film or the like having high mechanical properties, especially high Young's modulus by combining structural units of a polyethylene glycol ester of naphthalenedicarboxylic acid and structural units of a polyethylene glycol ester of phthalimide-dicarboxylic acid. CONSTITUTION:A high-Young's modulus polyester which is a copolyester comprising 70-99.5mol% structural units of a naphthalenedicarboxylic acid/alkylene oxide adduct of formula I (wherein (l) is 2-6) and 0.5-30mol% structural units of a phthalimidecarboxylic acid/alkylene oxide adducts of formulas II and/or III (wherein X and Y are each a bivalent aromatic or aliphatic residue) and having an intrinsic viscosity of 0.2-2.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は、力学物性特にヤング率に優れた繊維。[Detailed description of the invention] a. Industrial application field The present invention provides fibers with excellent mechanical properties, particularly Young's modulus.

フィルム等の成形物を得ることができる共重合ポリエス
テルに関するものである。
This invention relates to a copolyester that can be used to form molded products such as films.

b、従来技術 一般にポリエステル、特にポリエチレンテレフタレート
のような芳香族ジカルボン酸と脂肪族ジオールとを重合
することで得られるポリエステルは、機械的、物理的お
よび化学的特性が優れているため、衣料用、産業用繊維
、あるいは磁気テープ用、写真用フィルム、その他成形
物等に広く使用されている。
b. Prior Art Generally, polyesters, particularly polyesters obtained by polymerizing aromatic dicarboxylic acids and aliphatic diols such as polyethylene terephthalate, have excellent mechanical, physical and chemical properties, and are therefore used for clothing, It is widely used in industrial fibers, magnetic tapes, photographic films, and other molded products.

しかしながら、繊維の分野においてポリエステルは後加
工、紡績工程における生産性向上、および機能性付与に
関する処理の多様化等に伴い、より高い品質、特に高い
ヤング率を有することが望まれている。
However, in the field of textiles, polyester is desired to have higher quality, especially a higher Young's modulus, due to improvements in productivity in post-processing, spinning processes, and diversification of treatments related to imparting functionality.

一方、フィルムの分野においても、フィルムの薄膜化に
伴ないヤング率等の改善要求が高まっている。
On the other hand, in the field of films as well, there is an increasing demand for improvements in Young's modulus and the like as films become thinner.

このような要求に応える第一の方法としては、ポリエス
テルを繊維化あるいはフィルム化する成型工程において
、ポリエステルの有するポテンシャルを可能なかぎり引
出すプロセスの開発がある。
The first method to meet these demands is to develop a process that brings out the potential of polyester as much as possible in the molding process of turning polyester into fibers or films.

例えば繊維の場合では、延伸工程において、延伸倍率、
熱処理条件等を操作することで同一ポリマーを使用した
場合でも従来よりも高いヤング率が得られる場合がある
。またフィルムの場合でも多段階の延伸等を施すことに
よって高ヤング率化がある程度可能である。しかしなが
ら、このようなプロセス改善には多くの設備改良が必要
なのにもかかわらず、その効果は十分ではない。すなわ
ちプロセス改善によっても本来ポリマーが有するポテン
シャルを十分に引出していないことは、例えば理論計算
によって求められたヤング率に比較して実際に得られる
ヤング率がはるかに及ばないことからも明らかである。
For example, in the case of fibers, in the stretching process, the stretching ratio,
By manipulating the heat treatment conditions etc., a higher Young's modulus than before can sometimes be obtained even when the same polymer is used. In addition, even in the case of a film, it is possible to increase the Young's modulus to some extent by performing multi-stage stretching. However, although such process improvements require many equipment improvements, their effects are not sufficient. That is, even with process improvements, the inherent potential of the polymer is not fully brought out, as is clear from the fact that the Young's modulus actually obtained is far lower than the Young's modulus determined by theoretical calculations, for example.

高ヤング率化の要求に応える第二の方法としては、従来
の成型工程を大きく逸脱することなく、しかも工程の生
産性を保ったままで高いヤング率が発現できるようなポ
リエステルの開発がある。
The second method to meet the demand for a high Young's modulus is the development of a polyester that can exhibit a high Young's modulus without significantly departing from the conventional molding process and while maintaining the productivity of the process.

この方法では、まず剛直でかつ直線性に優れたポリエス
テルの開発が進められてはいるが、一般にそのようなポ
リエステルは高融点であるために加工、成型が困難なも
のが多い。また、ある種のポリエステルでは、溶融状態
において光学的異方性を示すものがあり、繊維化、フィ
ルム化する際に特殊な工程が必要な場合が多い。
In this method, progress has been made to develop polyesters that are rigid and have excellent linearity, but generally such polyesters have a high melting point and are therefore difficult to process and mold. Furthermore, some types of polyester exhibit optical anisotropy in a molten state, and special steps are often required when forming them into fibers or films.

他方、より剛直な芳香環(例えばナフタレン骨格)と柔
軟な脂肪族部分をもつポリエステルの開発も進められて
おり、従来のベンゼン骨格と脂肪族ユニットからなるポ
リエステルに比べてヤング率は改善されているものの、
市場の高ヤング率化に十分応えているとはいい難い。
On the other hand, the development of polyesters with more rigid aromatic rings (e.g. naphthalene skeleton) and flexible aliphatic moieties is progressing, and their Young's modulus has been improved compared to conventional polyesters consisting of benzene skeletons and aliphatic units. of things,
It is difficult to say that they are fully responding to the market's increasing Young's modulus.

C0発明の目的 本発明は、以上の事情を背景としたものであり、その目
的は高い力学物性、特に高いヤング率を有する繊維、フ
ィルム等の成型物を得ることのできる汎用性の高いポリ
エステルを提供することにある。
C0 Purpose of the Invention The present invention was made against the background of the above circumstances, and its purpose is to develop a highly versatile polyester that can be used to obtain molded products such as fibers and films that have high mechanical properties, particularly a high Young's modulus. It is about providing.

d1発明の構成 本発明者らは、上記の問題点を解決すべく鋭意検討を重
ねた結果、ポリエステルの繰り返し単位中にイミド骨格
を導入することにより、ポリエステルの力学物性、特に
ヤング率を向上させるのに効果があることを見出し本発
明に到達した。
d1 Structure of the Invention As a result of intensive studies to solve the above problems, the present inventors have improved the mechanical properties of polyester, particularly Young's modulus, by introducing an imide skeleton into the repeating unit of polyester. The present invention was achieved by discovering that this is effective.

すなわち、本発明は、下記式(I) 千〇 (CH2+*  0−Co−〔:■=〕−cO+
 ・・・(I>[式中、pは2〜6の整数である。] で表わされる単位70〜95.5モル%、下記式(IF
)・・・(IF> −EO(CH2+n o−co(]]:ツN−Y−CO
・・・(III)度0.2〜2の共重合ポリエステル。
That is, the present invention provides the following formula (I)
...(I> [wherein p is an integer of 2 to 6] 70 to 95.5 mol% of units represented by the following formula (IF
)...(IF>-EO(CH2+n o-co(]]:TSN-Y-CO
...(III) Copolymerized polyester having a degree of 0.2 to 2.

以下、本発明についてより詳細に説明する。The present invention will be explained in more detail below.

本発明にかかる共重合ポリエステルは、ナフタレンジカ
ルボン酸を主たる酸成分とし、炭素数が2から6までの
少なくとも1種のグリコール、好ましくはエチレングリ
コール、トリメチレングリコール、テトラメチレングリ
コール、ペンタメチレングリコール、ヘキサメチレング
リコールから選ばれた少なくとも一種のアルキレングリ
コールを主たるグリコール成分とするポリエステルに対
してイミド構造を導入したものである。
The copolymerized polyester according to the present invention contains naphthalene dicarboxylic acid as the main acid component, and contains at least one glycol having 2 to 6 carbon atoms, preferably ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexane glycol, etc. An imide structure is introduced into a polyester whose main glycol component is at least one alkylene glycol selected from methylene glycol.

上記式(1)〜(I)においてρは2から6までの整数
であり、ρ=2が特に好ましい。またグリコールとして
はエチレングリコールが好ましく選択される。
In the above formulas (1) to (I), ρ is an integer from 2 to 6, and ρ=2 is particularly preferable. Ethylene glycol is preferably selected as the glycol.

上記式(I)において、ナフタレン骨格上のカルボキシ
ル基の置換位置は1.5位、1.6位、1.7位、1,
8位、2.5位、2.6位、2,7位、2,8位等があ
りいずれの場合でも本発明の範囲に含まれる。
In the above formula (I), the substitution positions of the carboxyl group on the naphthalene skeleton are 1.5-position, 1.6-position, 1.7-position, 1-position,
There are 8th place, 2.5th place, 2.6th place, 2nd and 7th place, 2nd and 8th place, etc., and any case is included in the scope of the present invention.

就中2.6位が特に好ましく選択される。Among them, 2.6th place is particularly preferably selected.

共重合に好ましいイミド構造含有単位は、式(II)お
よび式(I[I)で表わされる2種が挙げられる。これ
らはいずれも本発明の目的、すなわち成型物の力学物性
、特にヤング率を改善するのに効果が認められる。した
がって、上記に示したこれらのイミド含有単位の一種の
みを単独にポリエステル中に導入してもよいし、複数の
イミド単位を導入してもさしつかえない。但し、イミド
含有単位の含有量は0.5モル%以上30モル%以下で
ある。0.5モル%未満の含有量では、繊維、フィルム
等に成型した際、ヤング率等の向上に間して有為な改善
効果が確認されない。
Two preferable imide structure-containing units for copolymerization are represented by formula (II) and formula (I[I). All of these are recognized to be effective for the purpose of the present invention, that is, improving the mechanical properties of molded products, particularly Young's modulus. Therefore, only one type of these imide-containing units shown above may be introduced into the polyester, or a plurality of imide units may be introduced into the polyester. However, the content of imide-containing units is 0.5 mol% or more and 30 mol% or less. If the content is less than 0.5 mol%, no significant improvement effect on Young's modulus etc. will be observed when molded into fibers, films, etc.

共重合ポリエステル中のイミド含有単位の含有量は、ポ
リエステルの重合性および得られたポリエステルの融点
、耐熱性等の観点からおのずと上限が存在するが、30
モル%以下が好ましく、より好ましくは20モル%以下
である。イミド含有単位の含有量が30モル%を越える
場合は、得られたポリマーの成形性が損なわれ、結晶性
が低下する等の問題がある。
The content of imide-containing units in the copolymerized polyester naturally has an upper limit from the viewpoint of the polymerizability of the polyester and the melting point and heat resistance of the obtained polyester.
It is preferably at most mol%, more preferably at most 20 mol%. When the content of imide-containing units exceeds 30 mol %, there are problems such as impaired moldability of the obtained polymer and decreased crystallinity.

上記式(II)および(nI)において、XおよびYは
2価の芳香族残基または脂肪族残基である。
In the above formulas (II) and (nI), X and Y are divalent aromatic residues or aliphatic residues.

ここで芳香族残基としては、ベンゼン残基およびナフタ
レン、アントラセン、ナフタセン、クリセン、ピレン等
の芳香族多環状化合物の残基、更にビフェニル、トリフ
ェニル、テトラフェニル等の線状の芳香族多環状化合物
の残基も挙げることができる。その他の芳香族残基とし
ては、ジフェニルエーテル、ジフェニル手オニーチル、
ジフェニルスルホン、ジフェニルケトン、ジフェニルメ
タン、ジフェニルエタン等の残基が挙げられる。
Here, the aromatic residues include benzene residues, residues of aromatic polycyclic compounds such as naphthalene, anthracene, naphthacene, chrysene, and pyrene, and linear aromatic polycyclic compounds such as biphenyl, triphenyl, and tetraphenyl. Mention may also be made of residues of compounds. Other aromatic residues include diphenyl ether, diphenyl-onythyl,
Examples include residues such as diphenylsulfone, diphenylketone, diphenylmethane, and diphenylethane.

また、これらのジフェニル化合物のフェニル基がジフェ
ニル、トリフェニル、およびテトラフェニル基に置き変
わっても、本発明の範囲に入るものである。また、上記
XおよびYに関する芳香族残基として用いられる化合物
は、結合する位!によって、その組み合わせは何通りも
あり、それらの化合物はすべて本発明の範噴に入るもの
である。
Moreover, even if the phenyl group of these diphenyl compounds is replaced with a diphenyl, triphenyl, or tetraphenyl group, it falls within the scope of the present invention. In addition, the compound used as the aromatic residue for X and Y above is at the bonding position! Depending on the combination, there are many combinations, and all such compounds fall within the scope of the present invention.

例えば、ベンゼン核の場合1.4−、1.3−など、ま
たナフタレン核の場合は1.4−、1.5−、2.6−
.2.7−の置換体があるが、これらはすべて本発明の
範囲に入るものである。
For example, in the case of benzene nucleus, 1.4-, 1.3-, etc., and in the case of naphthalene nucleus, 1.4-, 1.5-, 2.6-
.. There are 2.7-substitutions, all of which are within the scope of the present invention.

また、脂肪族残基としては、具体的にはメチレン、エチ
レンの如き直鎖状のアルカン化合物の残基、およびシク
ロヘキサン、シクロヘキサンジメチレン、アダマンタン
、ビアダマンタン、ダイアダマンタン等の如き脂環式化
合物の残基を挙げることができる。
Examples of aliphatic residues include residues of linear alkane compounds such as methylene and ethylene, and alicyclic compounds such as cyclohexane, cyclohexane dimethylene, adamantane, viadamantane, and diadamantane. Residues can be mentioned.

本発明に係る共重合ポリエステルの重合方法としては特
に制限はないが、例えば以下に示す(A)および(B)
の方法が例示される。
There are no particular restrictions on the polymerization method of the copolymerized polyester according to the present invention, but for example, the following methods (A) and (B) can be used.
This method is exemplified.

(A)ナフタレンジカルボン酸とグリコールとをエステ
lし化するかあるいは、ナフタレンシカフレボン酸ジメ
チルエステルのような酸の低級アルキルエステルとグリ
コールとをエステル交換させるか、あるいはナフタレン
ジカルボン酸とエチレンオキサイドを反応させるかの、
いずれかの方法によりナフタレンジカルボン酸とグリコ
ールとのエステルおよび/またはその低重合体を得る第
1段階の反応。それに引き続く、ナフタレンジカルボン
酸とグリコールとのエステルおよび/またはその低重合
体から脱グリコール反応によって高分子量のポリエステ
ルを得る第2段階の反応(重縮合反応)。前記第1段階
の反応および第2段階の反応とからなる重合方法におい
て、ポリエステル製造反応が終了する以前に一般式(r
V) あるいは一般式(V) る共重合法。
(A) Esterification of naphthalene dicarboxylic acid and glycol, or transesterification of lower alkyl ester of acid such as naphthalene caffleboxic acid dimethyl ester with glycol, or transesterification of naphthalene dicarboxylic acid and ethylene oxide. Let's make it react,
A first step reaction to obtain an ester of naphthalene dicarboxylic acid and glycol and/or a low polymer thereof by any method. Subsequently, a second stage reaction (polycondensation reaction) in which a high molecular weight polyester is obtained by a deglycol reaction from an ester of naphthalene dicarboxylic acid and glycol and/or a low polymer thereof. In the polymerization method comprising the first-stage reaction and the second-stage reaction, before the polyester production reaction is completed, the general formula (r
V) Or a copolymerization method according to the general formula (V).

(B)ナフタレンジカルボン酸の酸ハライドに対して塩
基性触媒下、グリコールとの重縮合反応によってポリエ
ステルを得る重合方法において、イミドジカルボン酸の
酸ハライドを共存させる共重合法。
(B) A copolymerization method in which an acid halide of imidodicarboxylic acid coexists in a polymerization method for obtaining a polyester by a polycondensation reaction of an acid halide of naphthalene dicarboxylic acid with a glycol under a basic catalyst.

就中(Alの方法が好ましい。Among these, the Al method is preferred.

また、本発明の共重合ポリエステルは、極限粘度0.2
〜2であることが好ましい。
Further, the copolymerized polyester of the present invention has an intrinsic viscosity of 0.2
It is preferable that it is -2.

なお、本発明に係る共重合ポリエステルは、各種添加剤
、例えば易染剤、難燃剤、制電剤、親水剤1着色剤等を
必要に応じて加えたポリエステルであってもさしつかえ
ない。
Note that the copolymerized polyester according to the present invention may be a polyester to which various additives such as an easy-dying agent, a flame retardant, an antistatic agent, a hydrophilic agent, a coloring agent, etc. are added as necessary.

以上のようにして得られる本発明にかかる共重合ポリエ
ステルは通常の方法により、繊維、フィルム、その他の
成形品に成形し、使用することができる。
The copolyester according to the present invention obtained as described above can be molded into fibers, films, and other molded products by a conventional method and used.

e0発明の効果 本発明にかかる共重合ポリエステルを用いた場合、得ら
れる成型物は物性、特にヤング率が高くなるという効果
が得られる。
e0 Effects of the Invention When the copolymerized polyester according to the invention is used, the resulting molded product has the effect of improving physical properties, particularly Young's modulus.

更に′、本発明に係る共重合ポリエステルは、イミド構
造単位を導入することにより、もとのポリエステルに比
較し成型性が向上する効果が見出された。すなわち、も
とのポリエステル (0(CH2+1O−CO−O3−co+、!では、例
えば繊維化において、延伸工程での延伸倍率を増加させ
るためには、紡糸キャップ下に特別の加熱装置を備える
必要があるのに対し、本発明の共重合ポリエステルでは
、何ら特別の加熱装置を用いなくとも延伸性が向上し、
もって延伸糸の弾性率が向上する効果が確認された。し
たがって本発明の共重合ポリエステルは、高弾性率の成
形品を得るに好適である。
Furthermore, it has been found that the copolymerized polyester according to the present invention has an effect of improving moldability compared to the original polyester by introducing an imide structural unit. That is, in the original polyester (0(CH2+1O-CO-O3-co+,!), for example, in fiberization, in order to increase the stretching ratio in the stretching process, it is necessary to provide a special heating device under the spinning cap. On the other hand, the copolymerized polyester of the present invention has improved stretchability without using any special heating device,
The effect of improving the elastic modulus of the drawn yarn was confirmed. Therefore, the copolymerized polyester of the present invention is suitable for obtaining molded articles with high elastic modulus.

f、実施例 以下、実施例により本発明の詳細な説明する。f. Example Hereinafter, the present invention will be explained in detail with reference to Examples.

但し、本発明はこれらの例に限定されるものではない。However, the present invention is not limited to these examples.

例中、部は重量部を示す。In the examples, parts indicate parts by weight.

実施例1 (イミドジカルボン酸の合成) キシレン300m1に無水トリメリット酸64g(0,
2モル)を攪拌しつつ加熱溶解した。これに3.4′〜
ジアミノジフエニルエーテル134.4 g(0,1モ
ル)をキシレンに溶解した溶液を滴下した。規定の水を
キシレンと共沸除去した後、冷却し析出した沈殿を回収
し、水洗、メタノール洗浄した。
Example 1 (Synthesis of imidodicarboxylic acid) 64 g of trimellitic anhydride (0,
2 mol) was dissolved by heating with stirring. 3.4'~
A solution of 134.4 g (0.1 mol) of diaminodiphenyl ether dissolved in xylene was added dropwise. After a specified amount of water was azeotropically removed with xylene, the precipitate was cooled, collected, and washed with water and methanol.

得られたイミドジカルボン酸 の黄色粉末を100℃で10時間乾燥した。Obtained imidodicarboxylic acid The yellow powder was dried at 100°C for 10 hours.

この黄色粉末のIRスペクトルを測定したところ171
50Il−1に5員環イミド特有の吸収ピークが確認さ
れた。
The IR spectrum of this yellow powder was measured and showed 171
An absorption peak unique to 5-membered ring imide was confirmed at 50Il-1.

この物質の融点は、ホットステージつき顕微鏡下の観察
によって365℃と求められた。
The melting point of this substance was determined to be 365° C. by observation under a microscope with a hot stage.

(ポリマーの製造) 2.6−ナフタレンジカルボン酸ジメチル100部。(manufacture of polymer) 2.100 parts of dimethyl 6-naphthalene dicarboxylate.

エチレングリコール178部およびエステル交換触媒兼
重合触媒としてテトラブチルチタネート0.0048部
<0.03モル%対2.6−ナフタレンジカルボン酸)
を攪拌機、精留塔およびメタノール留出コンデンサーを
備えた反応器に仕込み、心気流下、140℃から230
℃に加熱し、生成するメタノールを系外に除去しながら
エステル交換反応をすすめた。反応開始後9.5時間で
内湯は230℃に達し14.7部のメタノールが留出し
た。ここで先に合成したイミドジカルボン酸化合物を5
モル%の割合(対2,6−ナフタレンジカルボン酸)で
加え、230℃にて10分間反応させた後エステル交換
反応を終了した。
178 parts of ethylene glycol and 0.0048 parts of tetrabutyl titanate (<0.03 mol% to 2.6-naphthalene dicarboxylic acid) as a transesterification catalyst and polymerization catalyst)
was charged into a reactor equipped with a stirrer, a rectification column and a methanol distillation condenser, and heated from 140°C to 230°C under a stream of air.
The transesterification reaction was carried out while heating to ℃ and removing generated methanol from the system. 9.5 hours after the start of the reaction, the temperature of the inner hot water reached 230°C, and 14.7 parts of methanol was distilled out. Here, the imidodicarboxylic acid compound synthesized earlier was added to 5
They were added in a mol % ratio (to 2,6-naphthalene dicarboxylic acid) and reacted at 230° C. for 10 minutes, and then the transesterification reaction was completed.

次いで、得られた反応生成物を、攪拌機、グリコールコ
ンデンサーを設けた重合反応器に移し、230℃から助
除に280℃まで昇温した。280℃にて30分間加熱
した後常圧から1m+nHg以下に減圧しなから重縮合
反応させポリマーを得た。
Next, the obtained reaction product was transferred to a polymerization reactor equipped with a stirrer and a glycol condenser, and the temperature was gradually raised from 230°C to 280°C. After heating at 280° C. for 30 minutes, the pressure was reduced from normal pressure to 1 m+nHg or less and a polycondensation reaction was carried out to obtain a polymer.

得られたポリマーの融点を示差走査型熱量計で測定した
ところ233℃であった。このポリマーのIRスペクト
ルを測定し、イミド構造に由来するピークを確認した。
The melting point of the obtained polymer was measured with a differential scanning calorimeter and was found to be 233°C. The IR spectrum of this polymer was measured, and a peak derived from the imide structure was confirmed.

さらにGPCによる分析によりポリマーが単一ピークで
示される分子量分布を有し、極端な低分子成分が含有さ
れていないことから、イミド構造を有する共重合ポリエ
ステルであることが確認された。またフェノールおよび
1゜1、2.2−テトラクロロエタン混合溶媒(体積比
で1=1に混合)中、35℃にて測定した極限粘度([
η])は0.68dl/gであった。
Furthermore, analysis by GPC revealed that the polymer had a molecular weight distribution with a single peak and contained no extremely low molecular weight components, which confirmed that it was a copolymerized polyester having an imide structure. In addition, the intrinsic viscosity ([
η]) was 0.68 dl/g.

(紡糸および延伸) 得られたポリマーを降下型フローテスターを使用して紡
糸温度290℃で、直径0.5ainの紡糸孔を有する
キャップから紡糸し未延伸糸を得た。これを延伸温度1
20℃、延伸倍率7.5倍で延伸して延伸糸を得た。延
伸糸のヤング率は246g/de 、強度は10.3g
/deであった。
(Spinning and Stretching) The obtained polymer was spun using a descending flow tester at a spinning temperature of 290° C. from a cap having a spinning hole of 0.5 ain in diameter to obtain an undrawn yarn. This is stretched at a temperature of 1
A drawn yarn was obtained by drawing at 20°C and a drawing ratio of 7.5 times. The Young's modulus of the drawn yarn is 246 g/de, and the strength is 10.3 g.
/de was.

実施例2 アミノ化合物としてp−アミノ安息香酸を用いた以外は
全て実施例1に示す方法を用いてポリマーを得た。共重
合されたイミド構造単位はの融点245℃、およびIR
,GPC分析の結果からイミド共重合ポリマーであるこ
とを確認した。
Example 2 A polymer was obtained using the method shown in Example 1 except that p-aminobenzoic acid was used as the amino compound. The copolymerized imide structural unit has a melting point of 245°C and an IR
From the results of GPC analysis, it was confirmed that it was an imide copolymer.

このポリマーの極限粘度は0.69であった。The intrinsic viscosity of this polymer was 0.69.

延伸倍率7.0倍の延伸糸のヤング率は238g/de
 。
The Young's modulus of the drawn yarn with a draw ratio of 7.0 times is 238 g/de
.

強度は9.8g/deであった。The strength was 9.8 g/de.

実施例3 実施例1に示した方法で合成したイミドジカルボン酸に
対してジフェニルカーボネートを反応させてフェニルエ
ステルとした。この化合物を共重合成分とした。
Example 3 The imidodicarboxylic acid synthesized by the method shown in Example 1 was reacted with diphenyl carbonate to obtain a phenyl ester. This compound was used as a copolymerization component.

それ以外は全て実施例1と同様の方法を用いてポリマー
を得た。ポリマーの融点233℃、IR。
A polymer was obtained using the same method as in Example 1 in all other respects. Polymer melting point 233°C, IR.

GPC分析の結果からイミド共重合ポリマーであること
を確認した。このポリマーの極限粘度は0.70であっ
た。延伸倍率7.1倍の延伸糸のヤング率は245g/
de 、強度は10.0g/deであった。
From the results of GPC analysis, it was confirmed that it was an imide copolymer. The intrinsic viscosity of this polymer was 0.70. The Young's modulus of the drawn yarn with a draw ratio of 7.1 times is 245 g/
de, the strength was 10.0 g/de.

比較例1 イミドジカルボン酸化合物を添加することな〈実施例1
に示す方法を用いてポリマーを得た。このポリマーの融
点は267℃、極限粘度0.69dl/gであった。最
大延伸倍率は6.0倍であり、延伸糸のヤング率は20
5g/de 、強度は9.2g/deであった。
Comparative Example 1 Without adding imidodicarboxylic acid compound (Example 1)
A polymer was obtained using the method shown in . This polymer had a melting point of 267°C and an intrinsic viscosity of 0.69 dl/g. The maximum drawing ratio is 6.0 times, and the Young's modulus of the drawn yarn is 20.
The strength was 9.2 g/de.

比較例2 イミドジカルボン酸の添加量を0.4モル%にした以外
は全て実施例1に示す方法を用いてポリマーを製造した
。ポリマーの融点は266℃、極限粘度0.68dl/
gであった。このポリマーの最大延伸倍率は6.1倍で
あり、延伸糸のヤング率は207g/de 。
Comparative Example 2 A polymer was produced using the method shown in Example 1 except that the amount of imidodicarboxylic acid added was 0.4 mol %. The melting point of the polymer is 266°C, and the intrinsic viscosity is 0.68 dl/
It was g. The maximum draw ratio of this polymer was 6.1 times, and the Young's modulus of the drawn yarn was 207 g/de.

強度9.3g/deであった。The strength was 9.3 g/de.

Claims (1)

【特許請求の範囲】 下記式( I ) ▲数式、化学式、表等があります▼…( I ) [式中、lは2〜6の整数である。] で表わされる単位70〜95.5モル%、下記式(II)
▲数式、化学式、表等があります▼ …(II) [式中、lは式( I )の定義に同じである。Xおよび
Yは2価の芳香族残基または脂肪族残基である。] および/または下記式(III) ▲数式、化学式、表等があります▼…(III) [式中、lは式( I )の定義に同じである。Xおよび
Yは式(II)の定義に同じである。] で表わされる単位0.5〜30モル%からなる極限粘度
0.2〜2の共重合ポリエステル。
[Claims] The following formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) [In the formula, l is an integer from 2 to 6. ] 70 to 95.5 mol% of units represented by the following formula (II)
▲There are mathematical formulas, chemical formulas, tables, etc.▼ ...(II) [In the formula, l is the same as the definition of formula (I). X and Y are divalent aromatic or aliphatic residues. ] and/or the following formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(III) [In the formula, l is the same as the definition of formula (I). X and Y are the same as defined in formula (II). ] A copolymerized polyester having an intrinsic viscosity of 0.2 to 2 and comprising 0.5 to 30 mol% of units represented by the formula.
JP30721590A 1990-11-15 1990-11-15 Copolyester Pending JPH04180920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30721590A JPH04180920A (en) 1990-11-15 1990-11-15 Copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30721590A JPH04180920A (en) 1990-11-15 1990-11-15 Copolyester

Publications (1)

Publication Number Publication Date
JPH04180920A true JPH04180920A (en) 1992-06-29

Family

ID=17966432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30721590A Pending JPH04180920A (en) 1990-11-15 1990-11-15 Copolyester

Country Status (1)

Country Link
JP (1) JPH04180920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228695A (en) * 1998-02-10 1999-08-24 Teijin Ltd Imide skeleton-containing ethylene naphthalate
WO2020145346A1 (en) * 2019-01-10 2020-07-16 積水化学工業株式会社 Ester compound, resin composition, cured product, and build-up film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228695A (en) * 1998-02-10 1999-08-24 Teijin Ltd Imide skeleton-containing ethylene naphthalate
WO2020145346A1 (en) * 2019-01-10 2020-07-16 積水化学工業株式会社 Ester compound, resin composition, cured product, and build-up film

Similar Documents

Publication Publication Date Title
US3558557A (en) Copolyesters,their production and uses
JPH0665694B2 (en) Process for producing liquid crystalline polyester polymer of cyclohexanedicarboxylic acid and aromatic diol
US3261812A (en) Elastomeric polyesters of diacids, cyclohexanedimethanol and poly
CN106188513A (en) Synthesis method of polyether ester block copolymer
US5686559A (en) Poly(imide-amic ester), process for preparing the same, and processes for preparing polyimide film and polyimide fiber from the same
JPS608316A (en) Anisotropic molten polyester of 6-hydroxy-2-naphthoic acid
Hussain et al. Structure–property relationship of poly (cyclohexane 1, 4‐dimethylene terephthalate) modified with high trans‐1, 4‐cyclohexanedimethanol and 2, 6‐naphthalene dicarboxylicacid
CN115536821A (en) Preparation method of bisphenol B/phenol red type copolymerized aryl ester material film
KR20180001249A (en) Polyimide-based random copolymers and polyimide-based film comprising the same
JPS6121487B2 (en)
JPH04180920A (en) Copolyester
JPS63152625A (en) Novel polyester and production thereof
KR101766903B1 (en) Low melting point polyester fiber and manufacturing method thereof
JPS63273635A (en) Copolymerized polyester
JP2524322B2 (en) Novel polyester and method for producing the same
KR100306316B1 (en) Elastic fibers, process for producing the same and polyester elastomer to be used therein
US3331889A (en) Sterically hindered segmented copolyesters based on poly
JPS63277235A (en) Polyester based polymer and production thereof
JPH05170880A (en) Bisphenolfluorene polyester
US3492273A (en) Regular sequential copolyesters
JPS6112726A (en) Preparation of polyester
US3350354A (en) Polymeric polyesters of m-terphenyl-4, 4-dicarboxylic acid
US4816552A (en) Aromatic polyester compounds and process for preparing them
US3440221A (en) Regular sequential copolyesters
JP4354623B2 (en) Alternating copolymer polyester fiber and process for producing the same