JPH04179933A - Second harmonics generator - Google Patents

Second harmonics generator

Info

Publication number
JPH04179933A
JPH04179933A JP30707990A JP30707990A JPH04179933A JP H04179933 A JPH04179933 A JP H04179933A JP 30707990 A JP30707990 A JP 30707990A JP 30707990 A JP30707990 A JP 30707990A JP H04179933 A JPH04179933 A JP H04179933A
Authority
JP
Japan
Prior art keywords
light
electric field
harmonic
nonlinear optical
external resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30707990A
Other languages
Japanese (ja)
Inventor
Tadanori Senoo
妹尾 忠則
Yuzuru Tanabe
譲 田辺
Genichi Otsu
元一 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30707990A priority Critical patent/JPH04179933A/en
Publication of JPH04179933A publication Critical patent/JPH04179933A/en
Priority to US08/047,032 priority patent/US5274652A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To modulate a 2nd harmonic output by adjusting the phase matching by an electric field which is impressed on an electrode installed on a non-linear optical material. CONSTITUTION:Non-linear optical crystal KNbO34, etc., provided with the elec trode 9 for impressing the electric field is arranged on the optical axis of omegalight in an external resonator of a triangle ring. The KNbO34 is held at a temperature capable of performing the phase matching by a Peltier element in advance, and the light emitting intensity of 2omega light is modulated by the electric field which is impressed on the electrode 9. At this time, a resonating mirror for making omega light incident is inclined with reference to the optical axis of the omega light so that the reflected omega light may not return to a light source LD. Besides, the stabilization of the frequency of the LD is performed by returning scattered weak light generated in the external resonator to the LD. Thus, the light emitting intensity of the 2nd harmonics can be accurately con trolled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、外部共振器を有する非線形光学材料を用いた
第2高調波発生装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a second harmonic generation device using a nonlinear optical material having an external resonator.

[従来の技術] 従来の外部発振器を用いた第2高調波発生装置を第3図
に示す。
[Prior Art] FIG. 3 shows a conventional second harmonic generation device using an external oscillator.

1は基本波発生用の半導体レーザ(LD)であり、8は
コリメート用のレンズ、3は基本波(以下ω光とする)
を共振させる外部共振器用のミラー、8′は外部共振器
内の共振モードと入射ビームとを整合させるモード整合
用のレンズ、4はKNb02結晶等の非線形光学材料、
5は第2高調波(以下2ω光とする)を透過させω光を
反射するダイクロイックミラー、2はLDlへのω光帰
還により発振周波数をロックするためのミラーを設けた
PZT素子である。6はダイクロイックミラーにより反
射されたω光を検出するフォトダイオード(PD)であ
り、7はPD6の検出信号に基づいてPZT素子2を駆
動しそれに設けられたミラーの角度を調整するコントロ
ーラである。
1 is a semiconductor laser (LD) for generating a fundamental wave, 8 is a collimating lens, and 3 is a fundamental wave (hereinafter referred to as ω light).
8' is a mode matching lens that matches the resonance mode in the external cavity with the incident beam, 4 is a nonlinear optical material such as KNb02 crystal,
5 is a dichroic mirror that transmits the second harmonic (hereinafter referred to as 2ω light) and reflects ω light, and 2 is a PZT element provided with a mirror for locking the oscillation frequency by feedback of ω light to the LDl. 6 is a photodiode (PD) that detects the ω light reflected by the dichroic mirror, and 7 is a controller that drives the PZT element 2 based on the detection signal of the PD 6 and adjusts the angle of the mirror provided therein.

[考案の解決しようとする課題] 従来、前述のような第2高調波発生装置においては、ω
光と2ω光との非線形光学材料内での位相を整合させる
こと、即ち非線形光学材料内でのω光と2ω光の屈折率
nωとn2ωを整合させることが、第2高調波の発光強
度を高めるうえで重要である。
[Problem to be solved by the invention] Conventionally, in the second harmonic generator as described above, ω
Matching the phases of the light and the 2ω light within the nonlinear optical material, that is, matching the refractive indices nω and n2ω of the ω light and the 2ω light within the nonlinear optical material, increases the emission intensity of the second harmonic. It is important to increase the

従来、このような位相整合を合わせるために、非線形光
学材料をペルチェ素子等によって位相整合のとれる一定
温度に保持している。温度制御の精度は±0.1℃以下
が必要であり、小さな温度変動により2ω光の発生が停
止するため、通常は常に精度よ(位相整合のとれる温度
に合わせである。また、2ω光の発光強度を。
Conventionally, in order to achieve such phase matching, a nonlinear optical material is maintained at a constant temperature using a Peltier element or the like to achieve phase matching. The accuracy of temperature control must be ±0.1℃ or less, and since the generation of 2ω light will stop due to small temperature fluctuations, the accuracy is usually always maintained (adjusted to the temperature at which phase matching can be achieved. luminescence intensity.

ω光の光源である半導体レーザ等の出力を変調して調整
する方法もあるが、この方法では外部共振器からのω光
帰還による半導体レーザの発振周波数の安定化(ロッキ
ング)が容易に不安定化してしまい、2ω光の発生がで
きなっていた。
There is also a method of modulating and adjusting the output of a semiconductor laser, etc., which is a light source of ω light, but with this method, the stabilization (locking) of the oscillation frequency of the semiconductor laser due to ω light feedback from an external resonator easily becomes unstable. , and was unable to generate 2ω light.

従って、従来2ω光の発光強度を精度良くコントロール
することは困難であった。
Therefore, it has conventionally been difficult to accurately control the emission intensity of 2ω light.

[課題を解決する為の手段] 本願発明は、前述の問題点を解決すべくなされたもので
あり、基本波発生用の光源と、外部共振器を有し基本波
を第2高調波へ変換する非線形光学材料とを有する第2
高調波発生装置において、該非線形光学材料には、電界
を印加することによって基本波と第2高調波の位相整合
を調整し第2高調波の発光強度を変調する電極が設けら
れていることを特徴とする第2高調波発生装置を提供す
るものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a light source for generating a fundamental wave and an external resonator to convert the fundamental wave into a second harmonic. a second nonlinear optical material having
In the harmonic generation device, the nonlinear optical material is provided with an electrode that adjusts the phase matching between the fundamental wave and the second harmonic and modulates the emission intensity of the second harmonic by applying an electric field. The present invention provides a second harmonic generation device having the following characteristics.

本発明の実施例の第1図に基づいて説明する。また、装
置全体の構成は第3図のものと同じである。電界印加用
の電極9が設けられた非線形光学結晶のKNbo、 4
等が、3角リングの外部共振器内部のω光の光軸上に配
!される。KNbO,4は予めペルチェ素子により位相
整合がとれる温度に保持されており、電極9に印加され
る電界により2ω光の発光強度を変調する。この時、ω
光入射用の共振ミラー3はω光の光軸に対して傾けられ
ており、ω光の反射光が光源であるLDIへ戻らないよ
うにしている。また、LDlの周波数の安定化は外部共
振器内部で発生した微弱な散乱光をLDIへ戻すことに
より行なっている。
An embodiment of the present invention will be explained based on FIG. 1. Further, the overall configuration of the device is the same as that in FIG. 3. KNbo, a nonlinear optical crystal provided with an electrode 9 for applying an electric field, 4
etc. are arranged on the optical axis of the ω light inside the external resonator of the triangular ring! be done. KNbO, 4 is maintained in advance at a temperature that allows phase matching by a Peltier element, and the emitted light intensity of 2ω light is modulated by the electric field applied to the electrode 9. At this time, ω
The resonant mirror 3 for light incidence is tilted with respect to the optical axis of the ω light to prevent reflected light of the ω light from returning to the LDI, which is the light source. Further, the frequency of LDl is stabilized by returning weak scattered light generated inside the external resonator to LDI.

外部共振器は、3角形、4角形以上の多角形等用いられ
るが、ミラーが多すぎると損失が多く光軸調整も困難と
なり部品点数も多(なるので、3角形が好ましい。非線
形光学材料としては、KNbOs 、β−BaB*04
. KTiopo4. KHzPO4結晶等の非線形光
学結晶、有機非線形光学材料も使用できる。光源として
は、各種固体、気体レーザ等も使用できるが、コンパク
ト化、軽量化の点でLDが好ましい。
The external resonator can be triangular, quadrilateral or more polygonal, etc., but if there are too many mirrors, there will be a lot of loss, making it difficult to adjust the optical axis, and the number of parts will be large. Therefore, a triangular shape is preferable.As a nonlinear optical material, is KNbOs, β-BaB*04
.. KTiopo4. Nonlinear optical crystals such as KHz PO4 crystals and organic nonlinear optical materials can also be used. Although various solid state and gas lasers can be used as the light source, an LD is preferable in terms of compactness and weight reduction.

非線形光学材料としてKNbOs結晶を使用する場合、
その異方性によりω光の偏光方向は結晶のb軸方向一致
しており、2ω光の偏光方向はC軸方向に一致している
。該C軸方向に電界を印加すると最も電界に対する屈折
率変化の応答性が良く、2ω光を効率的に変調できるの
で好ましい。
When using KNbOs crystal as a nonlinear optical material,
Due to the anisotropy, the polarization direction of ω light matches the b-axis direction of the crystal, and the polarization direction of 2ω light matches the c-axis direction. It is preferable to apply an electric field in the C-axis direction because the responsiveness of the refractive index change to the electric field is the best and the 2ω light can be efficiently modulated.

また、予め非線形光学材料を位相整合がとれる温度に保
持しておかずに、これを電界により位相整合がとれるよ
うにしておいて、その点を中心にして電界を変化させて
変調することもできる。
Alternatively, instead of holding the nonlinear optical material in advance at a temperature at which phase matching can be achieved, it is also possible to set the nonlinear optical material so that phase matching can be achieved using an electric field, and then modulate the nonlinear optical material by changing the electric field around that point.

[作用] 本発明は、第2図に示すように非線形光学結晶中を通過
するω光と2ω光の偏光方向が90゜異なり、また電界
に対する屈折率の応答性が結晶軸方向で異なるので、最
も電界に対する応答性が顕著なC軸方向に沿って電界強
度を変調すると、位相整合条件が太き(変化するので、
2ω光の発光強度を精度よく変調できる。また、ω光は
電界に対する応答性が緩やかなり軸に一致しているので
、電界強度からほとんど影響を受けない。
[Function] As shown in FIG. 2, the polarization directions of ω light and 2ω light passing through a nonlinear optical crystal differ by 90°, and the responsivity of the refractive index to an electric field differs in the direction of the crystal axis. When the electric field strength is modulated along the C-axis direction, where the response to the electric field is most pronounced, the phase matching condition becomes thicker (changes, so
The emission intensity of 2ω light can be modulated with high precision. Furthermore, since the response of ω light to the electric field is gentle and coincides with the axis, it is hardly affected by the electric field strength.

従って、ω光が電界によって影響を受けないため共振状
態が壊れることがないので、外部共振器からLDへ帰還
するω光によるLDの発振周波数のロッキングも壊され
ることもなく2ω光の変調が可能となる。
Therefore, since the ω light is not affected by the electric field, the resonance state is not broken, and the locking of the LD's oscillation frequency by the ω light returning from the external resonator to the LD is not broken, making it possible to modulate the 2ω light. becomes.

[実施例] 本発明の実施例を第1図及び第3図に基づいて以下に示
す。
[Example] An example of the present invention will be shown below based on FIGS. 1 and 3.

半導体レーザ(LD)1の波長約860 nm出力10
0mWのω光を、コリメータ用のレンズ8により平行光
としミラーを設けたPZT素子2により反射して、外部
共振器内の共振モードと入射ビームを整合させるための
モード整合用のレンズ8′を介して、3つのミラー3で
構成される3角リング型外部共振器に入射させる。この
とき入射側ミラー3で直接反射される光は入射光軸とず
れているため、LDIには戻らない。外部共振器内では
、図中時計回り方向に共振し、ω光のパワーは増倍され
る。そのω光は、共振光軸上ビームウェスト位置に配置
した非線形光学結晶KNb0.4 (長さ5X幅1×高
さ3mm)により第2高調波2ω光(λ= 430nm
)に変換される。このとき、KNbO3結晶4はω光と
2ω光が位相整合するようにベルチェ素子により27℃
に保持され、ω光はKNbO3結晶4のb軸と平行な偏
光方向で入射させており、2ω光はそれと直行するC軸
方向に平行な偏光方向で出射される。
Semiconductor laser (LD) 1 wavelength approximately 860 nm output 10
0 mW ω light is made into parallel light by a collimator lens 8 and reflected by a PZT element 2 provided with a mirror, and a mode matching lens 8' is used to match the resonance mode in the external resonator and the incident beam. The light is then incident on a triangular ring-shaped external resonator made up of three mirrors 3. At this time, the light directly reflected by the incident side mirror 3 is shifted from the incident optical axis, and therefore does not return to the LDI. Inside the external resonator, resonance occurs in the clockwise direction in the figure, and the power of the ω light is multiplied. The ω light is converted into second harmonic 2ω light (λ = 430 nm) by a nonlinear optical crystal KNb0.4 (length 5 x width 1 x height 3 mm) placed at the beam waist position on the resonant optical axis.
) is converted to At this time, the KNbO3 crystal 4 is heated at 27°C by a Bertier element so that the ω light and the 2ω light are phase matched.
The ω light is made incident in a polarization direction parallel to the b-axis of the KNbO3 crystal 4, and the 2ω light is emitted in a polarization direction parallel to the c-axis direction perpendicular thereto.

このとき、KNbO,結晶4のC軸方向にシンセサイザ
とアンプを用いて、ピークtoピークで100Vの交流
電圧をI KHzでかけたところ、波長約430nmで
出力3mWの2ω光の出力が変調度5%で変調された。
At this time, when an AC voltage of 100 V peak to peak was applied at I KHz in the C-axis direction of the KNbO crystal 4 using a synthesizer and an amplifier, the output of 2ω light with a wavelength of about 430 nm and an output of 3 mW was modulated by 5%. Modulated by

LDIの周波数安定化の方法として、ここでは光帰還法
を用いている。すなわち、3角リング型外部共振器にお
いて、共振器内部の散乱による微弱な逆方向進行波(図
中反時計回り)を30〜50dB程度LDIに注入する
ことにより周波数安定をはかつている。外部共振器は狭
帯域フィルタとして機能し、LDIの発振周波数は共振
器の共振周波数に自動的に引き込まれ安定となる(ロッ
クされる)。
As a method for frequency stabilization of LDI, an optical feedback method is used here. That is, in a triangular ring type external resonator, frequency stability is achieved by injecting a weak backward traveling wave (counterclockwise in the figure) of about 30 to 50 dB due to scattering inside the resonator into the LDI. The external resonator functions as a narrowband filter, and the oscillation frequency of the LDI is automatically pulled in and stabilized (locked) to the resonant frequency of the resonator.

この際、光帰還と外部共振器の系の安定化をはかるため
、PZT素子2を用いて反射光の自動位相調整を行って
いる。
At this time, in order to stabilize the system of optical feedback and external resonator, automatic phase adjustment of the reflected light is performed using the PZT element 2.

すなわち、グイクロイックミラー5(ω光反射、2ω光
透過)により反射させたω光をフォトダイオード(PD
)6によりモニターし最大となるようにコントローラ7
によりPZT素子2を制御している。このロッキングは
KNbO□結晶4に電界をかけてもほとんど変わらず保
持された。
That is, the ω light reflected by the guichroic mirror 5 (ω light reflection, 2ω light transmission) is transmitted to the photodiode (PD
) 6 and controller 7 to maximize the
The PZT element 2 is controlled by. This locking was maintained almost unchanged even when an electric field was applied to the KNbO□ crystal 4.

また、本発明の帰還法は、散乱による戻り光と入射光と
は同軸であるので、光軸調整しなくてもよいという利点
がある。
Further, the feedback method of the present invention has the advantage that the returned light due to scattering and the incident light are coaxial, so there is no need to adjust the optical axis.

また、このような第2高調波発生装置を光ディスク、光
磁気ディスク等の光記録媒体のピックアップのデータ検
出光源として用いれば、高密度のデータの読み取りが可
能となる。
Further, if such a second harmonic generation device is used as a data detection light source for a pickup of an optical recording medium such as an optical disk or a magneto-optical disk, it becomes possible to read high-density data.

[発明の効果] 本発明は、非線形光学材料に設けられた電極に印加する
電界によって、その位相整合を調整して第2高調波比力
を変調できるという優れた効果を有する。
[Effects of the Invention] The present invention has an excellent effect in that the second harmonic specific power can be modulated by adjusting the phase matching by an electric field applied to an electrode provided on a nonlinear optical material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のKNbO,結晶の側面図と、
第2図はKNbO,結晶中での基本波と第2高調波の伝
搬状態を示す説明図であり、第3図は従来例のブロック
図である。 1・・・LD     3・・・ミラー4・・・KNb
O,結晶 9・・・電極第  1  図 C 第2図 の  −
FIG. 1 is a side view of a KNbO crystal according to an embodiment of the present invention, and
FIG. 2 is an explanatory diagram showing the propagation state of the fundamental wave and the second harmonic in a KNbO crystal, and FIG. 3 is a block diagram of a conventional example. 1...LD 3...Mirror 4...KNb
O, crystal 9...electrode 1st figure C figure 2 -

Claims (3)

【特許請求の範囲】[Claims] (1)基本波発生用の光源と、外部共振器を有し基本波
を第2高調波へ変換する非線形光学材料とを有する第2
高調波発生装置において、該非線形光学材料には、電界
を印加することによって基本波と第2高調波の位相整合
を調整し第2高調波の発光強度を変調するための電極が
設けられていることを特徴とする第2高調波発生装置。
(1) A second light source having a light source for generating a fundamental wave and a nonlinear optical material having an external resonator and converting the fundamental wave into a second harmonic.
In the harmonic generation device, the nonlinear optical material is provided with an electrode for adjusting the phase matching between the fundamental wave and the second harmonic and modulating the emission intensity of the second harmonic by applying an electric field. A second harmonic generator characterized by:
(2)該非線形光学材料はKNbO_3結晶であり、電
界がKNbO_3結晶のc軸方向に対して印加されてい
る請求項1の第2高調波発生装置。
(2) The second harmonic generator according to claim 1, wherein the nonlinear optical material is a KNbO_3 crystal, and the electric field is applied in the c-axis direction of the KNbO_3 crystal.
(3)請求項1または2の第2高調波発生装置を記録さ
れた情報の検出光源として用いた光記録媒体のピックア
ップ。
(3) A pickup for an optical recording medium using the second harmonic generator according to claim 1 or 2 as a light source for detecting recorded information.
JP30707990A 1990-11-15 1990-11-15 Second harmonics generator Pending JPH04179933A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30707990A JPH04179933A (en) 1990-11-15 1990-11-15 Second harmonics generator
US08/047,032 US5274652A (en) 1990-11-15 1993-04-12 Harmonic wave generator, a method of producing a harmonic wave and a reading apparatus for an optical recording medium using the harmonic wave generator or the method of producing a harmonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30707990A JPH04179933A (en) 1990-11-15 1990-11-15 Second harmonics generator

Publications (1)

Publication Number Publication Date
JPH04179933A true JPH04179933A (en) 1992-06-26

Family

ID=17964786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30707990A Pending JPH04179933A (en) 1990-11-15 1990-11-15 Second harmonics generator

Country Status (1)

Country Link
JP (1) JPH04179933A (en)

Similar Documents

Publication Publication Date Title
US5367531A (en) Laser light beam generating apparatus
JP2942619B2 (en) Harmonic generator
KR960006210B1 (en) Laser system and method of control thereof
KR100363237B1 (en) Method and apparatus for generating second harmonic
US6775307B2 (en) Light wavelength conversion module
US5471490A (en) Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device
US6005878A (en) Efficient frequency conversion apparatus for use with multimode solid-state lasers
US5625633A (en) Laser light generating apparatus
KR930006854B1 (en) Laser generation system
JP3350607B2 (en) Laser device
EP0390524A2 (en) A light wavelength converter
US5610760A (en) Device for raising the frequency of electromagnetic radiation
JPH04179933A (en) Second harmonics generator
JP3976756B2 (en) Optical frequency comb generator controller
JPH04240831A (en) Second harmonic generation device and pickup using the same
JP2003043435A (en) Optical frequency comb generator
JPH04240832A (en) Second harmonic generation device and pickup
US5274652A (en) Harmonic wave generator, a method of producing a harmonic wave and a reading apparatus for an optical recording medium using the harmonic wave generator or the method of producing a harmonic wave
JP2606101B2 (en) SHG solid-state laser light source
JPH04335327A (en) Demodulating method for higher harmonic wave
JP2963220B2 (en) Second harmonic generator and optical recording medium pickup
JP3264056B2 (en) Short wavelength laser light source
JP2900576B2 (en) Harmonic generator
JPH0715061A (en) Wavelength converter for laser
JPH04179934A (en) Second harmonics generator